1
|
Cheng H, Hu Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1134-46. [PMID: 20047782 DOI: 10.1016/j.envpol.2009.12.028] [Citation(s) in RCA: 437] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/12/2009] [Accepted: 12/16/2009] [Indexed: 05/11/2023]
Abstract
As the most widely scattered toxic metal in the world, the sources of lead (Pb) observed in contamination investigation are often difficult to identify. This review presents an overview of the principles, analysis, and applications of Pb isotopic fingerprinting in tracing the origins and transport pathways of Pb in the environment. It also summarizes the history and current status of lead pollution in China, and illustrates the power of Pb isotopic fingerprinting with examples of its recent applications in investigating the effectiveness of leaded gasoline phase-out on atmospheric lead pollution, and the sources of Pb found in various environmental media (plants, sediments, and aquatic organisms) in China. The limitations of Pb isotopic fingerprinting technique are discussed and a perspective on its development is also presented. Further methodological developments and more widespread instrument availability are expected to make isotopic fingerprinting one of the key tools in lead pollution investigation.
Collapse
|
Historical Article |
15 |
437 |
2
|
Werner RA, Brand WA. Referencing strategies and techniques in stable isotope ratio analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:501-19. [PMID: 11268135 DOI: 10.1002/rcm.258] [Citation(s) in RCA: 422] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stable isotope ratios are reported in the literature in terms of a deviation from an international standard (delta-values). The referencing procedures, however, differ from instrument to instrument and are not consistent between measurement facilities. This paper reviews an attempt to unify the strategy for referencing isotopic measurements. In particular, emphasis is given to the importance of identical treatment of sample and reference material ('IT principle'), which should guide all isotope ratio determinations and evaluations. The implementation of the principle in our laboratory, the monitoring of our measurement quality, the status of the international scales and reference materials and necessary correction procedures are discussed.
Collapse
|
Review |
24 |
422 |
3
|
Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:6896-916. [PMID: 16201610 DOI: 10.1021/es0504587] [Citation(s) in RCA: 387] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Measuring stable isotope fractionation of carbon, hydrogen, and other elements by Compound Specific Isotope Analysis (CSIA) is a new, innovative approach to assess organic pollutant degradation in the environment. Central to this concept is the Rayleigh equation which relates degradation-induced decreases in concentrations directly to concomitant changes in bulk (= average over the whole compound) isotope ratios. The extent of in situ transformation may therefore be inferred from measured isotope ratios in field samples, provided that an appropriate enrichment factor (epsilonbulk) is known. This epsilonbulk value, however, is usually only valid for a specific compound and for specific degradation conditions. Therefore, a direct comparison of epsilonbulk values for different compounds and for different types of reactions has in general not been feasible. In addition, it is often uncertain how robust and reproducible epsilonbulk values are and how confidently they can be used to quantify contaminant degradation in the field. To improve this situation and to achieve a more in-depth understanding, this critical review aims to relate fundamental insight about kinetic isotope effects (KIE) found in the physico(bio)chemical literature to apparent kinetic isotope effects (AKIE) derived from epsilonbulk values reported in environmentally oriented studies. Starting from basic rate laws, a quite general derivation of the Rayleigh equation is given, resulting in a novel set of simple equations that take into account the effects of (1) nonreacting positions and (2) intramolecular competition and that lead to position-specific AKIE values rather than bulk enrichment factors. Reevaluation of existing epsilonbulk literature values result in consistent ranges of AKIE values that generally are in good agreement with previously published data in the (bio)-chemical literature and are typical of certain degradation reactions (subscripts C and H indicate values for carbon and hydrogen): AKIEc = 1.01-1.03 and AKIEH = 2-23 for oxidation of C-H bonds; AKIEc = 1.03-1.07 for SN2-reactions; AKIEc = 1.02-1.03 for reductive cleavage of C-Cl bonds; AKIEc = 1.00-1.01 for C=C bond epoxidation; AKIEc = 1.02-1.03 for C=C bond oxidation by permanganate. Hence, the evaluation scheme presented bridges a gap between basic and environmental (bio)chemistry and provides insight into factors that control the magnitude of bulk isotope fractionation factors. It also serves as a basis to identify degradation pathways using isotope data. It is shown how such an analysis may be even possible in complex field situations and/or in cases where AKIE values are smaller than intrinsic KIE values, provided that isotope fractionation is measured for two elements simultaneously ("two-dimensional isotope analysis"). Finally, the procedure is used (1) to point outthe possibility of estimating approximate epsilonbulk values for new compounds and (2) to discuss the moderate, but non-negligible variability that may quite generally be associated with epsilonbulk values. Future research is suggested to better understand and take into account the various factors that may cause such variability.
