1
|
Honda K, Takaoka A, Taniguchi T. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors. Immunity 2006; 25:349-60. [PMID: 16979567 DOI: 10.1016/j.immuni.2006.08.009] [Citation(s) in RCA: 1096] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Induction of type I interferons (IFNs) by viruses and other pathogens is crucial for innate immunity, and it is mediated by the activation of pattern-recognition receptors, such as Toll-like receptors and cytosolic receptors such as RIG-I and MDA5. The type I IFN induction is primarily controlled at the gene transcriptional level, wherein a family of transcription factors, interferon regulatory factors (IRFs), plays central roles. Here, we summarize the recent studies on IRFs, providing a paradigm of how genes are ingeniously regulated during immune responses. We also consider some evolutional aspects on the IFN-IRF system.
Collapse
|
|
19 |
1096 |
2
|
Abstract
The interface between an infectious agent and its host represents the ultimate battleground for survival: The microbe must secure a niche for replication, whereas the host must limit the pathogen's advance. Among the host's arsenal of antimicrobial factors, the type 1 interferons (IFNs) induce potent defense mechanisms against viruses and are key in the host-virus standoff. Viruses have evolved multiple tricks to avoid the immediate antiviral effects of IFNs and, in turn, hosts have adapted use of this innate cytokine system to galvanize multiple additional layers of immune defense. The plasticity that exists in these interactions provides us with a lesson in détente.
Collapse
|
Review |
19 |
708 |
3
|
Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, Ludwig T, Rajewsky K, Dalla-Favera R. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol 2006; 7:773-82. [PMID: 16767092 DOI: 10.1038/ni1357] [Citation(s) in RCA: 591] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 05/17/2006] [Indexed: 12/18/2022]
Abstract
B cells producing high-affinity antibodies are destined to differentiate into memory B cells and plasma cells, but the mechanisms leading to those differentiation pathways are mostly unknown. Here we report that the transcription factor IRF4 is required for the generation of plasma cells. Transgenic mice with conditional deletion of Irf4 in germinal center B cells lacked post-germinal center plasma cells and were unable to differentiate memory B cells into plasma cells. Plasma cell differentiation required IRF4 as well as the transcriptional repressor Blimp-1, which both acted 'upstream' of the transcription factor XBP-1. In addition, IRF4-deficient B cells had impaired expression of activation-induced deaminase and lacked class-switch recombination, suggesting an independent function for IRF4 in this process. These results identify IRF4 as a crucial transcriptional 'switch' in the generation of functionally competent plasma cells.
Collapse
|
|
19 |
591 |
4
|
Graham RR, Kozyrev SV, Baechler EC, Reddy MVPL, Plenge RM, Bauer JW, Ortmann WA, Koeuth T, González Escribano MF, Pons-Estel B, Petri M, Daly M, Gregersen PK, Martín J, Altshuler D, Behrens TW, Alarcón-Riquelme ME. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38:550-5. [PMID: 16642019 DOI: 10.1038/ng1782] [Citation(s) in RCA: 527] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 03/14/2006] [Indexed: 01/15/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by activation of the type I interferon (IFN) pathway. Here we convincingly replicate association of the IFN regulatory factor 5 (IRF5) rs2004640 T allele with SLE in four independent case-control cohorts (P = 4.4 x 10(-16)) and by family-based transmission disequilibrium test analysis (P = 0.0006). The rs2004640 T allele creates a 5' donor splice site in an alternate exon 1 of IRF5, allowing expression of several unique IRF5 isoforms. We also identify an independent cis-acting variant associated with elevated expression of IRF5 and linked to the exon 1B splice site. Haplotypes carrying the variant associated with elevated expression and lacking the exon 1B donor site do not confer risk of SLE. Thus, a common IRF5 haplotype driving elevated expression of multiple unique isoforms of IRF5 is an important genetic risk factor for SLE, establishing a causal role for type I IFN pathway genes in human autoimmunity.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
527 |
5
|
Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LRL, Baechler EC, Plenge RM, Koeuth T, Ortmann WA, Hom G, Bauer JW, Gillett C, Burtt N, Cunninghame Graham DS, Onofrio R, Petri M, Gunnarsson I, Svenungsson E, Rönnblom L, Nordmark G, Gregersen PK, Moser K, Gaffney PM, Criswell LA, Vyse TJ, Syvänen AC, Bohjanen PR, Daly MJ, Behrens TW, Altshuler D. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A 2007; 104:6758-63. [PMID: 17412832 PMCID: PMC1847749 DOI: 10.1073/pnas.0701266104] [Citation(s) in RCA: 365] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3' UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
365 |
6
|
Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, Matsuyama T, Taniguchi T, Honda K. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci U S A 2005; 102:15989-94. [PMID: 16236719 PMCID: PMC1257749 DOI: 10.1073/pnas.0508327102] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recognition of microbial components by Toll-like receptors (TLRs) is an event central to the activation of innate and adaptive immune systems. TLR activation triggers the induction of downstream target genes, wherein the TLR-interacting adaptor molecule MyD88 recruits various signaling molecules and transcription factors. Two members of the IFN regulatory factor (IRF) family of transcription factors, IRF-5 and IRF-7, interact with MyD88 and induce proinflammatory cytokines and type I IFNs, respectively. Here, we show that IRF-4 also interacts with MyD88 and acts as a negative regulator of TLR signaling. IRF-4 mRNA is induced by TLR activation, and IRF-4 competes with IRF-5, but not with IRF-7, for MyD88 interaction. The TLR-dependent induction of proinflammatory cytokines is markedly enhanced in peritoneal macrophages from mice deficient in the Irf4 gene, whereas the induction is inhibited by the ectopic expression of IRF-4 in a macrophage cell line. The critical function of IRF-4 in TLR signaling in vivo is underscored by the observation that Irf4-deficient mice show hypersensitivity to DNA-induced shock, with elevated serum proinflammatory cytokine levels. This study may provide an insight into the complex regulatory mechanisms of MyD88 signaling by IRFs.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
314 |
7
|
Richardson RJ, Dixon J, Malhotra S, Hardman MJ, Knowles L, Boot-Handford RP, Shore P, Whitmarsh A, Dixon MJ. Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nat Genet 2006; 38:1329-34. [PMID: 17041603 DOI: 10.1038/ng1894] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/06/2006] [Indexed: 12/11/2022]
Abstract
The epidermis is a highly organized structure, the integrity of which is central to the protection of an organism. Development and subsequent maintenance of this tissue depends critically on the intricate balance between proliferation and differentiation of a resident stem cell population; however, the signals controlling the proliferation-differentiation switch in vivo remain elusive. Here, we show that mice carrying a homozygous missense mutation in interferon regulatory factor 6 (Irf6), the homolog of the gene mutated in the human congenital disorders Van der Woude syndrome and popliteal pterygium syndrome, have a hyperproliferative epidermis that fails to undergo terminal differentiation, resulting in soft tissue fusions. We further demonstrate that mice that are compound heterozygotes for mutations in Irf6 and the gene encoding the cell cycle regulator protein stratifin (Sfn; also known as 14-3-3sigma) show similar defects of keratinizing epithelia. Our results indicate that Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch and that Irf6 and Sfn interact genetically in this process.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
259 |
8
|
Abstract
The molecular pathways involved in the cellular response to interferon (IFN)gamma have been the focus of much research effort due to their importance in host defense against infection and disease, as well as its potential as a therapeutic agent. The discovery of the JAK-STAT signaling pathway greatly enhanced our understanding of the mechanism of IFNgamma-mediated gene transcription. However, in recent years it has become apparent that other pathways, including MAP kinase, PI3-K, CaMKII and NF-kappaB, either co-operate with or act in parallel to JAK-STAT signaling to regulate the many facets of IFNgamma biology in a gene- and cell type-specific manner. The complex interactions between JAK/STAT and alternate pathways and the impact of these signaling networks on the biological responses to IFNgamma are beginning to be understood. This review summarizes and appraises current advances in our understanding of these complex interactions, their specificity and proposed biological outcomes.
