1
|
|
Review |
37 |
975 |
2
|
Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. Phylogenetic relationships within cation transporter families of Arabidopsis. PLANT PHYSIOLOGY 2001; 126:1646-67. [PMID: 11500563 PMCID: PMC117164 DOI: 10.1104/pp.126.4.1646] [Citation(s) in RCA: 748] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2001] [Revised: 04/12/2001] [Accepted: 05/01/2001] [Indexed: 05/17/2023]
Abstract
Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth, nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode membrane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In addition, several hundred putative transporters have not yet been assigned to families. In this paper, we have analyzed the phylogenetic relationships of over 150 cation transport proteins. This analysis has focused on cation transporter gene families for which initial characterizations have been achieved for individual members, including potassium transporters and channels, sodium transporters, calcium antiporters, cyclic nucleotide-gated channels, cation diffusion facilitator proteins, natural resistance-associated macrophage proteins (NRAMP), and Zn-regulated transporter Fe-regulated transporter-like proteins. Phylogenetic trees of each family define the evolutionary relationships of the members to each other. These families contain numerous members, indicating diverse functions in vivo. Closely related isoforms and separate subfamilies exist within many of these gene families, indicating possible redundancies and specialized functions. To facilitate their further study, the PlantsT database (http://plantst.sdsc.edu) has been created that includes alignments of the analyzed cation transporters and their chromosomal locations.
Collapse
|
research-article |
24 |
748 |
3
|
Abstract
Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of many vasoactive factors, e.g., nitric oxide and PGI(2). In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator. Ion channels are also involved in controlling intercellular permeability, EC proliferation, and angiogenesis. These functions are supported or triggered via ion channels, which either provide Ca(2+)-entry pathways or stabilize the driving force for Ca(2+) influx through these pathways. These Ca(2+)-entry pathways comprise agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry. At least some of these channels appear to be expressed by genes of the trp family. The driving force for Ca(2+) entry is mainly controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels (Kir2.1), and at least two types of Cl( -) channels, i.e., the Ca(2+)-activated Cl(-) channel and the housekeeping, volume-regulated anion channel (VRAC). In addition to their essential function in Ca(2+) signaling, VRAC channels are multifunctional, operate as a transport pathway for amino acids and organic osmolytes, and are possibly involved in endothelial cell proliferation and angiogenesis. Finally, we have also highlighted the role of ion channels as mechanosensors in EC. Plasmalemmal ion channels may signal rapid changes in hemodynamic forces, such as shear stress and biaxial tensile stress, but also changes in cell shape and cell volume to the cytoskeleton and the intracellular machinery for metabolite traffic and gene expression.
Collapse
|
Review |
24 |
656 |
4
|
Saier MH. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 2000; 64:354-411. [PMID: 10839820 PMCID: PMC98997 DOI: 10.1128/mmbr.64.2.354-411.2000] [Citation(s) in RCA: 575] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects.
Collapse
|
research-article |
25 |
575 |
5
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
|
Review |
22 |
530 |
6
|
Jahr CE, Stevens CF. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 1987; 325:522-5. [PMID: 2433593 DOI: 10.1038/325522a0] [Citation(s) in RCA: 504] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is considerable evidence that glutamate is the principal neurotransmitter that mediates fast excitatory synaptic transmission in the vertebrate central nervous system. This single transmitter seems to activate two or three distinct types of receptors, defined by their affinities for three selective structural analogues of glutamate, NMDA (N-methyl-D-aspartate), quisqualate and kainate. All these agonists increase membrane permeability to monovalent cations, but NMDA also activates a conductance that permits significant calcium influx and is blocked in a voltage-dependent manner by extracellular magnesium. Fast synaptic excitation seems to be mediated mainly by kainate/quisqualate receptors, although NMDA receptors are sometimes activated. We have investigated the properties of these conductances using single-channel recording in primary cultures of hippocampal neurons, because the hippocampus contains all subtypes of glutamate receptors and because long-term potentiation of synaptic transmission occurs in this structure. We find that four or more distinct single-channel currents are evoked by applying glutamate to each outside-out membrane patch. These conductances vary in their ionic permeability and in the agonist most effective in causing them to open. Clear transitions between all the conductance levels are observed. Our observations are compatible with the model that all the single channel conductances activated by glutamate reflect the operation of one or two complex molecular entities.
