1
|
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005; 308:1635-8. [PMID: 15831718 PMCID: PMC1395357 DOI: 10.1126/science.1110591] [Citation(s) in RCA: 5546] [Impact Index Per Article: 277.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
5546 |
2
|
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139:485-98. [PMID: 19836068 PMCID: PMC2796826 DOI: 10.1016/j.cell.2009.09.033] [Citation(s) in RCA: 3481] [Impact Index Per Article: 217.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/02/2009] [Accepted: 09/30/2009] [Indexed: 11/21/2022]
Abstract
The gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. How commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4(+) T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation and antimicrobial defenses and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Thus, manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
3481 |
3
|
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355-9. [PMID: 16741115 PMCID: PMC3027896 DOI: 10.1126/science.1124234] [Citation(s) in RCA: 3162] [Impact Index Per Article: 166.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The human intestinal microbiota is composed of 10(13) to 10(14) microorganisms whose collective genome ("microbiome") contains at least 100 times as many genes as our own genome. We analyzed approximately 78 million base pairs of unique DNA sequence and 2062 polymerase chain reaction-amplified 16S ribosomal DNA sequences obtained from the fecal DNAs of two healthy adults. Using metabolic function analyses of identified genes, we compared our human genome with the average content of previously sequenced microbial genomes. Our microbiome has significantly enriched metabolism of glycans, amino acids, and xenobiotics; methanogenesis; and 2-methyl-d-erythritol 4-phosphate pathway-mediated biosynthesis of vitamins and isoprenoids. Thus, humans are superorganisms whose metabolism represents an amalgamation of microbial and human attributes.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
3162 |
4
|
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118:229-41. [PMID: 15260992 DOI: 10.1016/j.cell.2004.07.002] [Citation(s) in RCA: 3135] [Impact Index Per Article: 149.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/21/2004] [Accepted: 05/26/2004] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
3135 |
5
|
|
Research Support, N.I.H., Extramural |
16 |
2174 |
6
|
Abstract
The human gut is the natural habitat for a large and dynamic bacterial community, but a substantial part of these bacterial populations are still to be described. However, the relevance and effect of resident bacteria on a host's physiology and pathology has been well documented. Major functions of the gut microflora include metabolic activities that result in salvage of energy and absorbable nutrients, important trophic effects on intestinal epithelia and on immune structure and function, and protection of the colonised host against invasion by alien microbes. Gut flora might also be an essential factor in certain pathological disorders, including multisystem organ failure, colon cancer, and inflammatory bowel diseases. Nevertheless, bacteria are also useful in promotion of human health. Probiotics and prebiotics are known to have a role in prevention or treatment of some diseases.
Collapse
|
Review |
22 |
2088 |
7
|
Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2:361-7. [PMID: 11276208 DOI: 10.1038/86373] [Citation(s) in RCA: 1810] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Penetration of the gut mucosa by pathogens expressing invasion genes is believed to occur mainly through specialized epithelial cells, called M cells, that are located in Peyer's patches. However, Salmonella typhimurium that are deficient in invasion genes encoded by Salmonella pathogenicity island 1 (SPI1) are still able to reach the spleen after oral administration. This suggests the existence of an alternative route for bacterial invasion, one that is independent of M cells. We report here a new mechanism for bacterial uptake in the mucosa tissues that is mediated by dendritic cells (DCs). DCs open the tight junctions between epithelial cells, send dendrites outside the epithelium and directly sample bacteria. In addition, because DCs express tight-junction proteins such as occludin, claudin 1 and zonula occludens 1, the integrity of the epithelial barrier is preserved.
Collapse
|
|
24 |
1810 |
8
|
O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7:688-93. [PMID: 16819463 PMCID: PMC1500832 DOI: 10.1038/sj.embor.7400731] [Citation(s) in RCA: 1771] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/24/2006] [Indexed: 02/06/2023] Open
Abstract
The intestinal microflora is a positive health asset that crucially influences the normal structural and functional development of the mucosal immune system. Mucosal immune responses to resident intestinal microflora require precise control and an immunosensory capacity for distinguishing commensal from pathogenic bacteria. In genetically susceptible individuals, some components of the flora can become a liability and contribute to the pathogenesis of various intestinal disorders, including inflammatory bowel diseases. It follows that manipulation of the flora to enhance the beneficial components represents a promising therapeutic strategy. The flora has a collective metabolic activity equal to a virtual organ within an organ, and the mechanisms underlying the conditioning influence of the bacteria on mucosal homeostasis and immune responses are beginning to be unravelled. An improved understanding of this hidden organ will reveal secrets that are relevant to human health and to several infectious, inflammatory and neoplastic disease processes.
