1
|
Abstract
Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.
Collapse
|
|
23 |
2024 |
2
|
Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB. In-vivo measurement of activated microglia in dementia. Lancet 2001; 358:461-7. [PMID: 11513911 DOI: 10.1016/s0140-6736(01)05625-2] [Citation(s) in RCA: 760] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Activated microglia have a key role in the brain's immune response to neuronal degeneration. The transition of microglia from the normal resting state to the activated state is associated with an increased expression of receptors known as peripheral benzodiazepine binding sites, which are abundant on cells of mononuclear phagocyte lineage. We used brain imaging to study expression of these sites in healthy individuals and patients with Alzheimer's disease. METHODS We studied 15 normal individuals (age 32-80 years), eight patients with Alzheimer's disease, and one patient with minimal cognitive impairment. Quantitative in-vivo measurements of glial activation were obtained with positron emission tomography (PET) and carbon-11-labelled (R)-PK11195, a specific ligand for the peripheral benzodiazepine binding site. FINDINGS In normal individuals, regional [11C](R)-PK11195 binding did not significantly change with age, except in the thalamus, where an age-dependent increase was found. By contrast, patients with Alzheimer's disease showed significantly increased regional [11C](R)-PK11195 binding in the entorhinal, temporoparietal, and cingulate cortex. INTERPRETATION In-vivo detection of increased [11C](R)-PK11195 binding in Alzheimer-type dementia, including mild and early forms, suggests that microglial activation is an early event in the pathogenesis of the disease.
Collapse
|
|
24 |
760 |
3
|
Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 2011; 70:374-83. [PMID: 21710619 DOI: 10.1002/ana.22455] [Citation(s) in RCA: 718] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/01/2011] [Accepted: 04/08/2011] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Patient outcome after traumatic brain injury (TBI) is highly variable. The underlying pathophysiology of this is poorly understood, but inflammation is potentially an important factor. Microglia orchestrate many aspects of this response. Their activation can be studied in vivo using the positron emission tomography (PET) ligand [11C](R)PK11195 (PK). In this study, we investigate whether an inflammatory response to TBI persists, and whether this response relates to structural brain abnormalities and cognitive function. METHODS Ten patients, studied at least 11 months after moderate to severe TBI, underwent PK PET and structural magnetic resonance imaging (including diffusion tensor imaging). PK binding potentials were calculated in and around the site of focal brain damage, and in selected distant and subcortical brain regions. Standardized neuropsychological tests were administered. RESULTS PK binding was significantly raised in the thalami, putamen, occipital cortices, and posterior limb of the internal capsules after TBI. There was no increase in PK binding at the original site of focal brain injury. High PK binding in the thalamus was associated with more severe cognitive impairment, although binding was not correlated with either the time since the injury or the extent of structural brain damage. INTERPRETATION We demonstrate that increased microglial activation can be present up to 17 years after TBI. This suggests that TBI triggers a chronic inflammatory response particularly in subcortical regions. This highlights the importance of considering the response to TBI as evolving over time and suggests interventions may be beneficial for longer intervals after trauma than previously assumed.
Collapse
|
|
14 |
718 |
4
|
el-Fouly MH, Trosko JE, Chang CC. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 1987; 168:422-30. [PMID: 2433137 DOI: 10.1016/0014-4827(87)90014-0] [Citation(s) in RCA: 509] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gap junction-mediated intercellular communication has been recognized in cells from different tissues of various organisms and has been implicated in a variety of cellular functions and dysfunctions. Here we describe a new, direct and rapid technique with which to study this cellular phenomenon. It employs scrape-loading to introduce a low molecular weight (MW) fluorescent dye, Lucifer yellow CH (MW 457.2) into cells in culture and allows the monitoring of its transfer into contiguous cells. In communication-competent cells the dye transmission occurred within minutes after loading. The involvement of membrane junctions in Lucifer yellow transfer was verified by the concurrent loading of a high MW marker dye conjugate, rhodamine dextran (MW 10,000). Once introduced intracellularly the rhodamine dextran is unable to cross the relatively narrow membrane junctions. Chemicals of variable potency known to block junctional communication were tested in Chinese hamster V79 cells and other mammalian cells. The results showed effective blockage of the dye transfer at non-cytotoxic doses. This new technique can be applied to a wide variety of mammalian (including human) cells. In addition, it has the potential to be utilized as a rapid screening assay to detect chemicals that can modulate intercellular communication and to study their mechanism of action.