Collapse
|
Comparative Study |
38 |
504 |
7
|
Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 2002; 9:229-31. [PMID: 11864597 DOI: 10.1016/s1097-2765(02)00448-3] [Citation(s) in RCA: 495] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
Letter |
23 |
495 |
8
|
Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. PLANT PHYSIOLOGY 2001; 126:1358-69. [PMID: 11500536 PMCID: PMC117137 DOI: 10.1104/pp.126.4.1358] [Citation(s) in RCA: 489] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2001] [Accepted: 05/18/2001] [Indexed: 05/18/2023]
Abstract
Major intrinsic proteins (MIPs) facilitate the passive transport of small polar molecules across membranes. MIPs constitute a very old family of proteins and different forms have been found in all kinds of living organisms, including bacteria, fungi, animals, and plants. In the genomic sequence of Arabidopsis, we have identified 35 different MIP-encoding genes. Based on sequence similarity, these 35 proteins are divided into four different subfamilies: plasma membrane intrinsic proteins, tonoplast intrinsic proteins, NOD26-like intrinsic proteins also called NOD26-like MIPs, and the recently discovered small basic intrinsic proteins. In Arabidopsis, there are 13 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, nine NOD26-like intrinsic proteins, and three small basic intrinsic proteins. The gene structure in general is conserved within each subfamily, although there is a tendency to lose introns. Based on phylogenetic comparisons of maize (Zea mays) and Arabidopsis MIPs (AtMIPs), it is argued that the general intron patterns in the subfamilies were formed before the split of monocotyledons and dicotyledons. Although the gene structure is unique for each subfamily, there is a common pattern in how transmembrane helices are encoded on the exons in three of the subfamilies. The nomenclature for plant MIPs varies widely between different species but also between subfamilies in the same species. Based on the phylogeny of all AtMIPs, a new and more consistent nomenclature is proposed. The complete set of AtMIPs, together with the new nomenclature, will facilitate the isolation, classification, and labeling of plant MIPs from other species.
Collapse
|
Comparative Study |
24 |
489 |
9
|
Collingridge GL, Olsen RW, Peters J, Spedding M. A nomenclature for ligand-gated ion channels. Neuropharmacology 2009; 56:2-5. [PMID: 18655795 PMCID: PMC2847504 DOI: 10.1016/j.neuropharm.2008.06.063] [Citation(s) in RCA: 424] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 01/10/2023]
Abstract
The ligand-gated ion channels that participate in fast synaptic transmission comprise the nicotinic acetylcholine, 5-hydroxytryptamine3 (5-HT3), gamma-aminobutyric acidA (GABA(A)), glycine, ionotropic glutamate and P2X receptor families. A consistent and systematic nomenclature for the individual subunits that comprise these receptors and the receptors that result from their co-assembly is highly desirable. There is also a need to develop criteria that aid in deciding which of the vast number of heteromeric combinations of subunits that can be assembled in heterologous expression systems in vitro, are known, or likely, to exist as functional receptors in vivo. The aim of this short article is to summarize the progress being made by the nomenclature committee of IUPHAR (NC-IUPHAR) in formulating recommendations that attempt to address these issues.
