1
|
Lewis GD, Malhotra R, Hernandez AF, McNulty SE, Smith A, Felker GM, Tang WHW, LaRue SJ, Redfield MM, Semigran MJ, Givertz MM, Van Buren P, Whellan D, Anstrom KJ, Shah MR, Desvigne-Nickens P, Butler J, Braunwald E. Effect of Oral Iron Repletion on Exercise Capacity in Patients With Heart Failure With Reduced Ejection Fraction and Iron Deficiency: The IRONOUT HF Randomized Clinical Trial. JAMA 2017; 317:1958-1966. [PMID: 28510680 PMCID: PMC5703044 DOI: 10.1001/jama.2017.5427] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Iron deficiency is present in approximately 50% of patients with heart failure with reduced left ventricular ejection fraction (HFrEF) and is an independent predictor of reduced functional capacity and mortality. However, the efficacy of inexpensive readily available oral iron supplementation in heart failure is unknown. OBJECTIVE To test whether therapy with oral iron improves peak exercise capacity in patients with HFrEF and iron deficiency. DESIGN, SETTING, AND PARTICIPANTS Phase 2, double-blind, placebo-controlled randomized clinical trial of patients with HFrEF (<40%) and iron deficiency, defined as a serum ferritin level of 15 to 100 ng/mL or a serum ferritin level of 101 to 299 ng/mL with transferrin saturation of less than 20%. Participants were enrolled between September 2014 and November 2015 at 23 US sites. INTERVENTIONS Oral iron polysaccharide (n = 111) or placebo (n = 114), 150 mg twice daily for 16 weeks. MAIN OUTCOMES AND MEASURES The primary end point was a change in peak oxygen uptake (V̇o2) from baseline to 16 weeks. Secondary end points were change in 6-minute walk distance, plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, and health status as assessed by Kansas City Cardiomyopathy Questionnaire (KCCQ, range 0-100, higher scores reflect better quality of life). RESULTS Among 225 randomized participants (median age, 63 years; 36% women) 203 completed the study. The median baseline peak V̇o2 was 1196 mL/min (interquartile range [IQR], 887-1448 mL/min) in the oral iron group and 1167 mL/min (IQR, 887-1449 mL/min) in the placebo group. The primary end point, change in peak V̇o2 at 16 weeks, did not significantly differ between the oral iron and placebo groups (+23 mL/min vs -2 mL/min; difference, 21 mL/min [95% CI, -34 to +76 mL/min]; P = .46). Similarly, at 16 weeks, there were no significant differences between treatment groups in changes in 6-minute walk distance (-13 m; 95% CI, -32 to 6 m), NT-proBNP levels (159; 95% CI, -280 to 599 pg/mL), or KCCQ score (1; 95% CI, -2.4 to 4.4), all P > .05. CONCLUSIONS AND RELEVANCE Among participants with HFrEF with iron deficiency, high-dose oral iron did not improve exercise capacity over 16 weeks. These results do not support use of oral iron supplementation in patients with HFrEF. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT02188784.
Collapse
|
Clinical Trial, Phase II |
8 |
337 |
2
|
Patruta SI, Edlinger R, Sunder-Plassmann G, Hörl WH. Neutrophil impairment associated with iron therapy in hemodialysis patients with functional iron deficiency. J Am Soc Nephrol 1998; 9:655-63. [PMID: 9555668 DOI: 10.1681/asn.v94655] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hemodialysis patients treated with recombinant human erythropoietin (rhEPO) need adequate iron supplementation to avoid rhEPO hyporesponsiveness due to iron deficiency. Low serum ferritin reflects absolute iron deficiency, whereas normal or high ferritin values in combination with low transferrin saturation (< 20%) indicate functional iron deficiency. In this study, healthy subjects (group I) were compared with intravenous (i.v.) rhEPO-treated and i.v. iron-saccharate-treated regular hemodialysis patients that were subdivided into three groups as follows: patients with serum ferritin > 100 and < 350 micrograms/L (group II), patients with ferritin < 60 micrograms/L (group III), and patients with ferritin > 650 micrograms/L but transferrin saturation < 20% (group IV). Polymorphonuclear leukocyte (PMNL) parameters (phagocytosis, intracellular killing of bacteria, oxidative metabolism, glucose uptake, intracellular calcium) for each group were compared with those of multitransfused, iron-overloaded primary hematologic patients (group V) and those of patients suffering from hereditary hemochromatosis (group VI). Compared with PMNL obtained from healthy subjects (group I), group II hemodialysis patients showed mild inhibition of phagocytosis but significant inhibition of intracellular killing of bacteria. Oxidative burst of PMNL from group II patients was also significantly reduced after stimulation in vitro. These dysfunctions were not affected by absolute iron deficiency (comparable data in group III patients). However, impairment of PMNL was markedly aggravated in group IV patients. Intracellular calcium concentration under basal conditions and after stimulation was not different. These data suggest that iron is responsible for the PMNL dysfunctions observed in group IV patients. The PMNL defect of group IV patients was comparable to group V and group VI patients with normal renal function, suggesting again a direct inhibitory effect of iron. It is concluded that hemodialysis patients with high ferritin but low serum iron and low transferrin saturation ("functional iron deficiency") display a significant impairment of fundamental PMNL functions during i.v. iron and rhEPO therapy. This may result in increased risk of infectious complications. Therefore, overtreatment of hemodialysis patients with i.v. iron should be avoided.
