1
|
Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, Caligiuri MA, Durbin JE, Biron CA. Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4279-87. [PMID: 12370359 DOI: 10.4049/jimmunol.169.8.4279] [Citation(s) in RCA: 481] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell cytotoxicity, IFN-gamma expression, proliferation, and accumulation are rapidly induced after murine CMV infections. Under these conditions, the responses were shown to be elicited in overlapping populations. Nevertheless, there were distinct signaling molecule requirements for induction of functions within the subsets. IL-12/STAT4 was critical for NK cell IFN-gamma expression, whereas IFN-alphabeta/STAT1 were required for induction of cytotoxicity. The accumulation/survival of proliferating NK cells was STAT4-independent but required IFN-alphabeta/STAT1 induction of IL-15. Taken together, the results define the coordinated interactions between the cytokines IFN-alphabeta, IL-12, and IL-15 for activation of protective NK cell responses during viral infections, and emphasize these factors' nonredundant functions under in vivo physiological conditions.
Collapse
|
|
23 |
481 |
2
|
Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 2005; 79:13350-61. [PMID: 16227257 PMCID: PMC1262587 DOI: 10.1128/jvi.79.21.13350-13361.2005] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
336 |
3
|
Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 1999; 189:663-72. [PMID: 9989981 PMCID: PMC2192939 DOI: 10.1084/jem.189.4.663] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1998] [Revised: 12/15/1998] [Indexed: 11/28/2022] Open
Abstract
Mechanisms responsible for neuroattenuation of herpes simplex virus (HSV) have been defined previously by studies of mutant viruses in cultured cells. The hypothesis that null mutations in host genes can override the attenuated phenotype of null mutations in certain viral genes was tested. Mutants such as those in infected cell protein (ICP) 0, thymidine kinase, ribonucleotide reductase, virion host shutoff, and ICP34.5 are reduced in their capacity to replicate in nondividing cells in culture and in vivo. The replication of these viruses was examined in eyes and trigeminal ganglia for 1-7 d after corneal inoculation in mice with null mutations (-/-) in interferon receptors (IFNR) for type I IFNs (IFN-alpha/betaR), type II IFN (IFN-gammaR), and both type I and type II IFNs (IFN-alpha/beta/gammaR). Viral titers in eyes and ganglia of IFN-gammaR-/- mice were not significantly different from congenic controls. However, in IFN-alpha/betaR-/- or IFN-alpha/beta/gammaR-/- mice, growth of all mutants, including those with significantly impaired growth in cell culture, was enhanced by up to 1,000-fold in eyes and trigeminal ganglia. Blepharitis and clinical signs of infection were evident in IFN-alpha/betaR-/- and IFN-alpha/beta/gammaR-/- but not control mice for all viruses. Also, IFNs were shown to significantly reduce productive infection of, and spread from intact, but not scarified, corneas. Particularly striking was restoration of near-normal trigeminal ganglion replication and neurovirulence of an ICP34.5 mutant in IFN-alpha/betaR-/- mice. These data show that IFNs play a major role in limiting mutant and wild-type HSV replication in the cornea and in the nervous system. In addition, the in vivo target of ICP34.5 may be host IFN responses. These experiments demonstrate an unsuspected role for host factors in defining the phenotypes of some HSV mutants in vivo. The phenotypes of mutant viruses therefore cannot be interpreted based solely upon studies in cell culture but must be considered carefully in the context of host factors that may define the in vivo phenotype.