Collapse
|
|
38 |
509 |
5
|
Kawaguchi Y, Katsumaru H, Kosaka T, Heizmann CW, Hama K. Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res 1987; 416:369-74. [PMID: 3304536 DOI: 10.1016/0006-8993(87)90921-8] [Citation(s) in RCA: 401] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fast spiking cells in the CA1 region of the rat hippocampus were revealed as gamma-aminobutyric acid (GABA)ergic non-pyramidal cells containing the calcium-binding protein parvalbumin by intracellular injection of Lucifer yellow in vitro in combination with postembedding parvalbumin immunohistochemistry.
Collapse
|
|
38 |
401 |
6
|
|
|
19 |
396 |
7
|
Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, Hammers A, Tai YF, Fox N, Kennedy A, Rossor M, Brooks DJ. Microglia, amyloid, and cognition in Alzheimer's disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 2008; 32:412-9. [PMID: 18786637 DOI: 10.1016/j.nbd.2008.08.001] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/30/2008] [Accepted: 08/05/2008] [Indexed: 01/25/2023] Open
Abstract
[11C](R)PK11195-PET is a marker of activated microglia while [11C]PIB-PET detects raised amyloid load. Here we studied in vivo the distributions of amyloid load and microglial activation in Alzheimer's disease (AD) and their relationship with cognitive status. Thirteen AD subjects had [11C](R)PK11195-PET and [11C]PIB-PET scans. Ten healthy controls had [11C](R)PK11195-PET and 14 controls had [11C]PIB-PET scans. Region-of-interest analysis of [11C](R)PK11195-PET detected significant 20-35% increases in microglial activation in frontal, temporal, parietal, occipital and cingulate cortices (p<0.05) of the AD subjects. [11C]PIB-PET revealed significant two-fold increases in amyloid load in these same cortical areas (p<0.0001) and SPM (statistical parametric mapping) analysis confirmed the localisation of these increases to association areas. MMSE scores in AD subjects correlated with levels of cortical microglial activation but not with amyloid load. The inverse correlation between MMSE and microglial activation is compatible with a role of microglia in neuronal damage.
Collapse
|
|
17 |
383 |
8
|
Meldrum BS, Brierley JB. Prolonged epileptic seizures in primates. Ischemic cell change and its relation to ictal physiological events. ARCHIVES OF NEUROLOGY 1973; 28:10-7. [PMID: 4629379 DOI: 10.1001/archneur.1973.00490190028002] [Citation(s) in RCA: 364] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
52 |
364 |
9
|
Warner AE, Guthrie SC, Gilula NB. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 1984; 311:127-31. [PMID: 6088995 DOI: 10.1038/311127a0] [Citation(s) in RCA: 356] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Antibodies to the major protein of rat liver gap junctions, molecular weight 27,000 (27K), have been microinjected into one identified cell of 8-cell stage Xenopus embryos. This treatment selectively disrupts both dye transfer and electrical coupling between the progeny cells. These results provide evidence that the 27K protein is an integral component of the cell-to-cell junctional channel. The disruption of junctional communication at early stages results in specific developmental defects, suggesting that blocking intercellular communication can have a pronounced influence on embryonic development.
Collapse
|
|
41 |
356 |
10
|
Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G. Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 2003; 23:373-82. [PMID: 12837622 DOI: 10.1016/s1044-7431(03)00060-5] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Based on the expression of glial fibrillary acidic protein (GFAP), a recent hypothesis considered stem or progenitor cells in the adult hippocampus to be a type of astrocyte. In a complementary approach, we used transgenic mice expressing green fluorescent protein (GFP) under the promoter for nestin, an intermediate filament present in progenitor cells, to demonstrate astrocytic features in nestin-GFP-positive cells. Morphologically, two subpopulations of nestin-GFP-positive cells were distinguishable; one had an elaborate tree of processes in the granule cell layer and expression of GFAP (but not of S100beta, another astrocytic marker). Electron microscopy revealed vascular end feet of nestin-positive cells, further supporting astrocytic differentiation. Electrophysiological examination of nestin-GFP-positive cells on acutely isolated hippocampal slices showed passive current characteristics of astrocytes in one subset of cells. Among the nestin-GFP-expressing cells with lacking astrocytic features, two cell types could be identified electrophysiologically: cells with delayed-rectifying potassium currents and a very small number of cells with sodium currents, potentially representing signs of the earliest steps of neuronal differentiation.