Collapse
|
Clinical Trial |
27 |
125 |
3
|
Powers JM, Buchanan GR, Adix L, Zhang S, Gao A, McCavit TL. Effect of Low-Dose Ferrous Sulfate vs Iron Polysaccharide Complex on Hemoglobin Concentration in Young Children With Nutritional Iron-Deficiency Anemia: A Randomized Clinical Trial. JAMA 2017; 317:2297-2304. [PMID: 28609534 PMCID: PMC5815003 DOI: 10.1001/jama.2017.6846] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Iron-deficiency anemia (IDA) affects millions of persons worldwide, and is associated with impaired neurodevelopment in infants and children. Ferrous sulfate is the most commonly prescribed oral iron despite iron polysaccharide complex possibly being better tolerated. OBJECTIVE To compare the effect of ferrous sulfate with iron polysaccharide complex on hemoglobin concentration in infants and children with nutritional IDA. DESIGN, SETTING, AND PARTICIPANTS Double-blind, superiority randomized clinical trial of infants and children aged 9 to 48 months with nutritional IDA (assessed by history and laboratory criteria) that was conducted in an outpatient hematology clinic at a US tertiary care hospital from September 2013 through November 2015; 12-week follow-up ended in January 2016. INTERVENTIONS Three mg/kg of elemental iron once daily as either ferrous sulfate drops or iron polysaccharide complex drops for 12 weeks. MAIN OUTCOMES AND MEASURES Primary outcome was change in hemoglobin over 12 weeks. Secondary outcomes included complete resolution of IDA (defined as hemoglobin concentration >11 g/dL, mean corpuscular volume >70 fL, reticulocyte hemoglobin equivalent >25 pg, serum ferritin level >15 ng/mL, and total iron-binding capacity <425 μg/dL at the 12-week visit), changes in serum ferritin level and total iron-binding capacity, adverse effects. RESULTS Of 80 randomized infants and children (median age, 22 months; 55% male; 61% Hispanic white; 40 per group), 59 completed the trial (28 [70%] in ferrous sulfate group; 31 [78%] in iron polysaccharide complex group). From baseline to 12 weeks, mean hemoglobin increased from 7.9 to 11.9 g/dL (ferrous sulfate group) vs 7.7 to 11.1 g/dL (iron complex group), a greater difference of 1.0 g/dL (95% CI, 0.4 to 1.6 g/dL; P < .001) with ferrous sulfate (based on a linear mixed model). Proportion with a complete resolution of IDA was higher in the ferrous sulfate group (29% vs 6%; P = .04). Median serum ferritin level increased from 3.0 to 15.6 ng/mL (ferrous sulfate) vs 2.0 to 7.5 ng/mL (iron complex) over 12 weeks, a greater difference of 10.2 ng/mL (95% CI, 6.2 to 14.1 ng/mL; P < .001) with ferrous sulfate. Mean total iron-binding capacity decreased from 501 to 389 μg/dL (ferrous sulfate) vs 506 to 417 μg/dL (iron complex) (a greater difference of -50 μg/dL [95% CI, -86 to -14 μg/dL] with ferrous sulfate; P < .001). There were more reports of diarrhea in the iron complex group than in the ferrous sulfate group (58% vs 35%, respectively; P = .04). CONCLUSIONS AND RELEVANCE Among infants and children aged 9 to 48 months with nutritional iron-deficiency anemia, ferrous sulfate compared with iron polysaccharide complex resulted in a greater increase in hemoglobin concentration at 12 weeks. Once daily, low-dose ferrous sulfate should be considered for children with nutritional iron-deficiency anemia. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01904864.
Collapse
|
Randomized Controlled Trial |
8 |
86 |
4
|
Rao R, Georgieff MK. Perinatal aspects of iron metabolism. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 2003; 91:124-9. [PMID: 12477276 DOI: 10.1111/j.1651-2227.2002.tb02917.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
UNLABELLED Iron sufficiency is critical for rapidly developing fetal and neonatal organ systems. The majority of iron in the third trimester fetus and the neonate is found in the red cell mass (as hemoglobin), with lesser amounts in the tissues as storage iron (e.g. ferritin) or functional iron (e.g. myoglobin, cytochromes). Iron is prioritized to hemoglobin synthesis in red cells when iron supply does not meet iron demand. Thus, non-heme tissues such as the skeletal muscle, heart and brain will become iron deficient before signs of iron-deficiency anemia. Gestational conditions that result in lower newborn iron stores include severe maternal iron deficiency, maternal hypertension with intrauterine growth retardation and maternal diabetes mellitus. Stable, very low birthweight premature infants are also at risk for early postnatal iron deficiency because they accrete less iron during gestation, grow more rapidly postnatally, are typically undertreated with enteral iron and receive fewer red cell transfusions. Conversely, iron overload remains a significant concern in multiply transfused sick preterm infants because they have low levels of iron-binding proteins and immature antioxidant systems. CONCLUSION The highly variable iron status of preterm infants combined with their risk for iron deficiency and toxicity warrants careful monitoring and support in the newborn and postdischarge periods.
Collapse
|
Review |
22 |
70 |
5
|
Ruospo M, Palmer SC, Natale P, Craig JC, Vecchio M, Elder GJ, Strippoli GFM, Cochrane Kidney and Transplant Group. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst Rev 2018; 8:CD006023. [PMID: 30132304 PMCID: PMC6513594 DOI: 10.1002/14651858.cd006023.pub3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Phosphate binders are used to reduce positive phosphate balance and to lower serum phosphate levels for people with chronic kidney disease (CKD) with the aim to prevent progression of chronic kidney disease-mineral and bone disorder (CKD-MBD). This is an update of a review first published in 2011. OBJECTIVES The aim of this review was to assess the benefits and harms of phosphate binders for people with CKD with particular reference to relevant biochemical end-points, musculoskeletal and cardiovascular morbidity, hospitalisation, and death. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 12 July 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) or quasi-RCTs of adults with CKD of any GFR category comparing a phosphate binder to another phosphate binder, placebo or usual care to lower serum phosphate. Outcomes included all-cause and cardiovascular death, myocardial infarction, stroke, adverse events, vascular calcification and bone fracture, and surrogates for such outcomes including serum phosphate, parathyroid hormone (PTH), and FGF23. DATA COLLECTION AND ANALYSIS Two authors independently selected studies for inclusion and extracted study data. We applied the Cochrane 'Risk of Bias' tool and used the GRADE process to assess evidence certainty. We estimated treatment effects using random-effects meta-analysis. Results were expressed as risk ratios (RR) for dichotomous outcomes together with 95% confidence intervals (CI) or mean differences (MD) or standardised MD (SMD) for continuous outcomes. MAIN RESULTS We included 104 studies involving 13,744 adults. Sixty-nine new studies were added to this 2018 update.Most placebo or usual care controlled studies were among participants with CKD G2 to G5 not requiring dialysis (15/25 studies involving 1467 participants) while most head to head studies involved participants with CKD G5D treated with dialysis (74/81 studies involving 10,364 participants). Overall, seven studies compared sevelamer with placebo or usual care (667 participants), seven compared lanthanum to placebo or usual care (515 participants), three compared iron to placebo or usual care (422 participants), and four compared calcium to placebo or usual care (278 participants). Thirty studies compared sevelamer to calcium (5424 participants), and fourteen studies compared lanthanum to calcium (1690 participants). No study compared iron-based binders to calcium. The remaining studies evaluated comparisons between sevelamer (hydrochloride or carbonate), sevelamer plus calcium, lanthanum, iron (ferric citrate, sucroferric oxyhydroxide, stabilised polynuclear iron(III)-oxyhydroxide), calcium (acetate, ketoglutarate, carbonate), bixalomer, colestilan, magnesium (carbonate), magnesium plus calcium, aluminium hydroxide, sucralfate, the inhibitor of phosphate absorption nicotinamide, placebo, or usual care without binder. In 82 studies, treatment was evaluated among adults with CKD G5D treated with haemodialysis or peritoneal dialysis, while in 22 studies, treatment was evaluated among participants with CKD G2 to G5. The duration of study follow-up ranged from 8 weeks to 36 months (median 3.7 months). The sample size ranged from 8 to 2103 participants (median 69). The mean age ranged between 42.6 and 68.9 years.Random sequence generation and allocation concealment were low risk in 25 and 15 studies, respectively. Twenty-seven studies reported low risk methods for blinding of participants, investigators, and outcome assessors. Thirty-one studies were at low risk of attrition bias and 69 studies were at low risk of selective reporting bias.In CKD G2 to G5, compared with placebo or usual care, sevelamer, lanthanum, iron and calcium-based phosphate binders had uncertain or inestimable effects on death (all causes), cardiovascular death, myocardial infarction, stroke, fracture, or coronary artery calcification. Sevelamer may lead to constipation (RR 6.92, CI 2.24 to 21.4; low certainty) and lanthanum (RR 2.98, CI 1.21 to 7.30, moderate certainty) and iron-based binders (RR 2.66, CI 1.15 to 6.12, moderate certainty) probably increased constipation compared with placebo or usual care. Lanthanum may result in vomiting (RR 3.72, CI 1.36 to 10.18, low certainty). Iron-based binders probably result in diarrhoea (RR 2.81, CI 1.18 to 6.68, high certainty), while the risks of other adverse events for all binders were uncertain.In CKD G5D sevelamer may lead to lower death (all causes) (RR 0.53, CI 0.30 to 0.91, low certainty) and induce less hypercalcaemia (RR 0.30, CI 0.20 to 0.43, low certainty) when compared with calcium-based binders, and has uncertain or inestimable effects on cardiovascular death, myocardial infarction, stroke, fracture, or coronary artery calcification. The finding of lower death with sevelamer compared with calcium was present when the analysis was restricted to studies at low risk of bias (RR 0.50, CI 0.32 to 0.77). In absolute terms, sevelamer may lower risk of death (all causes) from 210 per 1000 to 105 per 1000 over a follow-up of up to 36 months, compared to calcium-based binders. Compared with calcium-based binders, lanthanum had uncertain effects with respect to all-cause or cardiovascular death, myocardial infarction, stroke, fracture, or coronary artery calcification and probably had reduced risks of treatment-related hypercalcaemia (RR 0.16, CI 0.06 to 0.43, low certainty). There were no head-to-head studies of iron-based binders compared with calcium. The paucity of placebo-controlled studies in CKD G5D has led to uncertainty about the effects of phosphate binders on patient-important outcomes compared with placebo.It is uncertain whether the effects of binders on clinically-relevant outcomes were different for patients who were and were not treated with dialysis in subgroup analyses. AUTHORS' CONCLUSIONS In studies of adults with CKD G5D treated with dialysis, sevelamer may lower death (all causes) compared to calcium-based binders and incur less treatment-related hypercalcaemia, while we found no clinically important benefits of any phosphate binder on cardiovascular death, myocardial infarction, stroke, fracture or coronary artery calcification. The effects of binders on patient-important outcomes compared to placebo are uncertain. In patients with CKD G2 to G5, the effects of sevelamer, lanthanum, and iron-based phosphate binders on cardiovascular, vascular calcification, and bone outcomes compared to placebo or usual care, are also uncertain and they may incur constipation, while iron-based binders may lead to diarrhoea.
Collapse
|
Meta-Analysis |
7 |
64 |
6
|
Abstract
Constipation, often related to diet, physical immobility, concurrent illness or multiple medication use, is common in older people. Despite potential for serious complications, constipation may often be overlooked. Management of constipation is a critical part of the care of older patients with chronic conditions. Risk assessment and appropriate nursing interventions and/or medication should mean that constipation can be minimized, preventing additional medication burden and reducing the risk of non-adherence. The relationship between quality of life and constipation has been assessed in numerous studies, showing that patients with constipation generally have an impaired quality of life compared with the general population, although studies in older patients are limited. In long-term survivors of colorectal or anal carcinoma, constipation is one of the factors that has the most negative impact on quality of life. Strategies for prevention and minimization of constipation have the potential to substantially improve quality of life for older people.
Collapse
|
Review |
19 |
62 |
7
|
Abstract
BACKGROUND Iron deficiency, the most common cause of anaemia in pregnancy worldwide, can be mild, moderate or severe. Severe anaemia can have very serious consequences for mothers and babies, but there is controversy about whether treating mild or moderate anaemia provides more benefit than harm. OBJECTIVES To assess the effects of different treatments for anaemia in pregnancy attributed to iron deficiency (defined as haemoglobin less than 11 g/dL or other equivalent parameters) on maternal and neonatal morbidity and mortality. SEARCH STRATEGY We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (7 June 2011), CENTRAL (2011, Issue 5), PubMed (1966 to June 2011), the International Clinical Trials Registry Platform (ICTRP) (2 May 2011), Health Technology Assessment Program (HTA) (2 May 2011) and LATINREC (Colombia) (2 May 2011). SELECTION CRITERIA Randomised controlled trials comparing treatments for anaemia in pregnancy attributed to iron deficiency. DATA COLLECTION AND ANALYSIS We identified 23 trials, involving 3.198 women. We assessed their risk of bias. Three further studies identified are awaiting classification. MAIN RESULTS Many of the trials were from low-income countries; they were generally small and frequently methodologically poor. They covered a very wide range of differing drugs, doses and routes of administration, making it difficult to pool data. Oral iron in pregnancy showed a reduction in the incidence of anaemia (risk ratio 0.38, 95% confidence interval 0.26 to 0.55, one trial, 125 women) and better haematological indices than placebo (two trials). It was not possible to assess the effects of treatment by severity of anaemia. A trend was found between dose and reported adverse effects. Most trials reported no clinically relevant outcomes nor adverse effects. Although the intramuscular and intravenous routes produced better haematological indices in women than the oral route, no clinical outcomes were assessed and there were insufficient data on adverse effects, for example, on venous thrombosis and severe allergic reactions. Daily low-dose iron supplements may be effective at treating anaemia in pregnancy with less gastrointestinal side effects compared with higher doses. AUTHORS' CONCLUSIONS Despite the high incidence and burden of disease associated with this condition, there is a paucity of good quality trials assessing clinical maternal and neonatal effects of iron administration in women with anaemia. Daily oral iron treatment improves haematological indices but causes frequent gastrointestinal adverse effects. Parenteral (intramuscular and intravenous) iron enhances haematological response, compared with oral iron, but there are concerns about possible important adverse effects (for intravenous treatment venous thrombosis and allergic reactions and for intramuscular treatment important pain, discolouration and allergic reactions). Large, good quality trials, assessing clinical outcomes (including adverse effects) as well as the effects of treatment by severity of anaemia are required.
Collapse
|
Meta-Analysis |
14 |
62 |
8
|
Abstract
The detection of nodal metastases is of utmost importance in oncologic imaging. Ultrasmall superparamagnetic iron oxide particles (USPIO) are novel contrast agents specifically developed for MR lymphography. After intravenous administration, they are taken up by the macrophages of the lymph nodes, where they accumulate. They reduce the signal intensity (SI) of normally functioning nodes on postcontrast T2-and T2*-weighted images through the magnetic susceptibility effects on iron oxide. Metastatic nodes, in which macrophages are replaced by tumor cells, show no significant change in SI on postcontrast T2-and T2*-weighted images. Early clinical experience suggests that USPIO-enhanced MR lymphography improves the sensitivity and specificity for the detection of nodal metastases. It also suggests that micrometastases could be detected in normal-sized nodes. This article reviews the physiochemical properties of USPIO contrast agents, their enhancement patterns, and early clinical experience.