Collapse
|
Review |
17 |
252 |
9
|
Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T, Orton RJ, Varela M, Gifford RJ, Wilson SJ, Palmarini M. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol 2017; 15:e2004086. [PMID: 29253856 PMCID: PMC5747502 DOI: 10.1371/journal.pbio.2004086] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/29/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022] Open
Abstract
The host innate immune response mediated by type I interferon (IFN) and the resulting up-regulation of hundreds of interferon-stimulated genes (ISGs) provide an immediate barrier to virus infection. Studies of the type I ‘interferome’ have mainly been carried out at a single species level, often lacking the power necessary to understand key evolutionary features of this pathway. Here, using a single experimental platform, we determined the properties of the interferomes of multiple vertebrate species and developed a webserver to mine the dataset. This approach revealed a conserved ‘core’ of 62 ISGs, including genes not previously associated with IFN, underscoring the ancestral functions associated with this antiviral host response. We show that gene expansion contributes to the evolution of the IFN system and that interferomes are shaped by lineage-specific pressures. Consequently, each mammal possesses a unique repertoire of ISGs, including genes common to all mammals and others unique to their specific species or phylogenetic lineages. An analysis of genes commonly down-regulated by IFN suggests that epigenetic regulation of transcription is a fundamental aspect of the IFN response. Our study provides a resource for the scientific community highlighting key paradigms of the type I IFN response. The type I interferon (IFN) response is triggered upon sensing of an incoming pathogen in an infected cell and results in the expression of hundreds of IFN-stimulated genes (ISGs, collectively referred to as ‘the interferome’). Studies on the interferome have been carried out mainly in human cells and therefore often lack the power to understand comparative evolutionary aspects of this critical pathway. In this study, we characterized the interferome in several animal species (including humans) using a single experimental framework. This approach allowed us to identify fundamental properties of the innate immune system. In particular, we revealed 62 ‘core’ ISGs, up-regulated in response to IFN in all vertebrates, highlighting the ancestral functions of the IFN system. In addition, we show that many genes repressed by the IFN response normally function as regulators of cell transcription. ISGs shared by multiple species have a higher propensity than other genes to exist as multiple copies in the genome. Importantly, we observed that genes have arisen as ISGs throughout evolution. Hence, every animal species possesses a unique repertoire of ISGs that includes core and lineage-specific genes. Collectively, our data provide a framework on which it will be possible to test the role of the IFN response in pathogen emergence and cross-species transmission.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
243 |
10
|
Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 2010; 59:489-510. [PMID: 20049431 PMCID: PMC11030943 DOI: 10.1007/s00262-009-0804-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/01/2009] [Indexed: 02/06/2023]
Abstract
Nine interferon regulatory factors (IRFs) compose a family of transcription factors in mammals. Although this family was originally identified in the context of the type I interferon system, subsequent studies have revealed much broader functions performed by IRF members in host defense. In this review, we provide an update on the current knowledge of their roles in immune responses, immune cell development, and regulation of oncogenesis.