Collapse
|
research-article |
26 |
282 |
4
|
Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK, Schmidt RE, Levine B, Virgin HW. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol 2006; 79:13974-83. [PMID: 16254333 PMCID: PMC1280211 DOI: 10.1128/jvi.79.22.13974-13983.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response, and in particular the alpha/beta interferon (IFN-alpha/beta) system, plays a critical role in the control of viral infections. Interferons alpha and beta exert their antiviral effects through the induction of hundreds of interferon-induced (or -stimulated) genes (ISGs). While several of these ISGs have characterized antiviral functions, their actions alone do not explain all of the effects mediated by IFN-alpha/beta. To identify additional IFN-induced antiviral molecules, we utilized a recombinant chimeric Sindbis virus to express selected ISGs in IFN-alpha/beta receptor (IFN-alpha/betaR)(-/-) mice and looked for attenuation of Sindbis virus infection. Using this approach, we identified a ubiquitin homolog, interferon-stimulated gene 15 (ISG15), as having antiviral activity. ISG15 expression protected against Sindbis virus-induced lethality and decreased Sindbis virus replication in multiple organs without inhibiting the spread of virus throughout the host. We establish that, much like ubiquitin, ISG15 requires its C-terminal LRLRGG motif to form intracellular conjugates. Finally, we demonstrate that ISG15's LRLRGG motif is also required for its antiviral activity. We conclude that ISG15 can be directly antiviral.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
19 |
218 |
5
|
Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S, Galbo R, Tomasello F, Gambuzza M, Macrì G, Ruggeri A, Leanderson T, Teti G. Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3126-33. [PMID: 17312160 DOI: 10.4049/jimmunol.178.5.3126] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is known that host cells can produce type I IFNs (IFN-alphabeta) after exposure to conserved bacterial products, but the functional consequences of such responses on the outcome of bacterial infections are incompletely understood. We show in this study that IFN-alphabeta signaling is crucial for host defenses against different bacteria, including group B streptococci (GBS), pneumococci, and Escherichia coli. In response to GBS challenge, most mice lacking either the IFN-alphabetaR or IFN-beta died from unrestrained bacteremia, whereas all wild-type controls survived. The effect of IFN-alphabetaR deficiency was marked, with mortality surpassing that seen in IFN-gammaR-deficient mice. Animals lacking both IFN-alphabetaR and IFN-gammaR displayed additive lethality, suggesting that the two IFN types have complementary and nonredundant roles in host defenses. Increased production of IFN-alphabeta was detected in macrophages after exposure to GBS. Moreover, in the absence of IFN-alphabeta signaling, a marked reduction in macrophage production of IFN-gamma, NO, and TNF-alpha was observed after stimulation with live bacteria or with purified LPS. Collectively, our data document a novel, fundamental function of IFN-alphabeta in boosting macrophage responses and host resistance against bacterial pathogens. These data may be useful to devise alternative strategies to treat bacterial infections.
Collapse
|
|
18 |
210 |
6
|
Teige I, Treschow A, Teige A, Mattsson R, Navikas V, Leanderson T, Holmdahl R, Issazadeh-Navikas S. IFN-beta gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4776-84. [PMID: 12707359 DOI: 10.4049/jimmunol.170.9.4776] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the basic mechanisms behind the beneficial effects of IFN-beta in multiple sclerosis (MS) patients are still obscure, here we have investigated the effects of IFN-beta gene disruption on the commonly used animal model for MS, experimental autoimmune encephalomyelitis (EAE). We show that IFN-beta knockout (KO) mice are more susceptible to EAE than their wild-type (wt) littermates; they develop more severe and chronic neurological symptoms with more extensive CNS inflammation and demyelination. However, there was no discrepancy observed between wt and KO mice regarding the capacity of T cells to proliferate or produce IFN-gamma in response to recall Ag. Consequently, we addressed the effect of IFN-beta on encephalitogenic T cell development and the disease initiation phase by passive transfer of autoreactive T cells from KO or wt littermates to both groups of mice. Interestingly, IFN-beta KO mice acquired a higher incidence and augmented EAE regardless of the source of T cells. This shows that the anti-inflammatory effect of endogenous IFN-beta is predominantly exerted on the effector phase of the disease. Histopathological investigations of CNS in the effector phase revealed an extensive microglia activation and TNF-alpha production in IFN-beta KO mice; this was virtually absent in wt littermates. This coincided with an increase in effector functions of T cells in IFN-beta KO mice, as measured by IFN-gamma and IL-4 production. We suggest that lack of endogenous IFN-beta in CNS leads to augmented microglia activation, resulting in a sustained inflammation, cytokine production, and tissue damage with consequent chronic neurological deficits.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adoptive Transfer
- Animals
- Autoantibodies/biosynthesis
- Autoantigens/immunology
- Cells, Cultured
- Chronic Disease
- Encephalomyelitis, Autoimmune, Experimental/epidemiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Deletion
- Genetic Predisposition to Disease
- Immunophenotyping
- Incidence
- Inflammation/genetics
- Inflammation/immunology
- Interferon-beta/biosynthesis
- Interferon-beta/deficiency