Collapse
|
Review |
19 |
1771 |
9
|
Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001; 291:881-4. [PMID: 11157169 DOI: 10.1126/science.291.5505.881] [Citation(s) in RCA: 1478] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human beings contain complex societies of indigenous microbes, yet little is known about how resident bacteria shape our physiology. We colonized germ-free mice with Bacteroides thetaiotaomicron, a prominent component of the normal mouse and human intestinal microflora. Global intestinal transcriptional responses to colonization were observed with DNA microarrays, and the cellular origins of selected responses were established by laser-capture microdissection. The results reveal that this commensal bacterium modulates expression of genes involved in several important intestinal functions, including nutrient absorption, mucosal barrier fortification, xenobiotic metabolism, angiogenesis, and postnatal intestinal maturation. These findings provide perspectives about the essential nature of the interactions between resident microorganisms and their hosts.
Collapse
|
|
24 |
1478 |
10
|
Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, Flavell RA. Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract. Science 2005; 307:731-4. [PMID: 15692051 DOI: 10.1126/science.1104911] [Citation(s) in RCA: 1312] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gene encoding the Nod2 protein is frequently mutated in Crohn's disease (CD) patients, although the physiological function of Nod2 in the intestine remains elusive. Here we show that protective immunity mediated by Nod2 recognition of bacterial muramyl dipeptide is abolished in Nod2-deficient mice. These animals are susceptible to bacterial infection via the oral route but not through intravenous or peritoneal delivery. Nod2 is required for the expression of a subgroup of intestinal anti-microbial peptides, known as cryptdins. The Nod2 protein is thus a critical regulator of bacterial immunity within the intestine, providing a possible mechanism for Nod2 mutations in CD.
Collapse
|
|
20 |
1312 |
11
|
Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 2016; 352:539-44. [PMID: 27126036 PMCID: PMC5050524 DOI: 10.1126/science.aad9378] [Citation(s) in RCA: 1282] [Impact Index Per Article: 142.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microbial colonization of mucosal tissues during infancy plays an instrumental role in the development and education of the host mammalian immune system. These early-life events can have long-standing consequences: facilitating tolerance to environmental exposures or contributing to the development of disease in later life, including inflammatory bowel disease, allergy, and asthma. Recent studies have begun to define a critical period during early development in which disruption of optimal host-commensal interactions can lead to persistent and in some cases irreversible defects in the development and training of specific immune subsets. Here, we discuss the role of early-life education of the immune system during this "window of opportunity," when microbial colonization has a potentially critical impact on human health and disease.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
1282 |
12
|
Sartor RB. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. ACTA ACUST UNITED AC 2006; 3:390-407. [PMID: 16819502 DOI: 10.1038/ncpgasthep0528] [Citation(s) in RCA: 1264] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 04/19/2006] [Indexed: 12/11/2022]
Abstract
Crohn's disease and ulcerative colitis are idiopathic, chronic, relapsing, inflammatory conditions that are immunologically mediated. Although their exact etiologies remain uncertain, results from research in animal models, human genetics, basic science and clinical trials have provided important new insights into the pathogenesis of chronic, immune-mediated, intestinal inflammation. These studies indicate that Crohn's disease and ulcerative colitis are heterogeneous diseases characterized by various genetic abnormalities that lead to overly aggressive T-cell responses to a subset of commensal enteric bacteria. The onset and reactivation of disease are triggered by environmental factors that transiently break the mucosal barrier, stimulate immune responses or alter the balance between beneficial and pathogenic enteric bacteria. Different genetic abnormalities can lead to similar disease phenotypes; these genetic changes can be broadly characterized as causing defects in mucosal barrier function, immunoregulation or bacterial clearance. These new insights will help develop better diagnostic approaches that identify clinically important subsets of patients for whom the natural history of disease and response to treatment are predictable.