Collapse
|
|
22 |
355 |
11
|
Abstract
Lucifer dyes are intensity fluorescent 4-aminonaphthalimides which are readily visible in living cells at concentrations and levels of illumination at which they are nontoxic. Because of their low molecular weight they frequently pass from one cell to another; this widespread phenomenon, termed dye-coupling, is thought to reveal functional relationships between cells. Lucifer dyes can also be used for ultrastructural tracing by comparison of electron micrographs with light micrographs of the same thin section. In addition, they show promise for backfilling neurones through cut nerves, for visualizing the results of retrograde axonal transport and for the covalent labeling of macromolecules.
Collapse
|
|
44 |
344 |
12
|
Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 2007; 130:1759-66. [PMID: 17400599 DOI: 10.1093/brain/awm044] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microglial activation may play a role in the pathogenesis of Huntington's disease (HD). Using 11C-(R)-PK11195 (PK) positron emission tomography (PET), we investigated microglial activation in HD presymptomatic gene carriers (PGCs), its relationship with striatal neuronal dysfunction measured with 11C-raclopride (RAC) PET, and the role of PK PET as a possible marker of subclinical disease progression in PGCs. Eleven HD PGCs underwent PK and RAC PET. Their results were compared with those of healthy controls. PK and RAC binding was measured using region-of-interest analysis. Regional increases in PK binding were also localized with voxel-based statistical parametric mapping. HD PGCs had lower striatal RAC binding than the controls but significantly higher striatal and cortical PK binding. Individual levels of higher striatal PK binding in PGCs correlated with lower striatal RAC binding and, after excluding one outlier, with a higher probability of developing HD in 5 years. The inverse association between striatal PK and RAC binding in PGCs continues into early to moderate stages of HD. This study demonstrated for the first time in vivo widespread microglial activation in preclinical HD which correlated with striatal neuronal dysfunction. These findings indicate that microglial activation is an early event in the pathogenic processes of HD and is associated with subclinical progression of disease. PK PET may be a useful marker of active subclinical disease and a means of investigating the efficacy of neuroprotection strategies in PGCs.
Collapse
|
|
18 |
317 |
13
|
Forsythe ID. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol 1994; 479 ( Pt 3):381-7. [PMID: 7837096 PMCID: PMC1155757 DOI: 10.1113/jphysiol.1994.sp020303] [Citation(s) in RCA: 311] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. An in vitro brainstem slice preparation of the superior olivary complex has been developed permitting patch recording from a presynaptic terminal (calyx of Held) and from its postsynaptic target--the principal neurone of the medial nucleus of the trapezoid body (MNTB). 2. The fluorescent stain DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) was used in fixed tissue and Lucifer Yellow in living slices, to identify calices enclosing single MNTB neuronal somata. 3. Whole-cell recording from the MNTB neurone shows evoked EPSCs preceded by a prespike, corresponding to the presynaptic action potential (AP). In some cases one patch pipette recorded from both pre- and postsynaptic elements, but confirmation of exclusively presynaptic recording was obtained using pipettes containing Lucifer Yellow in a further eleven cases. 4. Under current clamp, the pre- and postsynaptic sites could be distinguished by their response to step depolarizations; presynaptic terminals generated a train of APs at frequencies up to 200 Hz, while MNTB neurones gave a single AP. Each presynaptic AP had an after-hyperpolarization lasting less than 2 ms. 5. Under voltage clamp, step depolarizations of presynaptic terminals generated a tetrodotoxin-sensitive inward current followed by rapidly activating outward potassium currents at potentials more positive than -60 mV. The outward current exhibited little inactivation over the 150 ms steps and 4-aminopyridine (200 microM) blocked 63.0 +/- 14.5% (mean +/- S.D., n = 3) of the sustained current at 0 mV. Like the squid giant synapse, mammalian terminals express rapidly activating 'delayed rectifier'-type potassium currents.