Collapse
|
Review |
15 |
240 |
11
|
Abstract
Since the discovery of interferon 50 years ago a great deal of progress has been made in understanding how interferons work and how and why they are induced. Key factors in interferon induction are the interferon regulatory factors (IRF). In this review of IRF we aim to show you not only the historical side of the IRF but also the integral, anti-viral and hematopoetic roles of these transcription factors, as well as the sometimes surprising and even forgotten roles that these proteins play, not only in interferon signaling but throughout the immune system and the body as a whole. Further research will no doubt expand the repertoire of these multifunctional proteins even more.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
227 |
12
|
Lauterbach H, Bathke B, Gilles S, Traidl-Hoffmann C, Luber CA, Fejer G, Freudenberg MA, Davey GM, Vremec D, Kallies A, Wu L, Shortman K, Chaplin P, Suter M, O’Keeffe M, Hochrein H. Mouse CD8alpha+ DCs and human BDCA3+ DCs are major producers of IFN-lambda in response to poly IC. J Exp Med 2010; 207:2703-17. [PMID: 20975040 PMCID: PMC2989774 DOI: 10.1084/jem.20092720] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 09/30/2010] [Indexed: 12/12/2022] Open
Abstract
Polyinosinic:polycytidylic acid (poly IC), a double-stranded RNA, is an effective adjuvant in vivo. IFN-λs (also termed IL-28/29) are potent immunomodulatory and antiviral cytokines. We demonstrate that poly IC injection in vivo induces large amounts of IFN-λ, which depended on hematopoietic cells and the presence of TLR3 (Toll-like receptor 3), IRF3 (IFN regulatory factor 3), IRF7, IFN-I receptor, Fms-related tyrosine kinase 3 ligand (FL), and IRF8 but not on MyD88 (myeloid differentiation factor 88), Rig-like helicases, or lymphocytes. Upon poly IC injection in vivo, the IFN-λ production by splenocytes segregated with cells phenotypically resembling CD8α(+) conventional dendritic cells (DCs [cDCs]). In vitro experiments revealed that CD8α(+) cDCs were the major producers of IFN-λ in response to poly IC, whereas both CD8α(+) cDCs and plasmacytoid DCs produced large amounts of IFN-λ in response to HSV-1 or parapoxvirus. The nature of the stimulus and the cytokine milieu determined whether CD8α(+) cDCs produced IFN-λ or IL-12p70. Human DCs expressing BDCA3 (CD141), which is considered to be the human counterpart of murine CD8α(+) DCs, also produced large amounts of IFN-λ upon poly IC stimulation. Thus, IFN-λ production in response to poly IC is a novel function of mouse CD8α(+) cDCs and their human equivalents.
Collapse
|
research-article |
15 |
219 |
13
|
Kaiser WJ, Upton JW, Mocarski ES. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6427-34. [PMID: 18941233 PMCID: PMC3104927 DOI: 10.4049/jimmunol.181.9.6427] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DNA-dependent activator of IFN regulatory factors (IRF; DAI, also known as ZBP1 or DLM-1) is a cytosolic DNA sensor that initiates IRF3 and NF-kappaB pathways leading to activation of type I IFNs (IFNalpha, IFNbeta) and other cytokines. In this study, induction of NF-kappaB is shown to depend on the adaptor receptor-interacting protein kinase (RIP)1, acting via a RIP homotypic interaction motif (RHIM)-dependent interaction with DAI. DAI binds to and colocalizes with endogenous RIP1 at characteristic cytoplasmic granules. Suppression of RIP1 expression by RNAi abrogates NF-kappaB activation as well as IFNbeta induction by immunostimulatory DNA. DAI also interacts with RIP3 and this interaction potentiates DAI-mediated activation of NF-kappaB, implicating RIP3 in regulating this RHIM-dependent pathway. The role of DAI in activation of NF-kappaB in response to immunostimulatory DNA appears to be analogous to sensing of dsRNA by TLR3 in that both pathways involve RHIM-dependent signaling that is mediated via RIP1, reinforcing a central role for this adaptor in innate sensing of intracellular microbes.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
218 |
14
|