Collapse
|
|
20 |
387 |
4
|
Komárek M, Ettler V, Chrastný V, Mihaljevic M. Lead isotopes in environmental sciences: a review. ENVIRONMENT INTERNATIONAL 2008; 34:562-77. [PMID: 18055013 DOI: 10.1016/j.envint.2007.10.005] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 05/08/2023]
Abstract
Lead (Pb) isotopic analyses proved to be a very efficient tool for tracing the sources of local and global Pb pollution. This review presents an overview of literature published on the use of Pb isotopic analyses of different environmental matrices (atmospheric aerosols, lichens, tree rings, peat deposits, lake, stream, marine sediments, soils, etc.). In order to gain more insight, the isotopic compositions of major sources of Pb in the environment as determined by several authors are described in detail. These include, above all, the former use of leaded gasoline, coal combustion, industrial activities (e.g., metallurgy) and waste incineration. Furthermore, this review summarises analytical techniques (especially ICP-MS) used for the determination of Pb isotopes in environmental samples.
Collapse
|
Review |
17 |
371 |
5
|
Sage RF, Christin PA, Edwards EJ. The C(4) plant lineages of planet Earth. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3155-69. [PMID: 21414957 DOI: 10.1093/jxb/err048] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C(4) photosynthetic pathway. Here, 62 recognizable lineages of C(4) photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C(3)-C(4) intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C(4) lineage, indicating that they did not share common C(3)-C(4) ancestors with C(4) species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south-central South America, central Asia, northeastern and southern Africa, and inland Australia. With 62 independent lineages, C(4) photosynthesis has to be considered one of the most convergent of the complex evolutionary phenomena on planet Earth, and is thus an outstanding system to study the mechanisms of evolutionary adaptation.
Collapse
|
Review |
14 |
350 |
6
|
Abstract
Classically, experiments aimed at studying changes in protein expression have always followed a small set of proteins. This focused approach was necessary since tools to efficiently analyze large numbers of proteins were simply not available. Large-scale quantitative proteomics promises to produce reams of data that previously would have taken decades to measure with classical methods. Mass spectrometry is already a well-established protein identification tool and recent methodological developments indicate that it can also be successfully applied to extract quantitative data of protein abundance. From the first reports 4 years ago, numerous schemes to take advantage of stable isotope nuclei incorporation in proteins and peptides have been developed. Here we review the benefits and pitfalls of some of the most commonly used protocols, focusing on a procedure now being used extensively in our laboratory, stable isotope labeling with amino acids in cell culture (SILAC). The basic theory, application, and data analysis of a SILAC experiment are discussed. The emerging nature of these techniques and the rapid pace of technological development make forecasting the directions of the field difficult but we speculate that SILAC will soon be a key tool of quantitative proteomics.