Collapse
|
Review |
19 |
1264 |
13
|
Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005; 307:254-8. [PMID: 15653504 DOI: 10.1126/science.1102901] [Citation(s) in RCA: 1224] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) and macrophages are critical to innate and adaptive immunity to the intestinal bacterial microbiota. Here, we identify a myeloid-derived mucosal DC in mice, which populates the entire lamina propria of the small intestine. Lamina propria DCs were found to depend on the chemokine receptor CX3CR1 to form transepithelial dendrites, which enable the cells to directly sample luminal antigens. CX3CR1 was also found to control the clearance of entero-invasive pathogens by DCs. Thus, CX3CR1-dependent processes, which control host interactions of specialized DCs with commensal and pathogenic bacteria, may regulate immunological tolerance and inflammation.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1
- Chemokine CX3CL1
- Chemokines, CX3C/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/microbiology
- Escherichia coli/immunology
- Escherichia coli/isolation & purification
- Gene Deletion
- Green Fluorescent Proteins/metabolism
- Ileum/cytology
- Ileum/immunology
- Immunity, Mucosal
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestine, Small/immunology
- Intestine, Small/microbiology
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Peyer's Patches/immunology
- Peyer's Patches/microbiology
- Phagocytosis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/physiology
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella typhimurium/immunology
- Salmonella typhimurium/isolation & purification
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1224 |
14
|
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol 2020; 72:558-577. [PMID: 31622696 DOI: 10.1016/j.jhep.2019.10.003] [Citation(s) in RCA: 1195] [Impact Index Per Article: 239.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/14/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
The gut-liver axis refers to the bidirectional relationship between the gut and its microbiota, and the liver, resulting from the integration of signals generated by dietary, genetic and environmental factors. This reciprocal interaction is established by the portal vein which enables transport of gut-derived products directly to the liver, and the liver feedback route of bile and antibody secretion to the intestine. The intestinal mucosal and vascular barrier is the functional and anatomical structure that serves as a playground for the interactions between the gut and the liver, limiting the systemic dissemination of microbes and toxins while allowing nutrients to access the circulation and to reach the liver. The control of microbial communities is critical to maintaining homeostasis of the gut-liver axis, and as part of this bidirectional communication the liver shapes intestinal microbial communities. Alcohol disrupts the gut-liver axis at multiple interconnected levels, including the gut microbiome, mucus barrier, epithelial barrier and at the level of antimicrobial peptide production, which increases microbial exposure and the proinflammatory environment of the liver. Growing evidence indicates the pathogenetic role of microbe-derived metabolites, such as trimethylamine, secondary bile acids, short-chain fatty acids and ethanol, in the pathogenesis of non-alcoholic fatty liver disease. Cirrhosis by itself is associated with profound alterations in gut microbiota and damage at the different levels of defence of the intestinal barrier, including the epithelial, vascular and immune barriers. The relevance of the severe disturbance of the intestinal barrier in cirrhosis has been linked to translocation of live bacteria, bacterial infections and disease progression. The identification of the elements of the gut-liver axis primarily damaged in each chronic liver disease offers possibilities for intervention. Beyond antibiotics, upcoming therapies centred on the gut include new generations of probiotics, bacterial metabolites (postbiotics), faecal microbial transplantation, and carbon nanoparticles. FXR-agonists target both the gut and the liver and are currently being tested in different liver diseases. Finally, synthetic biotic medicines, phages that target specific bacteria or therapies that create physical barriers between the gut and the liver offer new therapeutic approaches.
Collapse
|
Review |
5 |
1195 |
15
|
Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332:974-7. [PMID: 21512004 PMCID: PMC3164325 DOI: 10.1126/science.1206095] [Citation(s) in RCA: 1193] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mucosal surfaces constantly encounter microbes. Toll-like receptors (TLRs) mediate recognition of microbial patterns to eliminate pathogens. By contrast, we demonstrate that the prominent gut commensal Bacteroides fragilis activates the TLR pathway to establish host-microbial symbiosis. TLR2 on CD4(+) T cells is required for B. fragilis colonization of a unique mucosal niche in mice during homeostasis. A symbiosis factor (PSA, polysaccharide A) of B. fragilis signals through TLR2 directly on Foxp3(+) regulatory T cells to promote immunologic tolerance. B. fragilis lacking PSA is unable to restrain T helper 17 cell responses and is defective in niche-specific mucosal colonization. Therefore, commensal bacteria exploit the TLR pathway to actively suppress immunity. We propose that the immune system can discriminate between pathogens and the microbiota through recognition of symbiotic bacterial molecules in a process that engenders commensal colonization.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1193 |
16
|
Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L, Colombel JF. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 2004; 127:412-21. [PMID: 15300573 DOI: 10.1053/j.gastro.2004.04.061] [Citation(s) in RCA: 1109] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Adherent-invasive Escherichia coli (AIEC) pathovar has been identified in the intestinal mucosa of patients with Crohn's disease (CD). AIEC reference strain LF82 is able to adhere to intestinal epithelial cells, to invade epithelial cells via a mechanism involving actin polymerization and microtubules, and to survive and replicate within macrophages. This study was performed to assess the prevalence of AIEC associated with intestinal mucosa of patients with CD, ulcerative colitis (UC), and of controls. METHODS A search for E. coli strains was performed with ileal specimens of 63 patients with CD and 16 controls without inflammatory bowel disease (IBD), and with colonic specimens of 27 patients with CD, 8 patients with UC, and 102 controls. The abilities of E. coli strains to invade epithelial cells and to survive and replicate within macrophages were assessed using the gentamicin protection assay. Bacterial uptake by epithelial cells was analyzed using cytoskeletal inhibitors. Bacterial adhesion was quantified with Caco-2 and Intestine-407 cells. The presence of known E. coli virulence genes was assessed by polymerase chain reaction and DNA hybridization. RESULTS In ileal specimens, AIEC strains were found in 21.7% of CD chronic lesions vs. in 6.2% of controls. In neoterminal ileal specimens, AIEC strains were found in 36.4% of CD early lesions (P = 0.034 vs. controls) and 22.2% of healthy mucosa of CD patients. In colonic specimens, AIEC strains were found in 3.7% of CD patients, 0% of UC patients, and 1.9% of controls. CONCLUSIONS AIEC strains are associated specifically with ileal mucosa in CD.