Collapse
|
Review |
16 |
424 |
10
|
Gunthorpe MJ, Benham CD, Randall A, Davis JB. The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 2002; 23:183-91. [PMID: 11931994 DOI: 10.1016/s0165-6147(02)01999-5] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following cloning of the vanilloid receptor 1 (VR1) at least four other related proteins have been identified. Together, these form a distinct subgroup of the transient receptor potential (TRP) family of ion channels. Members of the vanilloid receptor family (TRPV) are activated by a diverse range of stimuli, including heat, protons, lipids, phorbols, phosphorylation, changes in extracellular osmolarity and/or pressure, and depletion of intracellular Ca2+ stores. However, VR1 remains the only channel activated by vanilloids such as capsaicin. These channels are excellent molecular candidates to fulfil a range of sensory and/or cellular roles that are well characterized physiologically. Furthermore, as novel pharmacological targets, the vanilloid receptors have potential for the development of many future disease treatments.
Collapse
|
Review |
23 |
372 |
11
|
Tsien RW, Hess P, McCleskey EW, Rosenberg RL. Calcium channels: mechanisms of selectivity, permeation, and block. ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY 1987; 16:265-90. [PMID: 2439098 DOI: 10.1146/annurev.bb.16.060187.001405] [Citation(s) in RCA: 349] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
Review |
38 |
349 |
12
|
Santoro B, Tibbs GR. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 1999; 868:741-64. [PMID: 10414361 DOI: 10.1111/j.1749-6632.1999.tb11353.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The molecular basis of the hyperpolarization-activated cation channels that underlie the anomalous rectifying current variously termed Ih, Iq, or I(f) is discussed. On the basis of the expression patterns and biophysical properties of the newly cloned HCN ion channels, an initial attempt at defining the identity and subunit composition of channels underlying native Ih is undertaken. By comparing the sequences of HCN channels to other members of the K channel superfamily, we discuss how channel opening may be coupled to membrane hyperpolarization and to direct binding of cyclic nucleotide. Finally, we consider some of the questions in cardiovascular physiology and neurobiology that can be addressed as a result of the demonstration that Ih is encoded by the HCN gene family.
Collapse
|
Review |
26 |
290 |
13
|
García-Añoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci U S A 1997; 94:1459-64. [PMID: 9037075 PMCID: PMC19813 DOI: 10.1073/pnas.94.4.1459] [Citation(s) in RCA: 278] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The recently defined DEG/ENaC superfamily of sodium channels includes subunits of the amiloride-sensitive epithelial sodium channel (ENaC) of vertebrate colon, lung, kidney, and tongue, a molluscan FMRFamide-gated channel (FaNaC), and the nematode degenerins, which are suspected mechanosensory channels. We have identified two new members of this superfamily (BNaC1 and BNaC2) in a human brain cDNA library. Phylogenetic analysis indicates they are equally divergent from all other members of the DEG/ENaC superfamily and form a new branch or family. Human BNaC1 maps to 17q11.2-12 and hBNaC2 maps to 12q12. Northern blot and mouse brain in situ hybridizations indicate that both genes are coexpressed in most if not all brain neurons, although their patterns of expression vary slightly, and are expressed early in embryogenesis and throughout life. By analogy to the ENaCs and the degenerins, which form heteromultimeric channels, BNaC1 and BNaC2 may be subunits of the same channel.