Kariuki SN, Kirou KA, MacDermott EJ, Barillas-Arias L, Crow MK, Niewold TB. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:34-8. [PMID: 19109131 PMCID: PMC2716754 DOI: 10.4049/jimmunol.182.1.34] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased IFN-alpha signaling is a primary pathogenic factor in systemic lupus erythematosus (SLE). STAT4 is a transcription factor that is activated by IFN-alpha signaling, and genetic variation of STAT4 has been associated with risk of SLE and rheumatoid arthritis. We measured serum IFN-alpha activity and simultaneous IFN-alpha-induced gene expression in PBMC in a large SLE cohort. The risk variant of STAT4 (T allele; rs7574865) was simultaneously associated with both lower serum IFN-alpha activity and greater IFN-alpha-induced gene expression in PBMC in SLE patients in vivo. Regression analyses confirmed that the risk allele of STAT4 was associated with increased sensitivity to IFN-alpha signaling. The IFN regulatory factor 5 SLE risk genotype was associated with higher serum IFN-alpha activity; however, STAT4 showed dominant influence on the sensitivity of PBMC to serum IFN-alpha. These data provide biologic relevance for the risk variant of STAT4 in the IFN-alpha pathway in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
186 |
15
|
Esashi E, Wang YH, Perng O, Qin XF, Liu YJ, Watowich SS. The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 2008; 28:509-20. [PMID: 18342552 PMCID: PMC2864148 DOI: 10.1016/j.immuni.2008.02.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 12/30/2007] [Accepted: 02/04/2008] [Indexed: 11/23/2022]
Abstract
The development of distinct dendritic cell (DC) subsets is regulated by cytokines. The ligand for the FMS-like tyrosine kinase 3 receptor (Flt3L) is necessary for plasmacytoid DC (pDC) and conventional DC (cDC) maturation. The cytokine GM-CSF inhibits Flt3L-driven pDC production while promoting cDC growth. We show that GM-CSF selectively utilized its signal transducer STAT5 to block Flt3L-dependent pDC development from the lineage-negative, Flt3+ (lin- Flt3+) bone-marrow subset. The signaling molecule STAT3, by contrast, was necessary for expansion of DC progenitors but not pDC maturation. In vivo, STAT5 suppressed pDC formation during repopulation of the DC compartment after bone-marrow ablation. GM-CSF-dependent STAT5 signaling rapidly extinguished pDC-related gene expression in lin- Flt3+ progenitors. Inspection of the Irf8 promoter revealed that STAT5 was recruited during GM-CSF-mediated suppression, indicating that STAT5 directly inhibited transcription of this critical pDC gene. Our results therefore show that GM-CSF controls the production of pDCs by employing STAT5 to suppress IRF8 and the pDC transcriptional network in lin- Flt3+ progenitors.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
170 |
16
|
Abstract
IRF4, a member of the Interferon Regulatory Factor (IRF) family of transcription factors, is expressed in cells of the immune system, where it transduces signals from various receptors to activate or repress gene expression. IRF4 expression is a key regulator of several steps in lymphoid-, myeloid-, and dendritic-cell differentiation, including the differentiation of mature B cells into antibody-secreting plasma cells. IRF4 expression is also associated with many lymphoid malignancies, with recent evidence pointing to an essential role in multiple myeloma, a malignancy of plasma cells. Interference with IRF4 expression is lethal to multiple myeloma cells, irrespective of their genetic etiology, making IRF4 an "Achilles' heel" that may be exploited therapeutically.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
154 |
17
|
Yasuda K, Richez C, Maciaszek JW, Agrawal N, Akira S, Marshak-Rothstein A, Rifkin IR. Murine Dendritic Cell Type I IFN Production Induced by Human IgG-RNA Immune Complexes Is IFN Regulatory Factor (IRF)5 and IRF7 Dependent and Is Required for IL-6 Production. THE JOURNAL OF IMMUNOLOGY 2007; 178:6876-85. [PMID: 17513736 DOI: 10.4049/jimmunol.178.11.6876] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcgammaRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-alpha, IFN-beta, and IL-6 and up-regulate costimulatory molecules in a FcgammaR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-alpha and IFN-beta production. Unexpectedly, however, IRF5 plays a critical role in IFN-alpha and IFN-beta production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases.