Collapse
|
|
21 |
1109 |
17
|
Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004; 303:1662-5. [PMID: 15016999 DOI: 10.1126/science.1091334] [Citation(s) in RCA: 1082] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The enormous number of commensal bacteria in the lower intestine of vertebrates share abundant molecular patterns used for innate immune recognition of pathogenic bacteria. We show that, even though commensals are rapidly killed by macrophages, intestinal dendritic cells (DCs) can retain small numbers of live commensals for several days. This allows DCs to selectively induce IgA, which helps protect against mucosal penetration by commensals. The commensal-loaded DCs are restricted to the mucosal immune compartment by the mesenteric lymph nodes, which ensures that immune responses to commensal bacteria are induced locally, without potentially damaging systemic immune responses.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
1082 |
18
|
Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334:255-8. [PMID: 21998396 PMCID: PMC3321924 DOI: 10.1126/science.1209791] [Citation(s) in RCA: 1062] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian intestine is home to ~100 trillion bacteria that perform important metabolic functions for their hosts. The proximity of vast numbers of bacteria to host intestinal tissues raises the question of how symbiotic host-bacterial relationships are maintained without eliciting potentially harmful immune responses. Here, we show that RegIIIγ, a secreted antibacterial lectin, is essential for maintaining a ~50-micrometer zone that physically separates the microbiota from the small intestinal epithelial surface. Loss of host-bacterial segregation in RegIIIγ(-/-) mice was coupled to increased bacterial colonization of the intestinal epithelial surface and enhanced activation of intestinal adaptive immune responses by the microbiota. Together, our findings reveal that RegIIIγ is a fundamental immune mechanism that promotes host-bacterial mutualism by regulating the spatial relationships between microbiota and host.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1062 |
19
|
Abstract
Two broad hypotheses have arisen regarding the fundamental nature of the pathogenesis of inflammatory bowel diseases (IBDs, which include ulcerative colitis and Crohn disease). The first contends that primary dysregulation of the mucosal immune system leads to excessive immunologic responses to normal microflora. The second suggests that changes in the composition of gut microflora and/or deranged epithelial barrier function elicits pathologic responses from the normal mucosal immune system. Here we examine these hypotheses and conclude that IBD is indeed characterized by an abnormal mucosal immune response but that microbial factors and epithelial cell abnormalities can facilitate this response.
Collapse
|
Review |
18 |
997 |
20
|
Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H. Mucosal flora in inflammatory bowel disease. Gastroenterology 2002; 122:44-54. [PMID: 11781279 DOI: 10.1053/gast.2002.30294] [Citation(s) in RCA: 952] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Microorganisms that directly interact with the intestinal mucosa are obscured by fecal flora and poorly characterized. METHODS We investigated the mucosal flora of washed colonoscopic biopsies of 305 patients with bowel inflammation and 40 controls. The microbial cultures were validated by quantitative polymerase chain reaction with subsequent cloning and sequencing, fluorescence in-situ hybridization, and electron microscopy. RESULTS We found high concentrations of mucosal bacteria in patients with bowel inflammation, but not in controls. The concentrations of mucosal bacteria increased progressively with the severity of disease, both in inflamed and non-inflamed colon. In patients with >10,000 cfu/microL, a thick bacterial band was attached to the intact mucosa without signs of translocation. Patients with inflammatory bowel disease (IBD) and concentrations of mucosal bacteria >50,000 cfu/microL had characteristic inclusions of multiple polymorphic bacteria within solitary enterocytes located next to the lamina propria, without or having no contact with the fecal stream. The identified bacteria were of fecal origin. CONCLUSIONS Our findings suggest that the changes in the mucosal flora in IBD are not secondary to inflammation, but a result of a specific host response. We hypothesize that the healthy mucosa is capable of holding back fecal bacteria and that this function is profoundly disturbed in patients with IBD.