Collapse
|
Review |
22 |
325 |
7
|
McKeegan KD, Aléon J, Bradley J, Brownlee D, Busemann H, Butterworth A, Chaussidon M, Fallon S, Floss C, Gilmour J, Gounelle M, Graham G, Guan Y, Heck PR, Hoppe P, Hutcheon ID, Huth J, Ishii H, Ito M, Jacobsen SB, Kearsley A, Leshin LA, Liu MC, Lyon I, Marhas K, Marty B, Matrajt G, Meibom A, Messenger S, Mostefaoui S, Mukhopadhyay S, Nakamura-Messenger K, Nittler L, Palma R, Pepin RO, Papanastassiou DA, Robert F, Schlutter D, Snead CJ, Stadermann FJ, Stroud R, Tsou P, Westphal A, Young ED, Ziegler K, Zimmermann L, Zinner E. Isotopic compositions of cometary matter returned by Stardust. Science 2006; 314:1724-8. [PMID: 17170292 DOI: 10.1126/science.1135992] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
301 |
8
|
Abstract
Disturbances in cardiac metabolism underlie most cardiovascular diseases. Metabolomics, one of the newer omics technologies, has emerged as a powerful tool for defining changes in both global and cardiac-specific metabolism that occur across a spectrum of cardiovascular disease states. Findings from metabolomics studies have contributed to better understanding of the metabolic changes that occur in heart failure and ischemic heart disease and have identified new cardiovascular disease biomarkers. As technologies advance, the metabolomics field continues to evolve rapidly. In this review, we will discuss the current state of metabolomics technologies, including consideration of various metabolomics platforms and elements of study design; the emerging utility of stable isotopes for metabolic flux studies; and the use of metabolomics to better understand specific cardiovascular diseases, with an emphasis on recent advances in the field.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
296 |
9
|
Abstract
The isotopic composition of graphite is commonly used as a biomarker in the oldest (>3.5 Gyr ago) highly metamorphosed terrestrial rocks. Earlier studies on isotopic characteristics of graphite occurring in rocks of the approximately 3.8-Gyr-old Isua supracrustal belt (ISB) in southern West Greenland have suggested the presence of a vast microbial ecosystem in the early Archean. This interpretation, however, has to be approached with extreme care. Here we show that graphite occurs abundantly in secondary carbonate veins in the ISB that are formed at depth in the crust by injection of hot fluids reacting with older crustal rocks (metasomatism). During these reactions, graphite forms from the disproportionation of Fe(II)-bearing carbonates at high temperature. These metasomatic rocks, which clearly lack biological relevance, were earlier thought to be of sedimentary origin and their graphite association provided the basis for inferences about early life. The new observations thus call for a reassessment of previously presented evidence for ancient traces of life in the highly metamorphosed Early Archaean rock record.
Collapse
|
|
23 |
289 |
10
|
Ip CCM, Li XD, Zhang G, Wai OWH, Li YS. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 147:311-23. [PMID: 17000039 DOI: 10.1016/j.envpol.2006.06.028] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/15/2006] [Indexed: 05/12/2023]
Abstract
Surface sediments and sediment cores collected at the Pearl River Estuary (PRE) and its surrounding coastal area were analysed for total metal concentrations, chemical partitioning, and Pb isotopic compositions. The distribution of Cu, Cr, Pb, and Zn demonstrated a typical diffusion pattern from the land to the direction of the sea. Two hotspots of trace metal contamination were located at the mixed zone between freshwater and marine waters. The enrichment of metals in the sediments could be attributed to the deposition of the dissolved and particulate trace metals in the water column at the estuarine area. The similar Pb isotopic signatures of the sediments at the PRE and its surrounding coastal area offered strong evidence that the PRE was a major source of trace metals to the adjacent coastal area. Slightly lower (206)Pb/(207)Pb ratios in the coastal sediments may indicate other inputs of Pb in addition to the PRE sources, including the inputs from Hong Kong and other parts of the region.
Collapse
|
|
18 |
269 |
11
|
Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R. A Whiff of Oxygen Before the Great Oxidation Event? Science 2007; 317:1903-6. [PMID: 17901330 DOI: 10.1126/science.1140325] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-resolution chemostratigraphy reveals an episode of enrichment of the redox-sensitive transition metals molybdenum and rhenium in the late Archean Mount McRae Shale in Western Australia. Correlations with organic carbon indicate that these metals were derived from contemporaneous seawater. Rhenium/osmium geochronology demonstrates that the enrichment is a primary sedimentary feature dating to 2501 +/- 8 million years ago (Ma). Molybdenum and rhenium were probably supplied to Archean oceans by oxidative weathering of crustal sulfide minerals. These findings point to the presence of small amounts of O2 in the environment more than 50 million years before the start of the Great Oxidation Event.