Collapse
|
Review |
25 |
58 |
9
|
Abstract
BACKGROUND Iron deficiency, the most common cause of anaemia in pregnancy worldwide, can be mild, moderate or severe. Severe anaemia can have very serious consequences for mothers and babies, but there is controversy about whether treating mild or moderate anaemia provides more benefit than harm. OBJECTIVES To assess the effects of different treatments for iron-deficiency anaemia in pregnancy (defined as haemoglobin less than 11 g/dl) on maternal and neonatal morbidity and mortality. SEARCH STRATEGY We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (January 2007), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2005, Issue 4), MEDLINE (1966 to December 2005), EMBASE (1976 to December 2005), LILACS (1982 to 40 edition), BIOSIS Previews (1980 to June 2002) and ongoing clinical trial registers. SELECTION CRITERIA Randomised controlled trials comparing treatments for iron-deficiency anaemia in pregnancy. DATA COLLECTION AND ANALYSIS We identified 17 trials, involving 2578 women. We assessed trial quality. MAIN RESULTS The trials were small and generally methodologically poor. They covered a very wide range of differing drugs, doses and routes of administration, making it difficult to pool data. Oral iron in pregnancy showed a reduction in the incidence of anaemia (one trial, 125 women; relative risk 0.38; 95% confidence interval 0.26 to 0.55). It was not possible to assess the effects of treatment by severity of anaemia. A trend was found between dose and reported adverse effects. We found that most trials had no assessments on relevant clinical outcomes and a paucity of data on adverse effects, including some that are known to be associated with iron administration. Although the intramuscular and intravenous routes produced better haematological indices in women than the oral route, no clinical outcomes were assessed and there were insufficient data on adverse effects, for example, on venous thrombosis and severe allergic reactions. AUTHORS' CONCLUSIONS Despite the high incidence and burden of disease associated with this condition, there is a paucity of good quality trials assessing clinical maternal and neonatal effects of iron administration in women with anaemia. Daily oral iron treatment improves haematological indices but causes frequent gastrointestinal adverse effects. Parenteral (intramuscular and intravenous) iron enhances haematological response, compared with oral iron, but there are concerns about possible important adverse effects. Large, good quality trials, assessing clinical outcomes (including adverse effects) are required.
Collapse
|
Meta-Analysis |
18 |
52 |
10
|
Susantitaphong P, Alqahtani F, Jaber BL. Efficacy and safety of intravenous iron therapy for functional iron deficiency anemia in hemodialysis patients: a meta-analysis. Am J Nephrol 2014; 39:130-41. [PMID: 24513913 DOI: 10.1159/000358336] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/31/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Studies on benefits of intravenous iron therapy among hemodialysis patients with functional iron deficiency anemia have shown conflicting results. We conducted a meta-analysis to assess the efficacy and safety of intravenous iron in this subset of patients. METHODS We searched MEDLINE (through December 2012), the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov for single-arm studies and randomized controlled trials (RCT) that examined the effect of intravenous iron for functional iron deficiency anemia in hemodialysis patients on anemia parameters and markers of oxidative stress and inflammation. Studies of absolute iron deficiency were excluded. Random-effect model meta-analyses were used to compute changes in outcomes of interest. RESULTS We identified 34 studies (2,658 patients), representing 24 single-arm studies, and 10 parallel-arm RCT. In the analyses of the study arms, intravenous iron therapy resulted in a significant increase in hemoglobin, serum ferritin, transferrin saturation rate, serum iron, reticulocyte hemoglobin content as well as a significant decrease in the percentage of hypochromic erythrocytes and erythropoietin dose. There were significant increases in plasma malonyldialdehyde level and thiobarbituric acid-reactive substances, and a decrease in neutrophil respiratory burst. The analyses of the RCT revealed less robust net changes in these parameters, and there was no increased risk of adverse events including infections, cardiac events and mortality. CONCLUSIONS Intravenous iron therapy for functional iron deficiency anemia in hemodialysis patients improves anemia parameters but exerts some effects on markers of oxidative stress that are of unclear clinical significance. The long-term safety and efficacy of this treatment strategy requires further study.
Collapse
|
Meta-Analysis |
11 |
50 |
11
|
Spector W, Shaffer T, Potter DEB, Correa-de-Araujo R, Rhona Limcangco M. Risk factors associated with the occurrence of fractures in U.S. nursing homes: resident and facility characteristics and prescription medications. J Am Geriatr Soc 2007; 55:327-33. [PMID: 17341233 DOI: 10.1111/j.1532-5415.2007.01081.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To determine whether resident and facility characteristics and prescription medications influence the occurrence of fractures in nursing homes (NHs). DESIGN Panel study with 1-year follow-up. SETTING A nationally representative sample of NHs from the Medical Expenditure Panel Survey (MEPS). PARTICIPANTS Residents aged 65 and older who were in sample NHs on January 1, 1996. MEASUREMENTS Health status measures were collected from facility records and abstracted using a computer-assisted personal interview instrument. Fracture and drug data were updated every 4 months to provide a full year of information. Drug data were obtained from monthly medication administration records. The occurrences of fractures were obtained from medical records. Administered medications were classified using the Department of Veterans Affairs medication classification system. Facility characteristics were based on MEPS survey data collected from NH sources. RESULTS In 1996, 6% of residents in a NH at the beginning of the year experienced a fracture during their NH stay(s). Resident risk factors included aged 85 and older, admitted from the community, exhibited agitated behaviors, and used both wheelchair and cane or walker. Use of anticonvulsants, antidepressants, opioid analgesics, iron supplements, bisphosphonates, thiazides, and laxatives were associated with fractures. A high certified nurse aide ratio was negatively associated with fractures. CONCLUSION The findings indicate that fractures are associated with resident and facility characteristics and prescribing practices. It reaffirms the importance of medication review with special attention on opioid analgesics, antidepressants, and anticonvulsants to reduce the risk of fractures.
Collapse
|
Journal Article |
18 |
45 |
12
|
Ha JH, Doguer C, Wang X, Flores SR, Collins JF. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats. PLoS One 2016; 11:e0161033. [PMID: 27537180 PMCID: PMC4990348 DOI: 10.1371/journal.pone.0161033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype.