Collapse
|
research-article |
31 |
311 |
14
|
Meldrum BS, Vigouroux RA, Brierley JB. Systemic factors and epileptic brain damage. Prolonged seizures in paralyzed, artificially ventilated baboons. ARCHIVES OF NEUROLOGY 1973; 29:82-7. [PMID: 4197956 DOI: 10.1001/archneur.1973.00490260026003] [Citation(s) in RCA: 305] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
|
52 |
305 |
15
|
Chagnac-Amitai Y, Luhmann HJ, Prince DA. Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 1990; 296:598-613. [PMID: 2358553 DOI: 10.1002/cne.902960407] [Citation(s) in RCA: 297] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracellular recordings were obtained from pyramidal neurons in layer 5 of rat somatosensory and visual cortical slices maintained in vitro. When directly depolarized, one subclass of pyramidal neurons had the capacity to generate intrinsic burst discharges and another generated regular trains of single spikes. Burst responses were triggered in an all-or-none manner from depolarizing afterpotentials in most bursting neurons. Regular spiking cells responded to electrical stimulation of ascending afferents with a typical EPSP-IPSP sequence, whereas IPSPs were hard to detect in bursting cells. Orthodromic activation of the latter evoked a prominent voltage-dependent depolarization that could trigger a burst response. Intracellularly labelled bursting and regular spiking cells were located in layer 5b, but had distinctly different morphologies. Bursting neurons had a large pyramidal soma, a gradually emerging apical dendrite, and an extensive apical and basal dendritic tree. Their axonal collateral arborization was predominantly limited to layers 5/6. In contrast, regular spiking cells had a more rounded soma with abruptly emerging apical dendrite, a smaller dendritic arborization, and 2 to 8 ascending axonal collaterals that arborized widely in the supragranular layers. Both bursting and regular spiking cells had main axons that entered the subcortical white matter. These data show that some subgroups of pyramidal neurons within the deeper parts of layer 5 of rat cortex are morphologically and physiologically distinct and have different intracortical connections. Bursting cells presumably function to amplify and synchronize cortical outputs, whereas regular spiking output neurons provide excitatory feedback to neurons at all cortical levels and receive a more effective orthodromic inhibitory input. These data support the hypothesis that differences in gross neuronal structure, perhaps even the subtle differences that distinguish subclasses of neurons in a given lamina, are predictive of underlying differences in the type and distribution of ion channels in the nerve cell membrane and connections of cells within the cortical circuit.
Collapse
|
|
35 |
297 |
16
|
Schwab JC, Beckers CJ, Joiner KA. The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc Natl Acad Sci U S A 1994; 91:509-13. [PMID: 8290555 PMCID: PMC42978 DOI: 10.1073/pnas.91.2.509] [Citation(s) in RCA: 277] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The obligate intracellular protozoan parasite Toxoplasma gondii creates and enters into a unique membrane-bounded cytoplasmic compartment, the parasitophorous vacuole, when invading mammalian host cells. By microinjecting polar fluorescent molecules into individual T. gondii-infected fibroblasts, we show here that the parasitophorous vacuole membrane (PVM) surrounding the parasite functions as a molecular sieve. Lucifer yellow (457 Da) displayed free bidirectional flux across the PVM and distinctly outlined the parasites, which did not take up the dye, within the vacuole. This dye movement was not appreciably delayed by pretreatment of cells with 5 mM probenecid or chilling the monolayer to 5 degrees C, suggesting that dye movement was due to passive permeation through a membrane pore rather than active transport. Calcein, fluo-3, and a series of fluorescein isothiocyanate-labeled peptides up to 1291 Da crossed the PVM in a size-restricted fashion. A labeled peptide of 1926 Da and labeled dextrans and proteins (> or = 3000 Da) failed to transit the PVM. This putative channel in the PVM therefore allows exchange of molecules up to 1300-1900 Da between the host cell cytoplasm and the parasitophorous vacuolar space.