Collapse
|
research-article |
28 |
278 |
14
|
Chen CL, Broom DC, Liu Y, de Nooij JC, Li Z, Cen C, Samad OA, Jessell TM, Woolf CJ, Ma Q. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 2006; 49:365-77. [PMID: 16446141 DOI: 10.1016/j.neuron.2005.10.036] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 10/11/2005] [Accepted: 10/25/2005] [Indexed: 01/19/2023]
Abstract
In mammals, the perception of pain is initiated by the transduction of noxious stimuli through specialized ion channels and receptors expressed by nociceptive sensory neurons. The molecular mechanisms responsible for the specification of distinct sensory modality are, however, largely unknown. We show here that Runx1, a Runt domain transcription factor, is expressed in most nociceptors during embryonic development but in adult mice, becomes restricted to nociceptors marked by expression of the neurotrophin receptor Ret. In these neurons, Runx1 regulates the expression of many ion channels and receptors, including TRP class thermal receptors, Na+-gated, ATP-gated, and H+-gated channels, the opioid receptor MOR, and Mrgpr class G protein coupled receptors. Runx1 also controls the lamina-specific innervation pattern of nociceptive afferents in the spinal cord. Moreover, mice lacking Runx1 exhibit specific defects in thermal and neuropathic pain. Thus, Runx1 coordinates the phenotype of a large cohort of nociceptors, a finding with implications for pain therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
262 |
15
|
Bocquet N, Prado de Carvalho L, Cartaud J, Neyton J, Le Poupon C, Taly A, Grutter T, Changeux JP, Corringer PJ. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 2006; 445:116-9. [PMID: 17167423 DOI: 10.1038/nature05371] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 10/20/2006] [Indexed: 11/09/2022]
Abstract
Ligand-gated ion channels (LGICs) mediate excitatory and inhibitory transmission in the nervous system. Among them, the pentameric or 'Cys-loop' receptors (pLGICs) compose a family that until recently was found in only eukaryotes. Yet a recent genome search identified putative homologues of these proteins in several bacterial species. Here we report the cloning, expression and functional identification of one of these putative homologues from the cyanobacterium Gloeobacter violaceus. It was expressed as a homo-oligomer in HEK 293 cells and Xenopus oocytes, generating a transmembrane cationic channel that is opened by extracellular protons and shows slow kinetics of activation, no desensitization and a single channel conductance of 8 pS. Electron microscopy and cross-linking experiments of the protein fused to the maltose-binding protein and expressed in Escherichia coli are consistent with a homo-pentameric organization. Sequence comparison shows that it possesses a compact structure, with the absence of the amino-terminal helix, the canonical disulphide bridge and the large cytoplasmic domain found in eukaryotic pLGICs. Therefore it embodies a minimal structure required for signal transduction. These data establish the prokaryotic origin of the family. Because Gloeobacter violaceus carries out photosynthesis and proton transport at the cytoplasmic membrane, this new proton-gated ion channel might contribute to adaptation to pH change.
Collapse
|
|
19 |
252 |
16
|
Yaari Y, Hamon B, Lux HD. Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 1987; 235:680-2. [PMID: 2433765 DOI: 10.1126/science.2433765] [Citation(s) in RCA: 239] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calcium influx through voltage-gated membrane channels plays a crucial role in a variety of neuronal processes, including long-term potentiation and epileptogenesis in the mammalian cortex. Recent studies indicate that calcium channels in some cell types are heterogeneous. This heterogeneity has now been shown for calcium channels in mammalian cortical neurons. When dissociated embryonic hippocampal neurons from rat were grown in culture they first had only low voltage-activated, fully inactivating somatic calcium channels. These channels were metabolically stable and conducted calcium better than barium. Appearing later in conjunction with neurite outgrowth and eventually predominating in the dendrites, were high voltage-activated, slowly inactivating calcium channels. These were metabolically labile and more selective to barium than to calcium. Both types of calcium currents were reduced by classical calcium channel antagonists, but the low voltage-activated channels were more strongly blocked by the anticonvulsant drug phenytoin. These findings demonstrate the development and coexistence of two distinct types of calcium channels in mammalian cortical neurons.
Collapse
|
|
38 |
239 |
17
|
Abstract
Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.