Collapse
|
Journal Article |
9 |
34 |
13
|
Gurusamy KS, Nagendran M, Broadhurst JF, Anker SD, Richards T, Cochrane Injuries Group. Iron therapy in anaemic adults without chronic kidney disease. Cochrane Database Syst Rev 2014; 2014:CD010640. [PMID: 25550190 PMCID: PMC10891481 DOI: 10.1002/14651858.cd010640.pub2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anaemia affects about a quarter of the world's population. An estimated 50% of anaemic people have anaemia due to iron deficiency. OBJECTIVES To assess the safety and efficacy of iron therapies for the treatment of adults with anaemia who are not pregnant or lactating and do not have chronic kidney disease. SEARCH METHODS We ran the search on 11 July 2013. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE (Ovid SP), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) Plus (EBSCO Host), the Institute for Scientific Information Web of Science (ISI WOS) Scientific Citation Index (SCI)-EXPANDED (1970) and Conference Proceedings Citation Index (CPCI)-Science (1990) and Clinicaltrials.gov; we also screened reference lists. An updated search was run on 24 November 2014 but the results have not yet been incorporated into the review. SELECTION CRITERIA Two review authors independently selected references for further assessment by going through all titles and abstracts. Further selection was based on review of full-text articles for selected references. DATA COLLECTION AND ANALYSIS Two review authors independently extracted study data. We calculated the risk ratio (RR) with 95% confidence interval (CI) for binary outcomes and the mean difference (MD) or the standardised mean difference (SMD) with 95% CI for continuous outcomes. We performed meta-analysis when possible, when I(2) was less than or equal to 80% using a fixed-effect or random-effects model, using Review Manager software. The range of point estimates for individual studies is presented when I(2) > 80%. MAIN RESULTS We included in this systematic review 4745 participants who were randomly assigned in 21 trials. Trials were conducted in a wide variety of clinical settings. Most trials included participants with mild to moderate anaemia and excluded participants who were allergic to iron therapy. All trials were at high risk of bias for one or more domains. We compared both oral iron and parenteral iron versus inactive controls and compared different iron preparations.The comparison between oral iron and inactive control revealed no evidence of clinical benefit in terms of mortality (RR 1.05, 95% CI 0.68 to 1.61; four studies, N = 659; very low-quality evidence). The point estimate of the mean difference in haemoglobin levels in individual studies ranged from 0.3 to 3.1 g/dL higher in the oral iron group than in the inactive control group. The proportion of participants who required blood transfusion was lower with oral iron than with inactive control (RR 0.74, 95% CI 0.55 to 0.99; three studies, N = 546; very low-quality evidence). Evidence was inadequate for determination of the effect of parenteral iron on mortality versus oral iron (RR 1.49, 95% CI 0.56 to 3.94; 10 studies, N = 2141; very low-quality evidence) or inactive control (RR 1.04, 95% CI 0.63 to 1.69; six studies, N = 1009; very low-quality evidence). Haemoglobin levels were higher with parenteral iron than with oral iron (MD -0.50 g/dL, 95% CI -0.73 to -0.27; six studies, N = 769; very low-quality evidence). The point estimate of the mean difference in haemoglobin levels in individual studies ranged between 0.3 and 3.0 g/dL higher in the parenteral iron group than in the inactive control group. Differences in the proportion of participants requiring blood transfusion between parenteral iron and oral iron groups (RR 0.61, 95% CI 0.24 to 1.58; two studies, N = 371; very low-quality evidence) or between parenteral iron groups and inactive controls (RR 0.84, 95% CI 0.66 to 1.06; eight studies, N = 1315; very low-quality evidence) were imprecise. Average blood volume transfused was less in the parenteral iron group than in the oral iron group (MD -0.54 units, 95% CI -0.96 to -0.12; very low-quality evidence) based on one study involving 44 people. Differences between therapies in quality of life or in the proportion of participants with serious adverse events were imprecise (very low-quality evidence). No trials reported severe allergic reactions due to parenteral iron, suggesting that these are rare. Adverse effects related to oral iron treatment included nausea, diarrhoea and constipation; most were mild.Comparisons of one iron preparation over another for mortality, haemoglobin or serious adverse events were imprecise. No information was available on quality of life. Thus, little evidence was found to support the use of one preparation or regimen over another.Subgroup analyses did not reveal consistent results; therefore we were unable to determine whether iron is useful in specific clinical situations, or whether iron therapy might be useful for people who are receiving erythropoietin. AUTHORS' CONCLUSIONS • Very low-quality evidence suggests that oral iron might decrease the proportion of people who require blood transfusion, and no evidence indicates that it decreases mortality. Oral iron might be useful in adults who can tolerate the adverse events, which are usually mild.• Very low-quality evidence suggests that intravenous iron results in a modest increase in haemoglobin levels compared with oral iron or inactive control without clinical benefit.• No evidence can be found to show any advantage of one iron preparation or regimen over another.• Additional randomised controlled trials with low risk of bias and powered to measure clinically useful outcomes such as mortality, quality of life and blood transfusion requirements are needed.
Collapse
|
Meta-Analysis |
11 |
28 |
14
|
O'Lone EL, Hodson EM, Nistor I, Bolignano D, Webster AC, Craig JC, Cochrane Kidney and Transplant Group. Parenteral versus oral iron therapy for adults and children with chronic kidney disease. Cochrane Database Syst Rev 2019; 2:CD007857. [PMID: 30790278 PMCID: PMC6384096 DOI: 10.1002/14651858.cd007857.pub3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The anaemia seen in chronic kidney disease (CKD) may be exacerbated by iron deficiency. Iron can be provided through different routes, with advantages and drawbacks of each route. It remains unclear whether the potential harms and additional costs of intravenous (IV) compared with oral iron are justified. This is an update of a review first published in 2012. OBJECTIVES To determine the benefits and harms of IV iron supplementation compared with oral iron for anaemia in adults and children with CKD, including participants on dialysis, with kidney transplants and CKD not requiring dialysis. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 7 December 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs in which IV and oral routes of iron administration were compared in adults and children with CKD. DATA COLLECTION AND ANALYSIS Two authors independently assessed study eligibility, risk of bias, and extracted data. Results were reported as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes. For continuous outcomes the mean difference (MD) was used or standardised mean difference (SMD) if different scales had been used. Statistical analyses were performed using the random-effects model. Subgroup analysis and univariate meta-regression were performed to investigate between study differences. The certainty of the evidence was assessed using GRADE. MAIN RESULTS We included 39 studies (3852 participants), 11 of which were added in this update. A low risk of bias was attributed to 20 (51%) studies for sequence generation, 14 (36%) studies for allocation concealment, 22 (56%) studies for attrition bias and 20 (51%) for selective outcome reporting. All studies were at a high risk of performance bias. However, all studies were considered at low risk of detection bias because the primary outcome in all studies was laboratory-based and unlikely to be influenced by lack of blinding.There is insufficient evidence to suggest that IV iron compared with oral iron makes any difference to death (all causes) (11 studies, 1952 participants: RR 1.12, 95% CI 0.64, 1.94) (absolute effect: 33 participants per 1000 with IV iron versus 31 per 1000 with oral iron), the number of participants needing to start dialysis (4 studies, 743 participants: RR 0.81, 95% CI 0.41, 1.61) or the number needing blood transfusions (5 studies, 774 participants: RR 0.86, 95% CI 0.55, 1.34) (absolute effect: 87 per 1,000 with IV iron versus 101 per 1,000 with oral iron). These analyses were assessed as having low certainty evidence. It is uncertain whether IV iron compared with oral iron reduces cardiovascular death because the certainty of this evidence was very low (3 studies, 206 participants: RR 1.71, 95% CI 0.41 to 7.18). Quality of life was reported in five studies with four reporting no difference between treatment groups and one reporting improvement in participants treated with IV iron.IV iron compared with oral iron may increase the numbers of participants, who experience allergic reactions or hypotension (15 studies, 2607 participants: RR 3.56, 95% CI 1.88 to 6.74) (absolute harm: 24 per 1000 with IV iron versus 7 per 1000) but may reduce the number of participants with all gastrointestinal adverse effects (14 studies, 1986 participants: RR 0.47, 95% CI 0.33 to 0.66) (absolute benefit: 150 per 1000 with IV iron versus 319 per 1000). These analyses were assessed as having low certainty evidence.IV iron compared with oral iron may increase the number of participants who achieve target haemoglobin (13 studies, 2206 participants: RR 1.71, 95% CI 1.43 to 2.04) (absolute benefit: 542 participants per 1,000 with IV iron versus 317 per 1000 with oral iron), increased haemoglobin (31 studies, 3373 participants: MD 0.72 g/dL, 95% CI 0.39 to 1.05); ferritin (33 studies, 3389 participants: MD 224.84 µg/L, 95% CI 165.85 to 283.83) and transferrin saturation (27 studies, 3089 participants: MD 7.69%, 95% CI 5.10 to 10.28), and may reduce the dose required of erythropoietin-stimulating agents (ESAs) (11 studies, 522 participants: SMD -0.72, 95% CI -1.12 to -0.31) while making little or no difference to glomerular filtration rate (8 studies, 1052 participants: 0.83 mL/min, 95% CI -0.79 to 2.44). All analyses were assessed as having low certainty evidence. There were moderate to high degrees of heterogeneity in these analyses but in meta-regression, definite reasons for this could not be determined. AUTHORS' CONCLUSIONS The included studies provide low certainty evidence that IV iron compared with oral iron increases haemoglobin, ferritin and transferrin levels in CKD participants, increases the number of participants who achieve target haemoglobin and reduces ESA requirements. However, there is insufficient evidence to determine whether IV iron compared with oral iron influences death (all causes), cardiovascular death and quality of life though most studies reported only short periods of follow-up. Adverse effects were reported in only 50% of included studies. We therefore suggest that further studies that focus on patient-centred outcomes with longer follow-up periods are needed to determine if the use of IV iron is justified on the basis of reductions in ESA dose and cost, improvements in patient quality of life, and with few serious adverse effects.