Collapse
|
|
18 |
146 |
18
|
Abstract
The transcription factor p63 is essential for the formation of the epidermis and other stratifying epithelia. This is clearly demonstrated by the severe abnormality of p63-deficient mice and by the development of certain types of ectodermal dysplasias in humans as a result of p63 mutations. Investigation of the in vivo functions of p63 is complicated by the occurrence of 10 different splicing isoforms and by its interaction with the other family members, p53 and p73. In vitro and in vivo models have been used to unravel the functions of p63 and its different isoforms, but the results or their interpretation are often contradictory. This review focuses on what mammalian in vivo models and patient studies have taught us in the last 10 years.
Collapse
|
Review |
14 |
144 |
19
|
Botti E, Spallone G, Moretti F, Marinari B, Pinetti V, Galanti S, De Meo PD, De Nicola F, Ganci F, Castrignanò T, Pesole G, Chimenti S, Guerrini L, Fanciulli M, Blandino G, Karin M, Costanzo A. Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proc Natl Acad Sci U S A 2011; 108:13710-5. [PMID: 21807998 PMCID: PMC3158164 DOI: 10.1073/pnas.1110931108] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor interferon regulatory factor 6 (IRF6) regulates craniofacial development and epidermal proliferation. We recently showed that IRF6 is a component of a regulatory feedback loop that controls the proliferative potential of epidermal cells. IRF6 is transcriptionally activated by p63 and induces its proteasome-mediated down-regulation, thereby limiting keratinocyte proliferative potential. We hypothesized that IRF6 may also be involved in skin carcinogenesis. Hence, we analyzed IRF6 expression in a large series of squamous cell carcinomas (SCCs) and found a strong down-regulation of IRF6 that correlated with tumor invasive and differentiation status. IRF6 down-regulation in SCC cell lines and primary tumors correlates with methylation on a CpG dinucleotide island located in its promoter region. To identify the molecular mechanisms regulating IRF6 potential tumor suppressive activity, we performed a genome-wide analysis by combining ChIP sequencing for IRF6 binding sites and gene expression profiling in primary human keratinocytes after siRNA-mediated IRF6 depletion. We observed dysregulation of cell cycle-related genes and genes involved in differentiation, cell adhesion, and cell-cell contact. Many of these genes were direct IRF6 targets. We also performed in vitro invasion assays showing that IRF6 down-regulation promotes invasive behavior and that reintroduction of IRF6 into SCC cells strongly inhibits cell growth. These results indicate a function for IRF6 in suppression of tumorigenesis in stratified epithelia.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
134 |
20
|
Fortin A, Abel L, Casanova JL, Gros P. Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis. Annu Rev Genomics Hum Genet 2007; 8:163-92. [PMID: 17492906 DOI: 10.1146/annurev.genom.8.080706.092315] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In humans, genetic factors have long been suspected to contribute to the onset and outcome of tuberculosis. Such effects are difficult to identify owing to their complex inheritance, and to the confounding impact of environmental factors, notably pathogen-associated virulence determinants. Recently, forward genetic approaches in mouse models and in human populations have been used to elucidate a molecular basis for predisposition to mycobacterial diseases. The genetic dissection of host predisposition to infection with Mycobacterium bovis BCG and M. tuberculosis will help to define the key molecules involved in host antituberculous immunity and should provide new insights into this important infectious disease.