- Interferon-beta/genetics
- Macrophage Activation/genetics
- Macrophage Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin Basic Protein/immunology
- Myelin Sheath/pathology
- Peptide Fragments/immunology
- Severity of Illness Index
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
|
Comparative Study |
22 |
174 |
7
|
Stockinger S, Reutterer B, Schaljo B, Schellack C, Brunner S, Materna T, Yamamoto M, Akira S, Taniguchi T, Murray PJ, Müller M, Decker T. IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. THE JOURNAL OF IMMUNOLOGY 2005; 173:7416-25. [PMID: 15585867 DOI: 10.4049/jimmunol.173.12.7416] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Like viruses, intracellular bacteria stimulate their host cells to produce type I IFNs (IFN-alpha and IFN-beta). In our study, we investigated the signals and molecules relevant for the synthesis of and response to IFN by mouse macrophages infected with Listeria monocytogenes. We report that IFN-beta is the critical immediate-early IFN made during infection, because the synthesis of all other type I IFN, expression of a subset of infection-induced genes, and the biological response to type I IFN was lost upon IFN-beta deficiency. The induction of IFN-beta mRNA and the IFN-beta-dependent sensitization of macrophages to bacteria-induced death, in turn, was absolutely dependent upon the presence of the transcription factor IFN regulatory factor 3 (IRF3). IFN-beta synthesis and signal transduction occurred in macrophages deficient for TLR or their adaptors MyD88, TRIF, or TRAM. Expression of Nod2, a candidate receptor for intracellular bacteria, increased during infection, but the protein was not required for Listeria-induced signal transduction to the Ifn-beta gene. Based on our data, we propose that IRF3 is a convergence point for signals derived from structurally unrelated intracellular pathogens, and that L. monocytogenes stimulates a novel TLR- and Nod2-independent pathway to target IRF3 and the type I IFN genes.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/deficiency
- Animals
- Antigens, Differentiation
- Cells, Cultured
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation/immunology
- Humans
- Interferon Regulatory Factor-3
- Interferon-alpha/biosynthesis
- Interferon-alpha/physiology
- Interferon-beta/biosynthesis
- Interferon-beta/deficiency
- Interferon-beta/genetics
- Interferon-beta/physiology
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Intracellular Fluid/microbiology
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Listeria monocytogenes/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/microbiology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Membrane Proteins/deficiency
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Nod2 Signaling Adaptor Protein
- Protein Isoforms/biosynthesis
- Protein Isoforms/physiology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/deficiency
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptors
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
164 |
8
|
Koerner I, Kochs G, Kalinke U, Weiss S, Staeheli P. Protective role of beta interferon in host defense against influenza A virus. J Virol 2006; 81:2025-30. [PMID: 17151098 PMCID: PMC1797552 DOI: 10.1128/jvi.01718-06] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type I interferon (IFN), which includes the IFN-alpha and -beta subtypes, plays an essential role in host defense against influenza A virus. However, the relative contribution of IFN-beta remains unresolved. In mice, type I IFN is effective against influenza viruses only if the IFN-induced resistance factor Mx1 is present, though most inbred mouse strains, including the recently developed IFN-beta-deficient mice, bear only defective Mx1 alleles. We therefore generated IFN-beta-deficient mice carrying functional Mx1 alleles (designated Mx-BKO) and compared them to either wild-type mice bearing functional copies of both IFN-beta and Mx1 (designated Mx-wt) or mice carrying functional Mx1 alleles but lacking functional type I IFN receptors (designated Mx-IFNAR). Influenza A virus strain SC35M (H7N7) grew to high titers and readily formed plaques in monolayers of Mx-BKO and Mx-IFNAR embryo fibroblasts which showed no spontaneous expression of Mx1. In contrast, Mx-wt embryo fibroblasts were found to constitutively express Mx1, most likely explaining why SC35M did not grow to high titers and formed no visible plaques in such cells. In vivo challenge experiments in which SC35M was applied via the intranasal route showed that the 50% lethal dose was about 20-fold lower in Mx-BKO mice than in Mx-wt mice and that virus titers in the lungs were increased in Mx-BKO mice. The resistance of Mx-BKO mice to influenza A virus strain PR/8/34 (H1N1) was also substantially reduced, demonstrating that IFN-beta plays an important role in the defense against influenza A virus that cannot be compensated for by IFN-alpha.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
145 |
9
|
Matskevich AA, Moelling K. Dicer is involved in protection against influenza A virus infection. J Gen Virol 2007; 88:2627-2635. [PMID: 17872512 DOI: 10.1099/vir.0.83103-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-alpha and IFN-beta genes. Our results demonstrate that knockdown of a key RNAi component, Dicer, led to a modest increase of virus production and accelerated apoptosis of influenza A virus-infected cells. These effects were much weaker in the presence of IFN. The results also show that in both Vero cells and the IFN-producing alveolar epithelial A549 cell line influenza A virus targets Dicer at mRNA and protein levels. Thus, RNAi is involved in antiviral response, and Dicer is important for protection against influenza A virus infection.