Collapse
|
Meta-Analysis |
6 |
27 |
15
|
Van Buren P, Velez RL, Vaziri ND, Zhou XJ. Iron overdose: a contributor to adverse outcomes in randomized trials of anemia correction in CKD. Int Urol Nephrol 2012; 44:499-507. [PMID: 21744260 PMCID: PMC3314165 DOI: 10.1007/s11255-011-0028-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/23/2011] [Indexed: 02/07/2023]
Abstract
Administration of intravenous iron to supplement erythropoiesis stimulating agents (ESAs) has become a common practice in the management of anemia in patients with end-stage renal disease. Randomized clinical trials of anemia correction in this population have shown more adverse outcomes in CKD and ESRD patients assigned to the higher hemoglobin targets. Retrospective analysis of these trials suggests that morbidity is higher in subjects who fail to achieve the designated hemoglobin target and are typically exposed to higher doses of ESAs and iron than those that easily achieve the intended targets. Intravenous iron administration circumvents the natural biologic mechanisms for handling and utilization of iron. There is in vitro and in vivo evidence that intravenous iron preparations can cause oxidative stress, endothelial dysfunction, inflammation, impaired immunity, and renal injury. Since iron overload is known to promote endothelial dysfunction, cardiovascular disease, and immune dysfunction which are the leading causes of premature mortality in CKD and ESRD patients, it is imperative to exercise caution with the use of IV iron preparations in this population. The present review is intended to provide a brief overview of the potential adverse effects of the overzealous use of these agents.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
26 |
16
|
Berggren KL, Chen J, Fox J, Miller J, Dodds L, Dugas B, Vargas L, Lothian A, McAllum E, Volitakis I, Roberts B, Bush AI, Fox JH. Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease. Redox Biol 2015; 4:363-74. [PMID: 25703232 PMCID: PMC4348428 DOI: 10.1016/j.redox.2015.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in huntingtin (htt) protein. Dysregulation of brain iron homeostasis, oxidative stress and neurodegeneration are consistent features of the HD phenotype. Therefore, environmental factors that exacerbate oxidative stress and iron dysregulation may potentiate HD. Iron supplementation in the human population is common during infant and adult-life stages. In this study, iron supplementation in neonatal HD mice resulted in deterioration of spontaneous motor running activity, elevated levels of brain lactate and oxidized glutathione consistent with increased energetic dysfunction and oxidative stress, and increased striatal and motor cortical neuronal atrophy, collectively demonstrating potentiation of the disease phenotype. Oxidative stress, energetic, and anatomic markers of degeneration were not affected in wild-type littermate iron-supplemented mice. Further, there was no effect of elevated iron intake on disease outcomes in adult HD mice. We have demonstrated an interaction between the mutant huntingtin gene and iron supplementation in neonatal HD mice. Findings indicate that elevated neonatal iron intake potentiates mouse HD and promotes oxidative stress and energetic dysfunction in brain. Neonatal-infant dietary iron intake level may be an environmental modifier of human HD.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
26 |
17
|
Abstract
Intravenous iron therapy is instrumental in the management of anemia in patients with end-stage renal disease (ESRD). Iron is available in several different preparations, with slight differences in the pharmacology of each. Given the importance of intravenous iron in the management of these patients, clinicians should be aware of the potential risks associated with it. Intravenous iron has effects on host immunity that raise concerns about clinical infection risk. Iron preparations appear to increase oxidative stress in these patients, which has important implications for cardiovascular disease states. Lastly, the effects of intravenous iron on liver disease are largely unknown.
Collapse
|
Review |
19 |
24 |
18
|
Bhattacharyya S, Pal PB, Sil PC. A 35 kD Phyllanthus niruri protein modulates iron mediated oxidative impairment to hepatocytes via the inhibition of ERKs, p38 MAPKs and activation of PI3k/Akt pathway. Food Chem Toxicol 2013; 56:119-130. [PMID: 23435124 DOI: 10.1016/j.fct.2013.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/01/2013] [Accepted: 02/09/2013] [Indexed: 12/21/2022]
Abstract
It has been reported that the herb, Phyllanthus niruri, possess antioxidant, anti-infection, anti-asthmatic, anti-diuretic, anti-soresis and many more beneficial activities. The goal of our present study was to evaluate the protective role of a 35 kD protein (PNP) isolated from this herb against iron-induced cytotoxicity in murine hepatocytes. Exposure of hepatocytes to iron (FeSO4) caused elevation of reactive oxygen species (ROS) production, enhanced lipid peroxidation and protein carbonylation, depleted glutathione levels, decreased the antioxidant power (FRAP) of the cells and reduced cell viability. Iron mediated cytotoxicity disrupted mitochondrial membrane potential (Δψm) and thereby caused apoptosis mainly by the intrinsic pathway via the down-regulation of IκBα with a concomitant up-regulation of NF-kB as well as the phosphorylation of ERKs and p38 MAP kinases. In addition, iron-induced cytotoxicity disrupted the normal balance of Bcl-2 family proteins in hepatocytes. Incubation of hepatocytes with PNP, however, protected the cells from apoptosis by stabilizing the mitochondria and arresting the release of cytochrome c. It also suppressed caspase activation and cleavage of PARP. Moreover, this protein has strong free radical scavenging activity and thereby scavenged ROS extensively. Combining all, results suggest that simultaneous treatment with PNP might suppress the iron-induced cytotoxicity in hepatocytes.