Collapse
|
|
21 |
227 |
18
|
|
Review |
36 |
217 |
19
|
Fournier E, Arzel M, Sternberg D, Vicart S, Laforet P, Eymard B, Willer JC, Tabti N, Fontaine B. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol 2005; 56:650-61. [PMID: 15389891 DOI: 10.1002/ana.20241] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Myotonic syndromes and periodic paralyses are rare disorders of skeletal muscle characterized mainly by muscle stiffness or episodic attacks of weakness. Familial forms are caused by mutations in genes coding for skeletal muscle voltage-gated ion channels. Exercise is known to trigger, aggravate, or relieve the symptoms. Therefore, exercise can be used as a functional test in electromyography to improve the diagnosis of these muscle disorders. Abnormal changes in the compound muscle action potential can be disclosed using different exercise tests. We report the outcome of an inclusive electromyographic survey of a large population of patients with identified ion channel gene defects. Standardized protocols comprising short and long exercise tests were applied on 41 unaffected control subjects and on 51 case patients with chloride, sodium, or calcium channel mutations known to cause myotonia or periodic paralysis. These tests disclosed significant changes of compound muscle action potential, which generally matched the clinical symptoms. Combining the responses to the different tests defined five electromyographic patterns (I-V) that correlated with subgroups of mutations and may be used in clinical practice as guides for molecular diagnosis. We hypothesize that mutations are segregated into the different electromyographic patterns according to the underlying pathophysiological mechanisms.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
207 |
20
|
Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci U S A 2007; 104:14531-6. [PMID: 17726111 PMCID: PMC1964830 DOI: 10.1073/pnas.0701781104] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Indexed: 11/18/2022] Open
Abstract
Ion signals are critical to regulating polarized growth in many cell types, including pollen in plants and neurons in animals. Genetic evidence presented here indicates that pollen tube growth requires cyclic nucleotide-gated channel (CNGC) 18. CNGCs are nonspecific cation channels found in plants and animals and have well established functions in excitatory signal transduction events in animals. In Arabidopsis, male sterility was observed for two cngc18 null mutations. CNGC18 is expressed primarily in pollen, as indicated from a promoter::GUS (beta-glucuronidase) reporter analysis and expression profiling. The underlying cause of sterility was identified as a defect in pollen tube growth, resulting in tubes that were kinky, short, often thin, and unable to grow into the transmitting tract. Expression of a GFP-tagged CNGC18 in mutant pollen provided complementation and evidence for asymmetric localization of CNGC18 to the plasma membrane at the growing tip, starting at the time of pollen grain germination. Heterologous expression of CNGC18 in Escherichia coli resulted in a time- and concentration-dependent accumulation of more Ca2+. Thus, CNGC18 provides a mechanism to directly transduce a cyclic nucleotide (cNMP) signal into an ion flux that can produce a localized signal capable of regulating the pollen tip-growth machinery. These results identify a CNGC that is essential to an organism's life cycle and raise the possibility that CNGCs have a widespread role in regulating cell-growth dynamics in both plant and animals.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
200 |
21
|
Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 2000; 301:75-100. [PMID: 10926494 DOI: 10.1006/jmbi.2000.3961] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we present a comprehensive analysis of solute transport systems encoded within the completely sequenced genomes of 18 prokaryotic organisms. These organisms include four Gram-positive bacteria, seven Gram-negative bacteria, two spirochetes, one cyanobacterium and four archaea. Membrane proteins are analyzed in terms of putative membrane topology, and the recognized transport systems are classified into 76 families, including four families of channel proteins, four families of primary carriers, 54 families of secondary carriers, six families of group translocators, and eight unclassified families. These families are analyzed in terms of the paralogous and orthologous relationships of their protein members, the substrate specificities of their constituent transporters and their distributions in each of the 18 organisms studied. The families vary from large superfamilies with hundreds of represented members, to small families with only one or a few members. The mode of transport generally correlates with the primary mechanism of energy generation, and the numbers of secondary transporters relative to primary transporters are roughly proportional to the total numbers of primary H(+) and Na(+) pumps in the cell. The phosphotransferase system is less prevalent in the analyzed bacteria than previously thought (only six of 14 bacteria transport sugars via this system) and is completely lacking in archaea and eukaryotes. Escherichia coli is shown to be exceptionally broad in its transport capabilities and therefore, at a membrane transport level, does not appear representative of the bacteria thus far sequenced. Archaea and spirochetes exhibit fewer proteins with multiple transmembrane segments and fewer net transporters than most bacteria. These results provide insight into the relevance of transport to the overall physiology of prokaryotes.