Collapse
|
|
18 |
259 |
12
|
Phillips DL, Newsome SD, Gregg JW. Combining sources in stable isotope mixing models: alternative methods. Oecologia 2005; 144:520-7. [PMID: 15711995 DOI: 10.1007/s00442-004-1816-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 12/16/2004] [Indexed: 11/27/2022]
Abstract
Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants; or water bodies, and many others. A common problem is having too many sources to allow a unique solution. We discuss two alternative procedures for addressing this problem. One option is a priori to combine sources with similar signatures so the number of sources is small enough to provide a unique solution. Aggregation should be considered only when isotopic signatures of clustered sources are not significantly different, and sources are related so the combined source group has some functional significance. For example, in a food web analysis, lumping several species within a trophic guild allows more interpretable results than lumping disparate food sources, even if they have similar isotopic signatures. One result of combining mixing model sources is increased uncertainty of the combined end-member isotopic signatures and consequently the source contribution estimates; this effect can be quantified using the IsoError model (http://www.epa.gov/wed/pages/models/isotopes/isoerror1_04.htm). As an alternative to lumping sources before a mixing analysis, the IsoSource mixing model (http://www.epa.gov/wed/pages/models/isosource/isosource.htm) can be used to find all feasible solutions of source contributions consistent with isotopic mass balance. While ranges of feasible contributions for each individual source can often be quite broad, contributions from functionally related groups of sources can be summed a posteriori, producing a range of solutions for the aggregate source that may be considerably narrower. A paleo-human dietary analysis example illustrates this method, which involves a terrestrial meat food source, a combination of three terrestrial plant foods, and a combination of three marine foods. In this case, a posteriori aggregation of sources allowed strong conclusions about temporal shifts in marine versus terrestrial diets that would not have otherwise been discerned.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
255 |
13
|
West JB, Bowen GJ, Cerling TE, Ehleringer JR. Stable isotopes as one of nature's ecological recorders. Trends Ecol Evol 2006; 21:408-14. [PMID: 16753238 DOI: 10.1016/j.tree.2006.04.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 03/21/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Analyses of the natural variation in stable isotopes of components of ecological systems have provided new insights into how these systems function across paleoecological to modern timescales and across a wide range of spatial scales. Isotope abundances of the molecules in biological materials and geochemical profiles are viewed as recorders that can be used to reconstruct ecological processes or to trace ecological activities. Here, we review key short-, medium- and long-term recording capacities of stable isotopes that are currently being applied to ecological questions. The melding of advances in genetics, biochemical profiling and spatial analysis with those in isotope analyses and modeling sophistication opens the door to an exciting future in ecological research.
Collapse
|
Review |
19 |
213 |
14
|
Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE, Frost RL, Gautier D, Haberman JA, Harpold DN, Hunten DM, Israel G, Lunine JI, Kasprzak WT, Owen TC, Paulkovich M, Raulin F, Raaen E, Way SH. The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature 2005; 438:779-84. [PMID: 16319830 DOI: 10.1038/nature04122] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/03/2005] [Indexed: 12/26/2022]
Abstract
Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
200 |
15
|
Li X, Lee SL, Wong SC, Shi W, Thornton I. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2004; 129:113-24. [PMID: 14749075 DOI: 10.1016/j.envpol.2003.09.030] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km(2)) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km(2). Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins.
Collapse
|
|
21 |
198 |
16
|
Abstract
Instrumentation and methods exist for highly precise analyses of the stable-isotopic composition of organic compounds separated by GC. The general approach combines a conventional GC, a chemical reaction interface, and a specialized isotope-ratio mass spectrometer (IRMS). Most existing GC hardware and methods are amenable to isotope-ratio detection. The interface continuously and quantitatively converts all organic matter, including column bleed, to a common molecular form for isotopic measurement. C and N are analyzed as CO2 and N2, respectively, derived from combustion of analytes. H and O are analyzed as H2 and CO produced by pyrolysis/reduction. IRMS instruments are optimized to provide intense, highly stable ion beams, with extremely high precision realized via a system of differential measurements in which ion currents for all major isotopologs are simultaneously monitored. Calibration to an internationally recognized scale is achieved through comparison of closely spaced sample and standard peaks. Such systems are capable of measuring 13C/12C ratios with a precision approaching 0.1 per thousand (for values reported in the standard delta notation), four orders of magnitude better than that typically achieved by conventional "organic" mass spectrometers. Detection limits to achieve this level of precision are typically < 1 nmol C (roughly 10 ng of a typical hydrocarbon) injected on-column. Achievable precision and detection limits are correspondingly higher for N, O, and H, in that order.