Collapse
|
research-article |
31 |
277 |
17
|
Sandvig K, Olsnes S, Petersen OW, van Deurs B. Acidification of the cytosol inhibits endocytosis from coated pits. J Cell Biol 1987; 105:679-89. [PMID: 2887575 PMCID: PMC2114767 DOI: 10.1083/jcb.105.2.679] [Citation(s) in RCA: 276] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acidification of the cytosol of a number of different cell lines strongly reduced the endocytic uptake of transferrin and epidermal growth factor. The number of transferrin binding sites at the cell surface was increased in acidified cells. Electron microscopic studies showed that the number of coated pits at the cell surface was not reduced in cells with acidified cytosol. Experiments with transferrin-horseradish peroxidase conjugates and a monoclonal anti-transferrin receptor antibody demonstrated that transferrin receptors were present in approximately 75% of the coated pits both in control cells and in cells with acidified cytosol. The data therefore indicate that the reason for the reduced endocytic uptake of transferrin at internal pH less than 6.5 is an inhibition of the pinching off of coated vesicles. In contrast, acidification of the cytosol had only little effect on the uptake of ricin and the fluid phase marker lucifer yellow. Ricin endocytosed by cells with acidified cytosol exhibited full toxic effect on the cells. Although the pathway of this uptake in acidified cells remains uncertain, some coated pits may still be involved. However, the data are also consistent with the possibility that an alternative endocytic pathway involving smooth (uncoated) pits exists.
Collapse
|
research-article |
38 |
276 |
18
|
Mills SL, Massey SC. Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 1995; 377:734-7. [PMID: 7477263 DOI: 10.1038/377734a0] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The retina is sensitive to light stimuli varying over more than 12 log units in intensity. It accomplishes this, in part, by switching between rod-dominated circuits designed for maximum utilization of scarce photons and cone circuits designed for greater acuity. Rod signals are integrated into the cone pathways through AII amacrine cells, which are connected by gap junctions both to other AII amacrine cells and to cone bipolar cells. To determine the relative permeabilities of the two junctional pathways, we have measured the distribution of biotinylated tracers across this heterologous cell assembly after injecting a single AII amacrine cell. We found that neurobiotin (relative molecular mass, 286) passed easily through both types of gap junctions, but that biotin-X cadaverine (relative molecular mass, 442) passed through AII/bipolar cell gap junctions poorly compared to AII/AII gap junctions. Thus, the AII/bipolar cell channel has a lower permeability to large molecules than does the AII/AII amacrine cell channel. The two pathways are also regulated differently. Dopamine and cyclic AMP agonists, known to diminish AII-AII coupling, did not change the relative labelling intensity of AII to bipolar cells. However, nitric oxide and cGMP agonists selectively reduced labelling in bipolar cells relative to AII amacrine cells, perhaps by acting at the bipolar side of this gap junction. This suggests that increased cGMP controls the network switching between rod and cone pathways associated with light adaptation.
Collapse
|
|
30 |
274 |
19
|
Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 2004; 94:828-35. [PMID: 14976125 DOI: 10.1161/01.res.0000122382.19400.14] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiomyocytes form a conducting network that is assumed to be electrically isolated from nonmyocytes in vivo. In cell culture, however, cardiac fibroblasts can contribute to the spread of excitation via functional gap junctions with cardiomyocytes. To assess the ability of fibroblasts to form gap junctions in vivo, we combine in situ detection of connexins in rabbit sinoatrial node (a tissue that is particularly rich in fibroblasts) with identification of myocytes and fibroblasts using immunohistochemical labeling and confocal microscopy. We distinguish two spatially distinct fibroblast populations expressing different connexins: fibroblasts surrounded by other fibroblasts preferentially express connexin40, whereas fibroblasts that are intermingled with myocytes largely express connexin45. Functionality of homogeneous and heterogeneous cell coupling was investigated by dye transfer in sinoatrial node tissue explants. These studies reveal spread of Lucifer yellow, predominantly along extended threads of interconnected fibroblasts (probably via connexin40), and occasionally between neighboring fibroblasts and myocytes (probably via connexin45). Our findings show that cardiac fibroblasts form a coupled network of cells, which may be functionally linked to myocytes in rabbit SAN.