Collapse
|
Comparative Study |
25 |
200 |
22
|
Abstract
The tight junction of epithelial cells excludes macromolecules but allows permeation of ions. However, it is not clear whether this ion-conducting property is mediated by aqueous pores or by ion channels. To investigate the permeability properties of the tight junction, we have developed paracellular ion flux assays for four major extracellular ions, Na(+), Cl(-), Ca(2+), and Mg(2+). We found that the tight junction shares biophysical properties with conventional ion channels, including size and charge selectivity, dependency of permeability on ion concentration, competition between permeant molecules, anomalous mole-fraction effects, and sensitivity to pH. Our results support the hypothesis that discrete ion channels are present at the tight junction. Unlike conventional ion channels, which mediate ion transport across lipid bilayers, the tight junction channels must orient parallel to the plane of the plasma membranes to support paracellular ion movements. This new class of paracellular-tight junction channels (PTJC) facilitates the transport of ions between separate extracellular compartments.
Collapse
|
research-article |
22 |
159 |
23
|
Abstract
Various studies, mostly in the past 5 years, have demonstrated that, in addition to their well-described function in regulating electrical excitability, voltage-dependent ion channels participate in intracellular signalling pathways. Channels can directly activate enzymes linked to cellular signalling pathways, serve as cell adhesion molecules or components of the cytoskeleton, and their activity can alter the expression of specific genes. Here, I review these findings and discuss the extent to which the molecular mechanisms of such signalling are understood.
Collapse
|
Review |
19 |
155 |
24
|
Abstract
Significant progress has been made in membrane protein engineering over the last 5 years, based largely on the re-design of existing scaffolds. Engineering techniques that have been employed include direct genetic engineering, both covalent and non-covalent modification, unnatural amino acid mutagenesis and total synthesis aided by chemical ligation of unprotected fragments. Combinatorial mutagenesis and directed evolution remain, by contrast, underemployed. Techniques for assembling and purifying heteromeric multisubunit pores have been improved. Progress in the de novo design of channels and pores has been slower. But, we are at the beginning of a new era in membrane protein engineering based on the accelerating acquisition of structural information, a better understanding of molecular motion in membrane proteins, technical improvements in membrane protein refolding and the application of computational approaches developed for soluble proteins. In addition, the next 5 years should see further advances in the applications of engineered channels and pores, notably in therapeutics and sensor technology.
Collapse
|
Review |
20 |
152 |
25
|
Mitra R, Morad M. Two types of calcium channels in guinea pig ventricular myocytes. Proc Natl Acad Sci U S A 1986; 83:5340-4. [PMID: 2425366 PMCID: PMC323947 DOI: 10.1073/pnas.83.14.5340] [Citation(s) in RCA: 148] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In cardiac muscle, Ca2+ plays a key role in regulation of numerous processes, including generation of the action potential and development of tension. The entry of Ca2+ into the cell is regulated primarily by voltage-gated channels in the membrane. Until recently, it was felt that only one type of Ca2+ channel existed in cardiac ventricular muscle. Experiments reported here suggest that in isolated guinea pig ventricular myocytes, there are two distinct types of Ca2+ channels with markedly different activation thresholds, inactivation kinetics, and sensitivities to inorganic and organic Ca2+ channel blockers. The channels were also distinguished based on their response to increased frequency of clamping such that the current through the low-threshold channel decreased while that through the high-threshold channel increased. In a few cells, the current through both channels was enhanced by isoproterenol, a beta-adrenergic agonist, but only the high-threshold channel was enhanced by the Ca2+-channel agonist Bay K 8644. Thus, isolated guinea pig ventricular myocytes appear to have two types of Ca2+ channels distinguished by various criteria.
Collapse
|
research-article |
39 |
148 |