Collapse
|
|
23 |
952 |
21
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 949] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
|
Review |
12 |
949 |
22
|
Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1882-5. [PMID: 11489966 DOI: 10.4049/jimmunol.167.4.1882] [Citation(s) in RCA: 939] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flagellin, the structural component of bacterial flagella, is secreted by pathogenic and commensal bacteria. Flagellin activates proinflammatory gene expression in intestinal epithelia. However, only flagellin that contacts basolateral epithelial surfaces is proinflammatory; apical flagellin has no effect. Pathogenic Salmonella, but not commensal Escherichia coli, translocate flagellin across epithelia, thus activating epithelial proinflammatory gene expression. Investigating how epithelia detect flagellin revealed that cell surface expression of Toll-like receptor 5 (TLR5) conferred NF-kappaB gene expression in response to flagellin. The response depended on both extracellular leucine-rich repeats and intracellular Toll/IL-1R homology region of TLR5 as well as the adaptor protein MyD88. Furthermore, immunolocalization and cell surface-selective biotinylation revealed that TLR5 is expressed exclusively on the basolateral surface of intestinal epithelia, thus providing a molecular basis for the polarity of this innate immune response. Thus, detection of flagellin by basolateral TLR5 mediates epithelial-driven inflammatory responses to Salmonella.
Collapse
|
|
24 |
939 |
23
|
Covacci A, Censini S, Bugnoli M, Petracca R, Burroni D, Macchia G, Massone A, Papini E, Xiang Z, Figura N. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A 1993; 90:5791-5. [PMID: 8516329 PMCID: PMC46808 DOI: 10.1073/pnas.90.12.5791] [Citation(s) in RCA: 930] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori has been associated with gastritis, peptic ulcer, and gastric adenocarcinoma. We report the nucleotide sequence and expression of an immunodominant antigen of H. pylori and the immune response to the antigen during disease. The antigen, named CagA (cytotoxin-associated gene A), is a hydrophilic, surface-exposed protein of 128 kDa produced by most clinical isolates. The size of the cagA gene and its protein varies in different strains by a mechanism that involves duplication of regions within the gene. Clinical isolates that do not produce the antigen do not have the gene and are unable to produce an active vacuolating cytotoxin. An ELISA to detect the immune response against a recombinant fragment of this protein detects 75.3% of patients with gastroduodenal diseases and 100% of patients with duodenal ulcer (P < 0.0005), suggesting that only bacteria harboring this protein are associated with disease.
Collapse
|
research-article |
32 |
930 |
24
|
Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Fölsch UR, Timmis KN, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004; 53:685-93. [PMID: 15082587 PMCID: PMC1774050 DOI: 10.1136/gut.2003.025403] [Citation(s) in RCA: 926] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The intestinal bacterial microflora plays an important role in the aetiology of inflammatory bowel disease (IBD). As most of the colonic bacteria cannot be identified by culture techniques, genomic technology can be used for analysis of the composition of the microflora. PATIENTS AND METHODS The mucosa associated colonic microflora of 57 patients with active inflammatory bowel disease and 46 controls was investigated using 16S rDNA based single strand conformation polymorphism (SSCP) fingerprint, cloning experiments, and real time polymerase chain reaction (PCR). RESULTS Full length sequencing of 1019 clones from 16S rDNA libraries (n = 3) revealed an overall bacterial diversity of 83 non-redundant sequences-among them, only 49 known bacterial species. Molecular epidemiology of the composition of the colonic microflora was investigated by SSCP. Diversity of the microflora in Crohn's disease was reduced to 50% compared with controls (21.7 v 50.4; p<0.0001) and to 30% in ulcerative colitis (17.2 v 50.4; p<0.0001). The reduction in diversity in inflammatory bowel disease was due to loss of normal anaerobic bacteria such as Bacteroides species, Eubacterium species, and Lactobacillus species, as revealed by direct sequencing of variable bands and confirmed by real time PCR. Bacterial diversity in the Crohn's group showed no association with CARD15/NOD2 status. CONCLUSIONS Mucosal inflammation in inflammatory bowel disease is associated with loss of normal anaerobic bacteria. This effect is independent of NOD2/CARD15 status of patients.
Collapse
|
research-article |
21 |
926 |
25
|
Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103:3920-5. [PMID: 16473946 PMCID: PMC1450165 DOI: 10.1073/pnas.0509592103] [Citation(s) in RCA: 873] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
873 |