Collapse
|
Journal Article |
18 |
89 |
10
|
Burdeinick-Kerr R, Wind J, Griffin DE. Synergistic roles of antibody and interferon in noncytolytic clearance of Sindbis virus from different regions of the central nervous system. J Virol 2007; 81:5628-36. [PMID: 17376910 PMCID: PMC1900320 DOI: 10.1128/jvi.01152-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sindbis virus (SINV) is an alphavirus that causes infection of neurons and encephalomyelitis in adult immunocompetent mice. Recovery can occur without apparent neurological damage. To better define the factors facilitating noncytolytic clearance of SINV in different regions of the central nervous system (CNS) and the roles of innate and adaptive immune responses at different times during infection, we have characterized SINV infection and clearance in the brain, brain stem, and spinal cords of severe combined immunodeficiency (SCID) and C57BL/6 (wild-type [WT]) mice and mice deficient in beta interferon (IFN-beta) (BKO), antibody (muMT), IFN-gamma (GKO), IFN-gamma receptor (GRKO), and both antibody and IFN-gamma (muMT/GKO). WT mice cleared infectious virus by day 8, while SCID mice had persistent virus replication at all sites. For 3 days after infection, BKO mice had higher titers at all sites than WT mice, despite similar IFN-alpha production, but cleared virus similarly. GKO and GRKO mice cleared infectious virus from all sites by days 8 to 10 and, like WT mice, displayed transient reactivation at 12 to 22 days. muMT mice did not clear virus from the brain, and clearance from the brain stem and lumbar spinal cord was delayed, followed by reactivation. Eighty-one days after infection, muMT/GKO mice had not cleared virus from any site, but titers were lower than for SCID mice. These studies show that IFN-beta is independently important for early control of CNS virus replication, that antiviral antibody is critical for clearance from the brain, and that both antibody and IFN-gamma contribute to prevention of reactivation after initial clearance.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
65 |
11
|
Byrnes AP, Durbin JE, Griffin DE. Control of Sindbis virus infection by antibody in interferon-deficient mice. J Virol 2000; 74:3905-8. [PMID: 10729167 PMCID: PMC111901 DOI: 10.1128/jvi.74.8.3905-3908.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies clear Sindbis virus from infected animals through an unknown mechanism. To determine whether interferon-induced pathways are required for this clearance, we examined mice which are unable to respond to alpha/beta interferon or gamma interferon. Although extremely susceptible to infection, such mice survived and completely cleared virus if antibodies against Sindbis virus were given.
Collapse
|
research-article |
25 |
52 |
12
|
Teige I, Liu Y, Issazadeh-Navikas S. IFN-beta inhibits T cell activation capacity of central nervous system APCs. THE JOURNAL OF IMMUNOLOGY 2006; 177:3542-53. [PMID: 16951313 DOI: 10.4049/jimmunol.177.6.3542] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously investigated the physiological effects of IFN-beta on chronic CNS inflammation and shown that IFN-beta(-/-) mice develop a more severe experimental autoimmune encephalomyelitis than their IFN-beta(+/-) littermates. This result was shown to be associated with a higher activation state of the glial cells and a higher T cell cytokine production in the CNS. Because this state suggested a down-regulatory effect of IFN-beta on CNS-specific APCs, these results were investigated further. We report that IFN-beta pretreatment of astrocytes and microglia (glial cells) indeed down-modulate their capacity to activate autoreactive Th1 cells. First, we investigated the intrinsic ability of glial cells as APCs and report that glial cells prevent autoreactive Th1 cells expansion while maintaining Ag-specific T cell effector functions. However, when the glial cells are treated with IFN-beta before coculture with T cells, the effector functions of T cells are impaired as IFN-gamma, TNF-alpha, and NO productions are decreased. Induction of the T cell activation marker, CD25 is also reduced. This suppression of T cell response is cell-cell dependent, but it is not dependent on a decrease in glial expression of MHC class II or costimulatory molecules. We propose that IFN-beta might exert its beneficial effects mainly by reducing the Ag-presenting capacity of CNS-specific APCs, which in turn inhibits the effector functions of encephalitogenic T cells. This affect is of importance because activation of encephalitogenic T cells within the CNS is a prerequisite for the development of a chronic progressive CNS inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
47 |
13
|