Collapse
|
|
12 |
23 |
19
|
Abstract
Absolute and functional iron deficiency is the most common cause of epoetin (recombinant human erythropoietin) hyporesponsiveness in renal failure patients. Diagnostic procedures for determining iron deficiency include measurement of serum iron levels, serum ferritin levels, saturation of transferrin and percentage of hypochromic red blood cells. Patients with iron deficiency should receive supplemental iron, either orally or intravenously. Adequate intravenous iron supplementation allows reduction of epoetin dosage by approximately 40%. Intravenous iron supplementation is recommended for all patients undergoing haemodialysis and for pre-dialysis and peritoneal dialysis patients with severe iron deficiency. During the maintenance phase (period of epoetin therapy after correction of iron deficiency), the use of low-dose intravenous iron supplementation (10 to 20 mg per haemodialysis treatment or 100 mg every second week) avoids iron overtreatment and minimises potential adverse effects. Depending on the degree of pre-existing iron deficiency, markedly higher iron doses are necessary during the correction phase (period of epoetin therapy after correction of iron deficiency) [e.g. intravenous iron 40 to 100 mg per haemodialysis session up to a total dose of 1000 mg]. The iron status should be monitored monthly during the correction phase and every 3 months during the maintenance phase to avoid overtreatment with intravenous iron.
Collapse
|
Review |
28 |
22 |
20
|
Hobbesland A, Kjuus H, Thelle DS. Mortality from cardiovascular diseases and sudden death in ferroalloy plants. Scand J Work Environ Health 1997; 23:334-41. [PMID: 9403463 DOI: 10.5271/sjweh.229] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to examine mortality from circulatory diseases and sudden death among workers in 12 Norwegian ferroalloy plants. METHODS The cohort comprised 14730 men employed for the first time during 1933-1990 and for at least 6 months. Deaths observed during 1962-1990 were compared with expected figures calculated from national mortality rates. Internal comparisons of rates were performed by Poisson regression analysis. RESULTS The overall mortality from cardiovascular diseases was not increased [standardized mortality ratio (SMR) 1.01], but a significantly increased mortality from sudden death (SMR 1.55) and hypertensive disease (SMR 1.37) was observed. Among the ferromanganese/silicomanganese (FeMn/SiMn) furnace workers the sudden death mortality was significantly increased during the employment period (SMR 2.47). In an internal comparison of the sudden death rates, a significant increase of 0.05 in the rate ratio per workyear was observed in this group. The mortality from 3 hypertension-related diseases combined (cerebrovascular, hypertensive, and renal diseases) showed identical positive mortality trends among the ferrosilicon/silicon-metal (FeSi/Si-met) and the FeMn/SiMn furnace workers by increasing duration of work. CONCLUSIONS Increased mortality from sudden death among the FeMn/SiMn furnace workers is not likely to be explained by smoking or alcohol consumption. Associations with work exposures (manganese and possibly carbon monoxide and heat) are suspected. The increasing mortality from hypertension-related diseases with increasing duration of work in both groups of furnace workers may be associated with common furnace work conditions (eg, heat, psychosocial stress, shift work, noise, carbon monoxide).
Collapse
|
|
28 |
22 |
21
|
Rodríguez E, Roig A, Molins E, Arús C, Quintero MR, Cabañas ME, Cerdán S, Lopez-Larrubia P, Sanfeliu C. In vitro characterization of an Fe(8) cluster as potential MRI contrast agent. NMR IN BIOMEDICINE 2005; 18:300-7. [PMID: 15912577 DOI: 10.1002/nbm.959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The complex [(tacn)(6)Fe(8)(micro(3)-O)(2)(micro(2)-OH)(12)]Br(8).9H(2)O (Fe(8)) was evaluated in vitro as a new kind of possible MRI contrast agent. Relaxivities were measured at 1.41 and 9.4 T for Fe(8) and commercial Gd-DTPA dissolved in PBS. There was significant difference for r(1) and r(2) values between Fe(8) and Gd-DTPA at high field (9.4 T) and for r(1) at low field (1.4 T) (p<0.05). Phantom studies with T(1)-weighted MRI at 9.4 T suggest T(1) contrast potential for Fe(8). That is, up to 5.2 times higher intensity enhancement with respect to that of equimolar Gd-DTPA was obtained with an Fe(8) concentration, referred to the whole molecule, of 0.2 mM, for which no toxicity on C6 cells could be detected. No toxic effects on cultured C6 cells were observed up to a concentration of 1 mM Fe(8).
Collapse
|
Evaluation Study |
20 |
20 |
22
|
Hobbesland A, Kjuus H, Thelle DS. Mortality from nonmalignant respiratory diseases among male workers in Norwegian ferroalloy plants. Scand J Work Environ Health 1997; 23:342-50. [PMID: 9403464 DOI: 10.5271/sjweh.230] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES This study examined mortality from nonmalignant respiratory diseases among ferroalloy workers. METHODS The cohort comprised 14730 men employed for the first time in 1933-1990 and for at least 6 months in 1 of 12 plants. The duration of work in specific departments and exposure to amorphous silica in the ferrosilicon/silicon-metal (FeSi/Si-met) plants, estimated from a job-exposure matrix, were the main exposure variables. Deaths were observed during 1962-1990. The mortality was analyzed with the use of standardized mortality ratios (SMR) and internal comparisons of rates. RESULTS Overall mortality from nonmalignant respiratory diseases was not increased, but mortality from bronchitis, emphysema, and asthma combined was significantly increased among the men with at least 3 years of FeSi/Si-met furnace work (SMR 1.82, 16 deaths). A Poisson regression analysis of the mortality from these causes among 6359 employees in the FeSi/Si-met plants showed a significant increase of 0.06 per unit of amorphous silica exposure observed 10-20 years after the exposure. Six men died of pneumonia while still employed in a ferromanganese/silicomanganese (FeMn/SiMn) plant. No corresponding deaths occurred among employees in FeSi/Si-met plants. Only 2 deaths from pneumoconiosis were observed in the total cohort. CONCLUSIONS Among employees in FeSi/Si-met plants increased mortality from bronchitis, emphysema, and asthma may be associated with previous exposure to amorphous silica. Deaths from pneumonia among FeMn/SiMn workers may be associated with manganese exposure.