Collapse
|
|
21 |
271 |
20
|
Venance L, Piomelli D, Glowinski J, Giaume C. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 1995; 376:590-4. [PMID: 7637807 DOI: 10.1038/376590a0] [Citation(s) in RCA: 270] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Anandamide, an endogenous arachidonic acid derivative that is released from neurons and activates cannabinoid receptors, may act as a transcellular cannabimimetic messenger in the central nervous system. The biological actions of anandamide and the identity of its target cells are, however, still poorly documented. Here we show that anandamide is a potent inhibitor of gap-junction conductance and dye permeability in striatal astrocytes. This inhibitory effect is specific for anandamide as compared to co-released congeners or structural analogues, is sensitive to pertussis toxin and to protein-alkylating agents, and is neither mimicked by cannabinoid-receptor agonists nor prevented by a cannabinoid-receptor antagonist. Glutamate released from neurons evokes calcium waves in astrocytes that propagate via gap junctions, and may, in turn, activate neurons distant from their initiation sites in astrocytes. We find that anandamide blocks the propagation of astrocyte calcium waves generated by either mechanical stimulation or local glutamate application. Thus, by regulating gap-junction permeability, anandamide may control intercellular communication in astrocytes and therefore neuron-glial interactions.
Collapse
|
|
30 |
270 |
21
|
Schmeller T, Latz-Brüning B, Wink M. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. PHYTOCHEMISTRY 1997; 44:257-66. [PMID: 9004542 DOI: 10.1016/s0031-9422(96)00545-6] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The alkaloids berberine, palmatine and sanguinarine are toxic to insects and vertebrates and inhibit the multiplication of bacteria, fungi and viruses. Biochemical properties which may contribute to these allelochemical activities were analysed. Acetylcholine esterase, butyrylcholinesterase, choline acetyl transferase, alpha 1- and alpha 2-adrenergic, nicotinergic, muscarinergic and serotonin2 receptors were substantially affected. Sanguinarine appears to be the most effective inhibitor of choline acetyl-transferase (IC50 284 nM), while the protoberberines were inactive at this target. Berberine and palmatine were most active at the alpha 2-receptor (binding with IC50 476 and 956 nM, respectively). Furthermore, berberine and sanguinarine intercalate DNA, inhibit DNA synthesis and reverse transcriptase. In addition, sanguinarine (but not berberine) affects membrane permeability and berberine protein biosynthesis. In consequence, these biochemical activities may mediate chemical defence against microorganisms, viruses and herbivores in the plants producing these alkaloids.
Collapse
|
|
28 |
265 |
22
|
Baird RA, Desmadryl G, Fernández C, Goldberg JM. The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 1988; 60:182-203. [PMID: 3404216 DOI: 10.1152/jn.1988.60.1.182] [Citation(s) in RCA: 256] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
1. The relation between the response properties of semicircular canal afferents and their peripheral innervation patterns was studied by the use of intra-axonal labeling techniques. Fifty physiologically characterized units were injected with horseradish peroxidase (HRP) or Lucifer yellow CH (LY) and their processes were traced to the crista. The resting discharge, discharge regularity, and responses to both externally applied galvanic currents and sinusoidal head rotations were determined for most neurons. Terminal fields were reconstructed and, as in the preceding paper, the fibers were classified as calyx, bouton, or dimorphic units. 2. To determine if the intra-axonal sample was representative, the physiological properties of the labeled units were compared with those of a sample of extracellularly recorded units. A comparison was also made between the morphology of the intra-axonal units and those labeled by extracellular injection of HRP into the vestibular nerve Most of the discrepancies between the intra-axonal and the two extracellular samples can be explained by assuming that small-diameter fibers are underrepresented in the former sample. 3. A normalized coefficient of variation (CV*), independent of discharge rate, was used to classify units as regular, intermediate, or irregular. The CV* ranged from 0.020 to 0.60. Regular units (CV* less than or equal to 0.10) outnumbered irregular units (CV* greater than or equal to 0.20) by an approximately 3:1 ratio and had higher resting discharges. 4. Calyx units were invariably irregular. The one recovered bouton unit was regular. The discharge regularity of dimorphic units was related to their epithelial location, with those found in the periphery of the crista having a more regular discharge than those located more centrally. Dimorphic units, even those with quite similar morphology, can differ in their discharge regularity. Calyx and dimorphic units, which differ in their morphology, can both be irregular. These observations imply that discharge regularity is not determined by the branching pattern of a fiber or the number and types of hair cells it contacts. 5. The galvanic sensitivity (beta*) of an afferent, irrespective of its peripheral innervation pattern, was strongly correlated with CV*. This is consistent with the notion that discharge regularity and galvanic sensitivity are causally related, both being determined by postspike recovery mechanisms of the afferent nerve terminal.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