Zietara N, Łyszkiewicz M, Gekara N, Puchałka J, Dos Santos VAPM, Hunt CR, Pandita TK, Lienenklaus S, Weiss S. Absence of IFN-beta impairs antigen presentation capacity of splenic dendritic cells via down-regulation of heat shock protein 70. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1099-109. [PMID: 19581626 PMCID: PMC2756009 DOI: 10.4049/jimmunol.0803214] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type I IFNs play a key role in linking the innate and adaptive arms of the immune system. Although produced rapidly in response to pathogens, IFNs are also produced at low levels in the absence of infection. In the present study, we demonstrate that constitutively produced IFNs are necessary in vivo to maintain dendritic cells in an "Ag presentation-competent" state. Conventional dendritic cells (cDCs) isolated from spleens of IFN-beta or IFNAR-deficient mice exhibit a highly impaired ability to present Ag and activate naive T cells. Microarray analysis of mRNA isolated from IFN-beta(-/-) and IFNAR(-/-) cDCs revealed diminished expression of two genes that encoded members of the heat shock protein 70 (Hsp70) family. Consistent with this observation, pharmacological inhibition of Hsp70 in cDCs from wild-type mice impaired their T cell stimulatory capacity. Similarly, the Ag presentation ability of splenic cDCs isolated from Hsp70.1/3(-/-) mice was also severely impaired in comparison to wild-type cDCs. Thus, constitutive IFN-beta expression regulates Hsp70 levels to help maintain dendritic cells in a competent state for efficient priming of effector T cells in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
31 |
14
|
Gardner CL, Yin J, Burke CW, Klimstra WB, Ryman KD. Type I interferon induction is correlated with attenuation of a South American eastern equine encephalitis virus strain in mice. Virology 2009; 390:338-47. [PMID: 19539968 PMCID: PMC3404509 DOI: 10.1016/j.virol.2009.05.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/25/2009] [Accepted: 05/27/2009] [Indexed: 11/17/2022]
Abstract
North American eastern equine encephalitis virus (NA-EEEV) strains cause high mortality in humans, whereas South American strains (SA-EEEV) are typically avirulent. To clarify mechanisms of SA-EEEV attenuation, we compared mouse-attenuated BeAr436087 SA-EEEV, considered an EEEV vaccine candidate, with mouse-virulent NA-EEEV strain, FL93-939. Although attenuated, BeAr436087 initially replicated more efficiently than FL93-939 in lymphoid and other tissues, inducing systemic IFN-alpha/beta release, whereas FL93-939 induced little. BeAr436087 was more virulent than FL93-939 in IFN-alpha/beta-deficient mice, confirming that type I IFN responses determined attenuation, but the viruses were similarly sensitive to IFN-alpha/beta priming in vitro. Infection with BeAr436087 protected against FL93-939 disease/death, even when given 8 h afterward, suggesting that the environment produced by BeAr436087 infection attenuated FL93-939. We conclude that avoidance of IFN-alpha/beta induction is a major virulence factor for FL93-939. Furthermore, BeAr436087 could be used for vaccination and therapeutic treatment in the event of exposure to NA-EEEV during a bioterrorism attack.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
30 |
15
|
Vareille M, Kieninger E, Alves MP, Kopf BS, Möller A, Geiser T, Johnston SL, Edwards MR, Regamey N. Impaired type I and type III interferon induction and rhinovirus control in human cystic fibrosis airway epithelial cells. Thorax 2012; 67:517-25. [PMID: 22213737 DOI: 10.1136/thoraxjnl-2011-200405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rhinoviruses are important triggers of pulmonary exacerbations and possible contributors to long-term respiratory morbidity in cystic fibrosis (CF), but mechanisms leading to rhinovirus-induced CF exacerbations are poorly understood. It is hypothesised that there is a deficient innate immune response of the airway epithelium towards rhinovirus infection in CF. METHODS Early innate immune responses towards rhinoviruses (RV-16, major-type and RV-1B, minor-type) in CF and non-CF bronchial epithelial cell lines and primary nasal and bronchial epithelial cells from patients with CF (n=13) and healthy controls (n=24) were studied. RESULTS Rhinovirus RNA expression and virus release into supernatants was increased more than tenfold in CF cells compared with controls. CF cells expressed up to 1000 times less interferon (IFN) type I (β) and type III (λ) mRNA and produced less than half of IFN-β and IFN-λ protein compared with controls. In contrast, interleukin 8 production was not impaired, indicating a selective deficiency in the innate antiviral defence system. Deficient IFN production was paralleled by lower expression of IFN-stimulated genes including myxovirus resistance A, 2',5'-oligoadenylate synthetase, viperin and nitric oxide synthase 2. Addition of exogenous type I and III IFNs, particularly IFN-β, restored antiviral pathways and virus control in CF cells, underscoring the crucial role of these molecules. CONCLUSIONS This study describes a novel mechanism to explain the increased susceptibility of patients with CF to rhinovirus infections. A profound impairment of the antiviral early innate response in CF airway epithelial cells was identified, suggesting a potential use of IFNs in the treatment of rhinovirus-induced CF exacerbations.