Collapse
|
Review |
18 |
124 |
21
|
Ahyi ANN, Chang HC, Dent AL, Nutt SL, Kaplan MH. IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1598-606. [PMID: 19592658 PMCID: PMC2734910 DOI: 10.4049/jimmunol.0803302] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Th2 cells can be subdivided into subpopulations depending on the level of a cytokine and the subsets of cytokines they produce. We have recently identified the ETS family transcription factor PU.1 as regulating heterogeneity in Th2 populations. To define additional factors that might contribute to Th2 heterogeneity, we examined the PU.1 interacting protein IFN-regulatory factor (IRF)4. When Th2 cells are separated based on levels of IL-10 secretion, IRF4 expression segregates into the subset of Th2 cells expressing high levels of IL-10. Infection of total Th2 cells, and IL-10 nonsecreting cells, with retrovirus-expressing IRF4, resulted in increased IL-4 and IL-10 expression, no change in IL-5 or IL-13 production and decreased Il9 transcription. Transfection of an IRF4-specific small interfering RNA into Th2 cells decreases IL-10 production. IRF4 directly binds the Il10 gene as evidenced by chromatin immunoprecipitation assay, and regulates Il10 control elements in a reporter assay. IRF4 interacts with PU.1, and in PU.1-deficient T cells there was an increase in IRF4 binding to the Il10 gene, and in the ability of IRF4 to induce IL-10 production compared with wild-type cells and Il10 promoter activity in a reporter assay. Further heterogeneity of IRF4 expression was observed in Th2 cells analyzed for expression of multiple Th2 cytokines. Thus, IRF4 promotes the expression of a subset of Th2 cytokines and contributes to Th2 heterogeneity.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
119 |
22
|
Eguchi J, Yan QW, Schones DE, Kamal M, Hsu CH, Zhang MQ, Crawford GE, Rosen ED. Interferon regulatory factors are transcriptional regulators of adipogenesis. Cell Metab 2008; 7:86-94. [PMID: 18177728 PMCID: PMC2278019 DOI: 10.1016/j.cmet.2007.11.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 08/03/2007] [Accepted: 11/05/2007] [Indexed: 12/31/2022]
Abstract
We have sought to identify transcriptional pathways in adipogenesis using an integrated experimental and computational approach. Here, we employ high-throughput DNase hypersensitivity analysis to find regions of altered chromatin structure surrounding key adipocyte genes. Regions that display differentiation-dependent changes in hypersensitivity were used to predict binding sites for proteins involved in adipogenesis. A high-scoring example was a binding motif for interferon regulatory factor (IRF) family members. Expression of all nine mammalian IRF mRNAs is regulated during adipogenesis, and several bind to the identified motifs in a differentiation-dependent manner. Furthermore, several IRF proteins repress differentiation. This analysis suggests an important role for IRF proteins in adipocyte biology and demonstrates the utility of this approach in identifying cis- and trans-acting factors not previously suspected to participate in adipogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
114 |
23
|
Cattoretti G, Shaknovich R, Smith PM, Jäck HM, Murty VV, Alobeid B. Stages of germinal center transit are defined by B cell transcription factor coexpression and relative abundance. THE JOURNAL OF IMMUNOLOGY 2007; 177:6930-9. [PMID: 17082608 DOI: 10.4049/jimmunol.177.10.6930] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transit of T cell-activated B cells through the germinal center (GC) is controlled by sequential activation and repression of key transcription factors, executing the pre- and post-GC B cell program. B cell lymphoma (BCL) 6 and IFN regulatory factor (IRF) 8 are necessary for GC formation and for its molecular activity in Pax5+PU.1+ B cells. IRF4, which is highly expressed in BCL6- GC B cells, is necessary for class switch recombination and the plasma cell differentiation at exit from the GC. In this study, we show at the single-cell level broad coexpression of IRF4 with BCL6, Pax5, IRF8, and PU.1 in pre- and post-GC B cells in human and mouse. IRF4 is down-regulated in BCL6+ human GC founder cells (IgD+CD38+), is absent in GC centroblasts, and is re-expressed in positive regulatory domain 1-positive centrocytes, which are negative for all the B cell transcription factors. Activated (CD30+) and activation-induced cytidine deaminase-positive extrafollicular blasts coexpress Pax5 and IRF4. PU.1-negative plasma cells and CD30+ blasts uniquely display the conformational epitope of IRF4 recognized by the MUM1 Ab, an epitope that is absent from any other IRF4+PU.1+ lymphoid and hemopoietic subsets. Low grade B cell lymphomas, representing the malignant counterpart of pre- and post-GC B cells, accordingly express IRF4. However, a fraction of BCL6+ diffuse large B cell lymphomas express IRF4 bearing the MUM1 epitope, indicative of a posttranscriptional modification of IRF4 not seen in the normal counterpart.