37 |
256 |
23
|
Tokumitsu H, Inuzuka H, Ishikawa Y, Ikeda M, Saji I, Kobayashi R. STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J Biol Chem 2002; 277:15813-8. [PMID: 11867640 DOI: 10.1074/jbc.m201075200] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STO-609, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) was synthesized, and its inhibitory properties were investigated both in vitro and in vivo. STO-609 inhibits the activities of recombinant CaM-KK alpha and CaM-KK beta isoforms, with K(i) values of 80 and 15 ng/ml, respectively, and also inhibits their autophosphorylation activities. Comparison of the inhibitory potency of the compound against various protein kinases revealed that STO-609 is highly selective for CaM-KK without any significant effect on the downstream CaM kinases (CaM-KI and -IV), and the IC(50) value of the compound against CaM-KII is approximately 10 microg/ml. STO-609 inhibits constitutively active CaM-KK alpha (glutathione S-transferase (GST)-CaM-KK-(84-434)) as well as the wild-type enzyme. Kinetic analysis indicates that the compound is a competitive inhibitor of ATP. In transfected HeLa cells, STO-609 suppresses the Ca(2+)-induced activation of CaM-KIV in a dose-dependent manner. In agreement with this observation, the inhibitor significantly reduces the endogenous activity of CaM-KK in SH-SY5Y neuroblastoma cells at a concentration of 1 microg/ml (approximately 80% inhibitory rate). Taken together, these results indicate that STO-609 is a selective and cell-permeable inhibitor of CaM-KK and that it may be a useful tool for evaluating the physiological significance of the CaM-KK-mediated pathway in vivo as well as in vitro.
Collapse
|
|
23 |
252 |
24
|
Lupachyk S, Shevalye H, Maksimchyk Y, Drel VR, Obrosova IG. PARP inhibition alleviates diabetes-induced systemic oxidative stress and neural tissue 4-hydroxynonenal adduct accumulation: correlation with peripheral nerve function. Free Radic Biol Med 2011; 50:1400-9. [PMID: 21300148 PMCID: PMC3081984 DOI: 10.1016/j.freeradbiomed.2011.01.037] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/14/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
This study evaluated the role of poly(ADP-ribose) polymerase (PARP) in systemic oxidative stress and 4-hydoxynonenal adduct accumulation in diabetic peripheral neuropathy. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor, 1,5-isoquinolinediol, 3 mg kg(-1) day(-1), for 10 weeks after an initial 2 weeks. Treatment efficacy was evaluated by poly(ADP-ribosyl)ated protein content in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons and nonneuronal cells (fluorescence immunohistochemistry), as well as by indices of peripheral nerve function. Diabetic rats displayed increased urinary isoprostane and 8-hydroxy-2'-deoxyguanosine excretion (ELISA) and 4-hydroxynonenal adduct accumulation in endothelial and Schwann cells of the peripheral nerve, neurons, astrocytes, and oligodendrocytes of the spinal cord and neurons and glial cells of the dorsal root ganglia (double-label fluorescence immunohistochemistry), as well as motor and sensory nerve conduction velocity deficits, thermal hypoalgesia, and tactile allodynia. PARP inhibition counteracted diabetes-induced systemic oxidative stress and 4-hydroxynonenal adduct accumulation in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons (perikarya, fluorescence immunohistochemistry), which correlated with improvement of large and small nerve fiber function. The findings reveal the important role of PARP activation in systemic oxidative stress and 4-hydroxynonenal adduct accumulation in diabetic peripheral neuropathy.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
251 |
25
|
Maranto AR. Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 1982; 217:953-5. [PMID: 7112109 DOI: 10.1126/science.7112109] [Citation(s) in RCA: 242] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Irradiation Lucifer yellow-filled neurons with intense blue light in the presence of 3,3'-diaminobenzidine produces an electron-opaque osmiophilic polymer within the injected cells. This technique is valuable when cobalt or horseradish peroxidase injections are difficult or when a second intracellular marker is needed to demonstrate neuronal contacts.
Collapse
|
|
43 |
242 |