Collapse
|
Retracted Publication |
13 |
29 |
16
|
Desai MM, Gong B, Chan T, Davey RA, Soong L, Kolokoltsov AA, Sun J. Differential, type I interferon-mediated autophagic trafficking of hepatitis C virus proteins in mouse liver. Gastroenterology 2011; 141:674-85, 685.e1-6. [PMID: 21683701 PMCID: PMC3152629 DOI: 10.1053/j.gastro.2011.04.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 04/14/2011] [Accepted: 04/26/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS The hepatitis C virus (HCV) serine protease NS3/4A can cleave mitochondria-associated antiviral signaling protein (MAVS) and block retinoic acid-inducible gene I-mediated interferon (IFN) responses. Although this mechanism is thought to have an important role in HCV-mediated innate immunosuppression, its significance in viral persistence is not clear. METHODS We generated transgenic mice that express the HCV NS3/4A proteins specifically in the liver and challenged the animals with a recombinant vesicular stomatitis virus, a synthetic HCV genome, IFN alfa, or IFN beta. We evaluated the effects of HCV serine protease on the innate immune responses and their interactions. RESULTS Expression of HCV NS3/4A resulted in cleavage of intrahepatic MAVS; challenge of transgenic mice with vesicular stomatitis virus or a synthetic HCV genome induced strong, type I IFN-mediated responses that were not significantly lower than those of control mice. Different challenge agents induced production of different ratios of IFN alfa and beta, resulting in different autophagic responses and vesicular trafficking patterns of endoplasmic reticulum- and mitochondria-associated viral proteins. IFN beta promoted degradation of the viral proteins by the autolysosome. Variant isoforms of MAVS were associated with distinct, type I IFN-mediated autophagic responses; these responses have a role in trafficking of viral components to endosomal compartments that contain Toll-like receptor-3. CONCLUSIONS IFN beta mediates a distinct autophagic mechanism of antiviral host defense. MAVS has an important role in type I IFN-induced autophagic trafficking of viral proteins.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
29 |
17
|
Abstract
The progressive growth of neoplasms and the production of metastasis depend on the development of adequate vasculature, i.e., angiogenesis. The extent of angiogenesis is determined by the balance between positive- and negative-regulating molecules that are released by tumor and host cells in the microenvironment. The growth of many neoplasms is associated with the absence of the endogenous inhibitor of angiogenesis, interferon beta (IFN beta). A survey of multiple mouse and human tumors shows a lack of IFN beta associated with extensive angiogenesis. Therapy with IFN alpha or beta either by subcutaneous injection of the protein or by introduction of viral vectors that contain the IFN beta gene inhibit angiogenesis and, hence, progressive tumor growth.
Collapse
|
Review |
22 |
17 |
18
|
Matheu V, Treschow A, Navikas V, Issazadeh-Navikas S. Upregulation of B7 molecules (CD80 and CD86) and exacerbated eosinophilic pulmonary inflammatory response in mice lacking the IFN-beta gene. J Allergy Clin Immunol 2003; 111:550-7. [PMID: 12642836 DOI: 10.1067/mai.2003.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND IFN-beta has been shown to be effective as therapy for multiple sclerosis. Some reports attributed its beneficial effects to the capacity to induce a T(H)2 response. However, other studies have suggested that endogenous type I IFN might downregulate the allergic response in mice. OBJECTIVE We sought to define the differential role of endogenous IFN-beta in controlling the development of allergic inflammation. METHODS We assessed whether deletion of the gene encoding IFN-beta (IFNB) with knockout mice participated in the development of allergic response in ovalbumin (OVA)-sensitized and OVA-challenged mice. RESULTS OVA-sensitized and OVA-challenged mice with lack of the IFNB gene had more severe pulmonary inflammation with increased lung local response, including IL-4, IL-5, IL-13, IgE, eosinophilia, and goblet cells, than their litter mates (IFN-beta+/-), whereas no differences were observed in regard to local levels of IFN-gamma. Moreover, systemic response with IgE production is also enhanced. Lack of IFN-beta also results in significantly higher antigen-specific T cells, with higher levels of IL-4, IL-5, and IL-13, whereas no significant differences in IFN-gamma response could be observed. We have also detected a higher ratio of CD4+/CD8+ T cells and increased expression of B7.1/B7.2 on B cells and antigen-presenting cells in IFNB knockout mice. CONCLUSIONS These results demonstrate that IFN-beta plays an important role in immunoregulation of allergic response in mice. The stronger pulmonary inflammation could be a consequence of significantly expanded antigen-specific CD4+ T(H)2 cells as a result of efficient antigen presentation by antigen-presenting cells and hence increased production of IgE by B cells.