Collapse
|
|
19 |
190 |
17
|
Abstract
The Alpine Iceman provides a unique window into the Neolithic-Copper Age of Europe. We compared the radiogenic (strontium and lead) and stable (oxygen and carbon) isotope composition of the Iceman's teeth and bones, as well as 40Ar/39Ar mica ages from his intestine, to local geology and hydrology, and we inferred his habitat and range from childhood to adult life. The Iceman's origin can be restricted to a few valleys within approximately 60 kilometers south(east) of the discovery site. His migration during adulthood is indicated by contrasting isotopic compositions of enamel, bones, and intestinal content. This demonstrates that the Alpine valleys of central Europe were permanently inhabited during the terminal Neolithic.
Collapse
|
|
22 |
182 |
18
|
Vitòria L, Otero N, Soler A, Canals A. Fertilizer characterization: isotopic data (N, S, O, C, and Sr). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:3254-62. [PMID: 15260321 DOI: 10.1021/es0348187] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A detailed isotopic characterization (delta15N(Ntotal), delta15N(NO3), delta18O(NO3), delta34S(SO4), delta18O(SO4), (delta13C(Ctotal), and 87Sr/86Sr) of 27 commercial fertilizers used in Spain is presented in this paper. Results together with a compilation of fertilizer isotopic published data are used for two purposes: (i) to identify the origin of the primary constituents and raw materials used in fertilizer manufacture and relate these data with their heavy metals and rare earth elements (REE) contents; (ii) to compare the fertilizer isotopic signatures with natural values and other anthropogenic pollutants and evaluate the usefulness of multi-isotopic analyses to trace fertilizer contaminations in future study cases. Isotope data permit us to know, in most cases, the origin of the primary constituents of fertilizers, and the 87Sr/86Sr ratio distinguishes the origin of the phosphate content--phosphorites or carbonatites--which in turn implies a qualitatively defined and potentially contaminant presence of REE and heavy metals in fertilizers. Delta15N, delta34S, and 87Sr/86Sr have already been used to trace fertilizer contaminations. Their utility can be improved by the coupled use of delta15N(NO3)-delta18O(NO3) and delta34S(SO4)-delta18O(SO4) to evaluate the fractionation processes that can affect contaminants. Moreover, multi-isotopic analyses, using heavy isotopes, allow us to see beyond the fractionation effects to the fertilizer stable isotope signatures and a better distinction from other anthropogenic contaminants.
Collapse
|
|
21 |
173 |
19
|
Abstract
Cosmogenic aluminum-26 and beryllium-10 burial dates of low-lying fossiliferous breccia in the caves at Sterkfontein, South Africa, show that associated hominid fossils accumulated in the Lower Pliocene. These dates indicate that the skeleton StW 573 and newly discovered specimens from Jacovec Cavern have much the same age: approximately 4 million years. These specimens are thus of an age similar to Australopithecus anamensis from East Africa.
Collapse
|
Historical Article |
22 |
173 |
20
|
Pelejero C, Calvo E, McCulloch MT, Marshall JF, Gagan MK, Lough JM, Opdyke BN. Preindustrial to Modern Interdecadal Variability in Coral Reef pH. Science 2005; 309:2204-7. [PMID: 16195458 DOI: 10.1126/science.1113692] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The oceans are becoming more acidic due to absorption of anthropogenic carbon dioxide from the atmosphere. The impact of ocean acidification on marine ecosystems is unclear, but it will likely depend on species adaptability and the rate of change of seawater pH relative to its natural variability. To constrain the natural variability in reef-water pH, we measured boron isotopic compositions in a approximately 300-year-old massive Porites coral from the southwestern Pacific. Large variations in pH are found over approximately 50-year cycles that covary with the Interdecadal Pacific Oscillation of ocean-atmosphere anomalies, suggesting that natural pH cycles can modulate the impact of ocean acidification on coral reef ecosystems.