Collapse
|
Journal Article |
18 |
113 |
24
|
Honma K, Udono H, Kohno T, Yamamoto K, Ogawa A, Takemori T, Kumatori A, Suzuki S, Matsuyama T, Yui K. Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc Natl Acad Sci U S A 2005; 102:16001-6. [PMID: 16243976 PMCID: PMC1276050 DOI: 10.1073/pnas.0504226102] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A member of the IFN regulatory factor (IRF) family of transcription factors, IRF-4 is expressed in lymphocytes and macrophage/dendritic cells. Studies using IRF-4-deficient mice have revealed the critical roles of IRF-4 in lymphocyte responses. However, the role of IRF-4 in innate immune responses is not clearly understood. Here, we demonstrate that IRF-4 negatively regulates the production of proinflammatory cytokines by macrophages in response to Toll-like receptor (TLR) stimulation. Mice lacking IRF-4 are sensitive to LPS-induced shock, and their macrophages produce high levels of proinflammatory cytokines, including TNF-alpha and IL-6, in response to TLR ligands. The inhibitory role of IRF-4 in response to TLR stimulation was confirmed by the down-regulation of IRF-4 expression in normal macrophages by using the small interfering RNA technique and by the overexpression of IRF-4 in macrophage line RAW264.7. Activation of the important signaling pathways for cytokine production, NF-kappaB and JNK (c-Jun N-terminal kinase), was enhanced after LPS stimulation in IRF-4(-/-) macrophages. These results imply that IRF-4 negatively regulates TLR signaling and is inhibitory to the production of proinflammatory cytokines in response to TLR stimulation.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
109 |
25
|
Shin YC, Nakamura H, Liang X, Feng P, Chang H, Kowalik TF, Jung JU. Inhibition of the ATM/p53 signal transduction pathway by Kaposi's sarcoma-associated herpesvirus interferon regulatory factor 1. J Virol 2006; 80:2257-66. [PMID: 16474133 PMCID: PMC1395370 DOI: 10.1128/jvi.80.5.2257-2266.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 12/05/2005] [Indexed: 12/21/2022] Open
Abstract
Infected cells recognize viral replication as a DNA damage stress and elicit the ataxia telangiectasia-mutated (ATM)/p53-mediated DNA damage response signal transduction pathway as part of the host surveillance mechanisms, which ultimately induces the irreversible cell cycle arrest and apoptosis. Viruses have evolved a variety of mechanisms to counteract this host intracellular innate immunity. Kaposi's sarcoma-associated herpesvirus (KSHV) viral interferon regulatory factor 1 (vIRF1) interacts with the cellular p53 tumor suppressor through its central DNA binding domain, and this interaction inhibits transcriptional activation of p53. Here, we further demonstrate that KSHV vIRF1 downregulates the total p53 protein level by facilitating its proteasome-mediated degradation. Detailed biochemical study showed that vIRF1 interacted with cellular ATM kinase through its carboxyl-terminal transactivation domain and that this interaction blocked the activation of ATM kinase activity induced by DNA damage stress. As a consequence, vIRF1 expression greatly reduced the level of serine 15 phosphorylation of p53, resulting in an increase of p53 ubiquitination and thereby a decrease of its protein stability. These results indicate that KSHV vIRF1 comprehensively compromises an ATM/p53-mediated DNA damage response checkpoint by targeting both upstream ATM kinase and downstream p53 tumor suppressor, which might circumvent host growth surveillance and facilitate viral replication in infected cells.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
108 |