Collapse
|
|
28 |
18 |
23
|
Auerbach M, James SE, Nicoletti M, Lenowitz S, London N, Bahrain HF, Derman R, Smith S. Results of the First American Prospective Study of Intravenous Iron in Oral Iron-Intolerant Iron-Deficient Gravidas. Am J Med 2017; 130:1402-1407. [PMID: 28739199 DOI: 10.1016/j.amjmed.2017.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Anemia affects up to 42% of gravidas. Neonatal iron deficiency is associated with low birth weight, delayed growth and development, and increased cognitive and behavioral abnormalities. While oral iron is convenient, up to 70% report significant gastrointestinal toxicity. Intravenous iron formulations allowing replacement in one visit with favorable side-effect profiles decrease rates of anemia with improved hemoglobin responses and maternal fetal outcomes. METHODS Seventy-four oral iron-intolerant, second- and third-trimester iron-deficient gravidas were questioned for oral iron intolerance and treated with intravenous iron. All received 1000 mg of low-molecular-weight iron dextran in 250 mL normal saline. Fifteen minutes after a test dose, the remainder was infused over the balance of 1 hour. Subjects were called at 1, 2, and 7 days to assess delayed reactions. Four weeks postinfusion or postpartum, hemoglobin levels and iron parameters were measured. Paired t test was used for hemoglobin and iron; 58/73 women were questioned about interval growth and development of their babies. RESULTS Seventy-three of 74 enrolled subjects completed treatment. Sixty had paired pre- and posttreatment data. The mean pre- and posthemoglobin concentrations were 9.7 and 10.8 g/dL (P < .00001), transferrin saturations 11.7% and 22.6% (P = .0003), and ferritins 14.5 and 126.3 ng/mL, respectively (P < .000001). Six experienced minor infusion reactions. All resolved. Data for 58 infants were available; one was low on its growth charts for 11 months. The remaining 57 were normal. None were diagnosed with iron deficiency anemia. CONCLUSION Intravenous iron has less toxicity and is more effective, supporting moving it closer to frontline therapy.
Collapse
|
|
8 |
18 |
24
|
Kuki KN, Oliva MA, Pereira EG, Costa AC, Cambraia J. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 403:207-214. [PMID: 18571219 DOI: 10.1016/j.scitotenv.2008.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.
Collapse
|
|
17 |
16 |
25
|
Gordon M, Sinopoulou V, Iheozor-Ejiofor Z, Iqbal T, Allen P, Hoque S, Engineer J, Akobeng AK. Interventions for treating iron deficiency anaemia in inflammatory bowel disease. Cochrane Database Syst Rev 2021; 1:CD013529. [PMID: 33471939 PMCID: PMC8092475 DOI: 10.1002/14651858.cd013529.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inflammatory bowel disease affects approximately seven million people globally. Iron deficiency anaemia can occur as a common systemic manifestation, with a prevalence of up to 90%, which can significantly affect quality of life, both during periods of active disease or in remission. It is important that iron deficiency anaemia is treated effectively and not be assumed to be a normal finding of inflammatory bowel disease. The various routes of iron administration, doses and preparations present varying advantages and disadvantages, and a significant proportion of people experience adverse effects with current therapies. Currently, no consensus has been reached amongst physicians as to which treatment path is most beneficial. OBJECTIVES The primary objective was to evaluate the efficacy and safety of the interventions for the treatment of iron deficiency anaemia in people with inflammatory bowel disease. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and two other databases on 21st November 2019. We also contacted experts in the field and searched references of trials for any additional trials. SELECTION CRITERIA Randomised controlled trials investigating the effectiveness and safety of iron administration interventions compared to other iron administration interventions or placebo in the treatment of iron deficiency anaemia in inflammatory bowel disease. We considered both adults and children, with studies reporting outcomes of clinical, endoscopic, histologic or surgical remission as defined by study authors. DATA COLLECTION AND ANALYSIS Two review authors independently conducted data extraction and 'Risk of bias' assessment of included studies. We expressed dichotomous and continuous outcomes as risk ratios and mean differences with 95% confidence intervals. We assessed the certainty of the evidence using the GRADE methodology. MAIN RESULTS We included 11 studies (1670 randomised participants) that met the inclusion criteria. The studies compared intravenous iron sucrose vs oral iron sulphate (2 studies); oral iron sulphate vs oral iron hydroxide polymaltose complex (1 study); oral iron fumarate vs intravenous iron sucrose (1 study); intravenous ferric carboxymaltose vs intravenous iron sucrose (1 study); erythropoietin injection + intravenous iron sucrose vs intravenous iron sucrose + injection placebo (1 study); oral ferric maltol vs oral placebo (1 study); oral ferric maltol vs intravenous ferric carboxymaltose (1 study); intravenous ferric carboxymaltose vs oral iron sulphate (1 study); intravenous iron isomaltoside vs oral iron sulphate (1 study); erythropoietin injection vs oral placebo (1 study). All studies compared participants with CD and UC together, as well as considering a range of disease activity states. The primary outcome of number of responders, when defined, was stated to be an increase in haemoglobin of 20 g/L in all but two studies in which an increase in 10g/L was used. In one study comparing intravenous ferric carboxymaltose and intravenous iron sucrose, moderate-certainty evidence was found that intravenous ferric carboxymaltose was probably superior to intravenous iron sucrose, although there were responders in both groups (150/244 versus 118/239, RR 1.25, 95% CI 1.06 to 1.46, number needed to treat for an additional beneficial outcome (NNTB) = 9). In one study comparing oral ferric maltol to placebo, there was low-certainty evidence of superiority of the iron (36/64 versus 0/64, RR 73.00, 95% CI 4.58 to 1164.36). There were no other direct comparisons that found any difference in the primary outcomes, although certainty was low and very low for all outcomes, due to imprecision from sparse data and risk of bias varying between moderate and high risk. The reporting of secondary outcomes was inconsistent. The most common was the occurrence of serious adverse events or those requiring withdrawal of therapy. In no comparisons was there a difference seen between any of the intervention agents being studied, although the certainty was very low for all comparisons made, due to risk of bias and significant imprecision due to the low numbers of events. Time to remission, histological and biochemical outcomes were sparsely reported in the studies. None of the other secondary outcomes were reported in any of the studies. An analysis of all intravenous iron preparations to all oral iron preparations showed that intravenous administration may lead to more responders (368/554 versus 205/373, RR 1.17, 95% CI 1.05 to 1.31, NNTB = 11, low-certainty due to risk of bias and inconsistency). Withdrawals due to adverse events may be greater in oral iron preparations vs intravenous (15/554 versus 31/373, RR 0.39, 95% CI 0.20 to 0.74, low-certainty due to risk of bias, inconsistency and imprecision). AUTHORS' CONCLUSIONS Intravenous ferric carboxymaltose probably leads to more people having resolution of IDA (iron deficiency anaemia) than intravenous iron sucrose. Oral ferric maltol may lead to more people having resolution of IDA than placebo. We are unable to draw conclusions on which of the other treatments is most effective in IDA with IBD (inflammatory bowel disease) due to low numbers of studies in each comparison area and clinical heterogeneity within the studies. Therefore, there are no other conclusions regarding the treatments that can be made and certainty of all findings are low or very low. Overall, intravenous iron delivery probably leads to greater response in patients compared with oral iron, with a NNTB (number needed to treat) of 11. Whilst no serious adverse events were specifically elicited with any of the treatments studied, the numbers of reported events were low and the certainty of these findings very low for all comparisons, so no conclusions can be drawn. There may be more withdrawals due to such events when oral is compared with intravenous iron delivery. Other outcomes were poorly reported and once again no conclusions can be made as to the impact of IDA on any of these outcomes. Given the widespread use of many of these treatments in practice and the only guideline that exists recommending the use of intravenous iron in favour of oral iron, research to investigate this key issue is clearly needed. Considering the current ongoing trials identified in this review, these are more focussed on the impact in specific patient groups (young people) or on other symptoms (such as fatigue). Therefore, there is a need for studies to be performed to fill this evidence gap.
Collapse
|
Meta-Analysis |
4 |
12 |