Collapse
|
|
20 |
164 |
21
|
Benson S, Lennard C, Maynard P, Roux C. Forensic applications of isotope ratio mass spectrometry—A review. Forensic Sci Int 2006; 157:1-22. [PMID: 15919168 DOI: 10.1016/j.forsciint.2005.03.012] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 03/03/2005] [Accepted: 03/04/2005] [Indexed: 11/25/2022]
Abstract
The key role of a forensic scientist is to assist in determining whether a crime has been committed, and if so, assist in the identification of the offender. Many people hold the belief that a particular item can be conclusively linked to a specific person, place or object. Unfortunately, this is often not achievable in forensic science. In performing their role, scientists develop and test hypotheses. The significance of those hypotheses that cannot be rejected upon completion of all available examinations/analyses is then evaluated. Although one can generally identify the substances present using available techniques, it is generally not possible to distinguish one source of the same substance from another. In such circumstances, although a particular hypothesis cannot be rejected, it cannot be conclusively proven, i.e. the samples could still have originated from different sources. This limitation of not being able to distinguish between sources currently extends to the analysis of other forensic samples including, but not limited to, ignitable liquids, paints, adhesives, textile fibres, plastics, and illicit drugs. Stable isotope ratio mass spectrometry (IRMS) is an additional technique that can be utilised to test a given hypothesis. This technique shows the potential to be able to individualise a range of materials of forensic interest. This paper provides a brief description of the technique, followed by a review of the various applications of IRMS in different scientific fields. The focus of this summary is on forensic applications of IRMS, in particular the analysis of explosives, ignitable liquids and illicit drugs.
Collapse
|
|
19 |
158 |
22
|
Gratz LE, Keeler GJ, Blum JD, Sherman LS. Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7764-70. [PMID: 20853890 DOI: 10.1021/es100383w] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Atmospheric deposition is a primary pathway by which mercury (Hg) enters terrestrial and aquatic ecosystems; however, the chemical and meteorological processes that Hg undergoes from emission to deposition are not well understood. Hg stable isotope geochemistry is a growing field used to better understand Hg biogeochemical cycling. To examine the atmospheric Hg isotopic composition in the Great Lakes, precipitation and ambient vapor-phase Hg samples were collected in Chicago, IL, Holland, MI, and Dexter, MI, between April 2007 and September 2009. Precipitation samples were characterized by negative mass-dependent fractionation (MDF) (δ(202)Hg = -0.79‰ to 0.18‰), while most vapor-phase samples displayed positive MDF (δ(202)Hg = -0.59‰ to 0.43‰). Positive mass-independent fractionation (MIF) (Δ(199)Hg = 0.04‰ to 0.52‰) was observed in precipitation, whereas MIF was slightly negative in vapor-phase samples (Δ(199)Hg = -0.21‰ to 0.06‰). Significant positive MIF of (200)Hg up to 0.25‰ was also measured in precipitation. Such MIF of an even-mass Hg isotope has not been previously reported in natural samples. These results contrast with recent predictions of the isotopic composition of atmospheric Hg and suggest that, in addition to aqueous photoreduction, other atmospheric redox reactions and source-related processes may contribute to isotopic fractionation of atmospheric Hg.
Collapse
|
|
15 |
152 |
23
|
Wong CSC, Wu SC, Duzgoren-Aydin NS, Aydin A, Wong MH. Trace metal contamination of sediments in an e-waste processing village in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 145:434-42. [PMID: 16824655 DOI: 10.1016/j.envpol.2006.05.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 05/10/2023]
Abstract
This study examined trace metal contamination of sediments in Guiyu, China where primitive e-waste processing activities have been carried out. It was found that some river sediments in Guiyu were contaminated with Cd (n.d.-10.3mg/kg), Cu (17.0-4540mg/kg), Ni (12.4-543mg/kg), Pb (28.6-590mg/kg), and Zn (51.3-324mg/kg). The (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of the Pb-contaminated sediments of Lianjiang (1.1787+/-0.0057 and 2.4531+/-0.0095, respectively) were lower than those of Nanyang River (1.1996+/-0.0059 and 2.4855+/-0.0082, respectively), indicating a significant input of non-indigenous Pb with low (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios. Copper, Pb and Zn in the non-residual fractions noticeably increased in the contaminated sediments compared to those in the uncontaminated sediments. A genuine concern is associated with potential transport of the contaminated sediments downstream and enhanced solubility and mobility of trace metals in the non-residual fractions.