Collapse
|
|
22 |
14 |
19
|
Meissner N, Rutkowski M, Harmsen AL, Han S, Harmsen AG. Type I Interferon Signaling and B Cells Maintain Hemopoiesis duringPneumocystisInfection of the Lung. THE JOURNAL OF IMMUNOLOGY 2007; 178:6604-15. [PMID: 17475892 DOI: 10.4049/jimmunol.178.10.6604] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Loss of CD4 T cells is the hallmark of HIV infection. However, type I IFN-producing plasmacytoid dendritic cells may also be lost. This results in susceptibility to an opportunistic infection such as Pneumocystis pneumonia. In addition, regenerative bone marrow failure resulting in pancytopenia is another common problem in advanced stage AIDS. This may be linked to both the failing immune system and recurrent opportunistic infections. We generated lymphocyte-deficient type I IFN receptor-deficient mice (IFrag-/-) to study the effects on Pneumocystis infection of the lung. When IFrag-/- animals were infected with Pneumocystis they died between days 16 and 21 postinfection with minimal pneumonia but severe anemia due to complete bone marrow failure. This included the loss of uncommitted hemopoietic precursor cells. Bone marrow failure was prevented by the reconstitution of IFrag-/- mice with wild-type lymphocytes, especially B cells. T and B cells lacking type I IFN receptor signaling could only partially prevent bone marrow failure in response to Pneumocystis infection. However, the presence of T and B cells lacking type I IFN signaling resulted in compensatory extramedullary hemopoiesis in the liver and spleen. Lymphocyte support of the regenerative capacity of the bone marrow was provided by both type I IFN-dependent and -independent mechanisms that acted synergistically. Our findings point to the requirement of both type I IFNs and lymphocytes in the regenerative capabilities of the hemopoietic system under the pressure of Pneumocystis infection, but not during steady-state hemopoiesis. This may have implications in the management of pancytopenia in AIDS.
Collapse
MESH Headings
- Anemia, Aplastic/genetics
- Anemia, Aplastic/immunology
- Anemia, Aplastic/prevention & control
- Animals
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/pathology
- Hematopoiesis, Extramedullary/genetics
- Hematopoiesis, Extramedullary/immunology
- Interferon-alpha/deficiency
- Interferon-alpha/genetics
- Interferon-alpha/physiology
- Interferon-beta/deficiency
- Interferon-beta/genetics
- Interferon-beta/physiology
- Liver/cytology
- Liver/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Pneumonia, Pneumocystis/blood
- Pneumonia, Pneumocystis/genetics
- Pneumonia, Pneumocystis/immunology
- Pneumonia, Pneumocystis/pathology
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/transplantation
Collapse
|
|
18 |
14 |
20
|
Matheu V, Treschow A, Teige I, Navikas V, Issazadeh-Navikas S. Local therapy with CpG motifs in a murine model of allergic airway inflammation in IFN-beta knock-out mice. Respir Res 2005; 6:25. [PMID: 15748290 PMCID: PMC555575 DOI: 10.1186/1465-9921-6-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 03/05/2005] [Indexed: 12/02/2022] Open
Abstract
Background CpG oligodeoxynucleotides (CpG-ODN) are capable of inducing high amounts of type I IFNs with many immunomodulatory properties. Furthermore, type-I IFNs have been proposed to play a key role in mediating effects of CpG-ODN. The precise role of IFN-β in the immunomodulatory effects of CpG-ODN is not known. Objective Here, we aimed to elucidate the role of IFN-β in the anti-allergic effect of CpG motifs. Methods We assessed the immune response in OVA-primed/OVA-challenged IFN-β knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment with synthetic CpG motifs. Results Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-β-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-β-/- mice. Other inflammatory cells, such as lymphocytes and macrophages were enhanced in airways by CpG treatment in IFN-β-/- mice. The ratio of IFN-γ/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-β-/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T-cell proliferation, Th1-cytokines such as IFN-γ, IL-2 and also IL-12 were significantly lower in IFN-β-/- mice. Surprisingly, we discovered that intranasal treatment of mice with CpG-ODN results in mild synovitis particularly in IFN-β-/- mice. Conclusion Our results indicate that induction of Th1 response by therapy with CpG-ODN is only slightly and partially dependent on IFN-β, while IFN-β is not an absolute requirement for suppression of airway eosinophilia and IgE. Furthermore, our finding of mild synovitis is a warning for possible negative effects of CpG-ODN vaccination.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
10 |
21
|
Shankar EM, Che KF, Yong YK, Girija ASS, Velu V, Ansari AW, Larsson M. Asymptomatic SARS-CoV-2 infection: is it all about being refractile to innate immune sensing of viral spare-parts?-Clues from exotic animal reservoirs. Pathog Dis 2021; 79:ftaa076. [PMID: 33289808 PMCID: PMC7799061 DOI: 10.1093/femspd/ftaa076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
A vast proportion of coronavirus disease 2019 (COVID-19) individuals remain asymptomatic and can shed severe acute respiratory syndrome (SARS-CoV) type 2 virus to transmit the infection, which also explains the exponential increase in the number of COVID-19 cases globally. Furthermore, the rate of recovery from clinical COVID-19 in certain pockets of the globe is surprisingly high. Based on published reports and available literature, here, we speculated a few immunovirological mechanisms as to why a vast majority of individuals remain asymptomatic similar to exotic animal (bats and pangolins) reservoirs that remain refractile to disease development despite carrying a huge load of diverse insidious viral species, and whether such evolutionary advantage would unveil therapeutic strategies against COVID-19 infection in humans. Understanding the unique mechanisms that exotic animal species employ to achieve viral control, as well as inflammatory regulation, appears to hold key clues to the development of therapeutic versatility against COVID-19.