Collapse
|
|
18 |
144 |
24
|
Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M, Yanagie H. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 2004; 98:195-207. [PMID: 15262412 DOI: 10.1016/j.jconrel.2004.04.018] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 04/13/2004] [Indexed: 11/17/2022]
Abstract
The successful treatment of cancer by boron neutron-capture therapy (BNCT) requires the selective delivery of relatively high concentration of 10B compounds to malignant tumor tissue. This study focuses on a new tumor-targeting drug delivery system for BNCT that uses small (less than 200 nm in diameter), unilamellar mercaptoundecahydrododecaborate (BSH)-encapsulating, transferrin (TF)-conjugated polyethyleneglycol liposomes (TF-PEG liposomes). When TF-PEG liposomes were injected at a dose of 35 mg 10B/kg, we observed a prolonged residence time in the circulation and low uptake by the reticuloendothelial system (RES) in Colon 26 tumor-bearing mice, resulting in enhanced accumulation of 10B into the solid tumor tissue (e.g., 35.5 microg/g). TF-PEG liposomes maintained a high 10B level in the tumor, with concentrations over 30 microg/g for at least 72 h after injection. This high retention of 10B in tumor tissue indicates that binding and concomitant cellular uptake of the extravasated TF-PEG liposomes occurs by TF receptor and receptor-mediated endocytosis, respectively. On the other hand, the plasma level of 10B decreased, resulting in a tumor/plasma ratio of 6.0 at 72 h after injection. Therefore, 72 h after injection of TF-PEG liposomes was selected as the time point of BNCT treatment. Administration of BSH encapsulated in TF-PEG liposomes at a dose of 5 or 20 mg 10B/kg and irradiation with 2 x 10(12) neutrons/cm2 for 37 min produced tumor growth suppression and improved long-term survival compared with PEG liposomes, bare liposomes and free BSH. Thus, intravenous injection of TF-PEG liposomes can increase the tumor retention of 10B atoms, which were introduced by receptor-mediated endocytosis of liposomes after binding, causing tumor growth suppression in vivo upon thermal neutron irradiation. These results suggest that BSH-encapsulating TF-PEG liposomes may be useful as a new intracellular targeting carrier in BNCT therapy for cancer.
Collapse
|
|
21 |
143 |
25
|
Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB. Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 2003; 378:283-300. [PMID: 14647941 DOI: 10.1007/s00216-003-2350-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/13/2003] [Accepted: 10/15/2003] [Indexed: 11/28/2022]
Abstract
Compound-specific stable isotope analysis (CSIA) using gas chromatography-isotope ratio mass spectrometry (GC/IRMS) has developed into a mature analytical method in many application areas over the last decade. This is in particular true for carbon isotope analysis, whereas measurements of the other elements amenable to CSIA (hydrogen, nitrogen, oxygen) are much less routine. In environmental sciences, successful applications to date include (i) the allocation of contaminant sources on a local, regional, and global scale, (ii) the identification and quantification of (bio)transformation reactions on scales ranging from batch experiments to contaminated field sites, and (iii) the characterization of elementary reaction mechanisms that govern product formation. These three application areas are discussed in detail. The investigated spectrum of compounds comprises mainly n-alkanes, monoaromatics such as benzene and toluene, methyl tert-butyl ether (MTBE), polycyclic aromatic hydrocarbons (PAHs), and chlorinated hydrocarbons such as tetrachloromethane, trichloroethylene, and polychlorinated biphenyls (PCBs). Future research directions are primarily set by the state of the art in analytical instrumentation and method development. Approaches to utilize HPLC separation in CSIA, the enhancement of sensitivity of CSIA to allow field investigations in the microg L(-1) range, and the development of methods for CSIA of other elements are reviewed. Furthermore, an alternative scheme to evaluate isotope data is outlined that would enable estimates of position-specific kinetic isotope effects and, thus, allow one to extract mechanistic chemical and biochemical information.
Collapse
|
Review |
22 |
142 |