Collapse
MESH Headings
- Animals
- Animals, Exotic/virology
- Asymptomatic Diseases
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/transmission
- COVID-19/virology
- Chiroptera/virology
- Cytokine Release Syndrome/genetics
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/prevention & control
- Cytokine Release Syndrome/virology
- Disease Reservoirs
- Eutheria/virology
- Gene Expression
- Host Specificity
- Humans
- Immune Tolerance
- Immunity, Innate
- Interferon-beta/deficiency
- Interferon-beta/genetics
- Interferon-beta/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Monocytes/immunology
- Monocytes/virology
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Receptors, KIR/deficiency
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Receptors, NK Cell Lectin-Like/deficiency
- Receptors, NK Cell Lectin-Like/genetics
- Receptors, NK Cell Lectin-Like/immunology
- SARS-CoV-2/pathogenicity
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Zoonoses/genetics
- Zoonoses/immunology
- Zoonoses/transmission
- Zoonoses/virology
Collapse
|
Research Support, N.I.H., Extramural |
4 |
4 |
22
|
Roundy KM, Spangrude G, Weis JJ, Weis JH. Partial rescue of B cells in microphthalmic osteopetrotic marrow by loss of response to type I IFNs. Int Immunol 2005; 17:1495-503. [PMID: 16186160 DOI: 10.1093/intimm/dxh327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The microphthalmic (mi) mouse exhibits deficiencies in the development of osteoclasts, melanocytes, mast cells and marrow B cells. Previously, we demonstrated that the marrow of such mice over-express receptor activator of nuclear factor kappaB (RANK) ligand (RANKL). RANKL has been shown to induce the production of IFN-beta, a type I IFN. Additionally, maturing B cells have been shown to undergo apoptosis in response to type I IFNs including IFN-beta during differentiation. We hypothesized that the loss of B cells in the marrow of mi mice was due to the over-expression of IFN-beta as a result of heightened RANK-RANKL signaling. Creating a mouse with the mi genotype that was non-responsive to IFN-beta (lacking the type I IFNR) allowed us to test this hypothesis. These mice demonstrated an elevated number of marrow B cells and marrow precursor cells compared with mi animals possessing the type I IFNR. Intriguingly, type I IFNR-deficient wild-type animals also demonstrated an increased number of precursor cells in the marrow, but not an expansion of B220-positive pre-B cells, compared with wild type, suggesting that modulation of type I IFN responses directly controls the development of marrow constituents.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
3 |
23
|
Kublashvili M, Menabde G, Korsantia B, Apridonidze K. Immune status during fracture of lower jaw. GEORGIAN MEDICAL NEWS 2006:101-4. [PMID: 16575147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Immune status during fracture of lower jaw is a very important factor of pathogenesis. Immune depression is developing shortly after the trauma and it turns out to be a bad prognostic sign, during which the risk of developing the bone wound complications and traumatic osteomyelitis increase, and in case of absence of such complications we are faced with significant extension of a term of healing of bone wounds. We have carried out immune studies in 20 patients with lower jaw fractures. To study SlgA and lysozyme activity we took saliva and studied percentage of T- and B-lymphocytes (and their sub-populations) in blood by the use of micro method. Immunoglobulins were defined by the method of radial immuno diffusion; we determined the interferon system by in vitro stimulation of leucocytes; neutrophilic phagocyte activity was studied by the method of Kost U.A. and Stepko M.I. According to the obtained results, during fractures of lower jaw sharp decrease of interferon system and significant decrease of phagocyte activity was observed. Likewise was decreased lysozyme and SlgA indices, which refer to the depression of immune status of mouth cavity. From the cell immunity indices the decrease of T-activators and T-helpers and reduction of immunoregulation index should be emphasized. Quantity of B-lymphocytes was decreased by 10%. With the practical point of view the obtained results refer, alongside with carrying out the surgical, orthopedic and anti-microbial treatments, to the urgency of application of activators of phagocytosis, interferon and lysozyme immunomodulators. With the view of correction of cell immunity it is necessary to correct factors of T-lymphocytes and to increase activity of SigA and lysozyme, as the factors determining local resistance. The results obtained by us are rather important with the view of both immunology and applied, practical medicine. It enables us to lead the substantiated immune therapy, which will be harmonized with other etiotropic anti microbial therapy and will help us to improve significantly the results of anti-inflammation therapy and to decrease cases of purulent complications.
Collapse
|
|
19 |
|