1
|
Ashek A, Menzies RI, Mullins LJ, Bellamy COC, Harmar AJ, Kenyon CJ, Flatman PW, Mullins JJ, Bailey MA. Activation of thiazide-sensitive co-transport by angiotensin II in the cyp1a1-Ren2 hypertensive rat. PLoS One 2012; 7:e36311. [PMID: 22558431 PMCID: PMC3338649 DOI: 10.1371/journal.pone.0036311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/02/2012] [Indexed: 12/02/2022] Open
Abstract
Transgenic rats with inducible expression of the mouse Ren2 gene were used to elucidate mechanisms leading to the development of hypertension and renal injury. Ren2 transgene activation was induced by administration of a naturally occurring aryl hydrocarbon, indole-3-carbinol (100 mg/kg/day by gastric gavage). Blood pressure and renal parameters were recorded in both conscious and anesthetized (butabarbital sodium; 120 mg/kg IP) rats at selected time-points during the development of hypertension. Hypertension was evident by the second day of treatment, being preceded by reduced renal sodium excretion due to activation of the thiazide-sensitive sodium-chloride co-transporter. Renal injury was evident after the first day of transgene induction, being initially limited to the pre-glomerular vasculature. Mircoalbuminuria and tubuloinsterstitial injury developed once hypertension was established. Chronic treatment with either hydrochlorothiazide or an AT1 receptor antagonist normalized sodium reabsorption, significantly blunted hypertension and prevented renal injury. Urinary aldosterone excretion was increased ∼20 fold, but chronic mineralocorticoid receptor antagonism with spironolactone neither restored natriuretic capacity nor prevented hypertension. Spironolactone nevertheless ameliorated vascular damage and prevented albuminuria. This study finds activation of sodium-chloride co-transport to be a key mechanism in angiotensin II-dependent hypertension. Furthermore, renal vascular injury in this setting reflects both barotrauma and pressure-independent pathways associated with direct detrimental effects of angiotensin II and aldosterone.
Collapse
|
2
|
Rosivall L, Mirzahosseini S, Toma I, Sipos A, Peti-Peterdi J. Fluid flow in the juxtaglomerular interstitium visualized in vivo. Am J Physiol Renal Physiol 2006; 291:F1241-7. [PMID: 16868308 DOI: 10.1152/ajprenal.00203.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Earlier electron microscopy studies demonstrated morphological signs of fluid flow in the juxtaglomerular apparatus (JGA), including fenestrations of the afferent arteriole (AA) endothelium facing renin granular cells. We aimed to directly visualize fluid flow in the JGA, the putative function of the fenestrated endothelium, using intravital multiphoton microscopy of Munich-Wistar rats and C57BL6 mice. Renin content of the AA correlated strongly with the length of the fenestrated, filtering AA segment. Fluorescence of the extracellular fluid marker lucifer yellow (LY) injected into the cannulated femoral vein in bolus was followed in the renal cortex by real-time imaging. LY was detected in the interstitium around the JG AA before the plasma LY filtered into Bowman's capsule and early proximal tubule. The fluorescence intensity of LY in the JGA interstitium was 17.9 ± 3.5% of that in the AA plasma ( n = 6). The JGA fluid flow was oscillatory, consisting of two components: a fast (one every 5–10 s) and a slow (one every 45–50 s) oscillation, most likely due to the rapid transmission of both the myogenic and tubuloglomerular feedback (TGF)-mediated hemodynamic changes. LY was also detected in the distal tubular lumen about 2–5 s later than in the AA, indicating the flow of JGA interstitial fluid through the macula densa. In the isolated microperfused JGA, blocking the early proximal tubule with a micropipette caused significant increases in MD cell volume by 62 ± 4% ( n = 4) and induced dilation of the intercellular lateral spaces. In summary, significant and dynamic fluid flow exists in the JGA which may help filter the released renin into the renal interstitium (endocrine function). It may also modulate TGF and renin signals in the JGA (hemodynamic function).
Collapse
|
3
|
Komlosi P, Fintha A, Bell PD. Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality. Kidney Int 2006; 70:865-71. [PMID: 16820788 DOI: 10.1038/sj.ki.5001633] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the macula densa, flow-dependent changes in luminal composition lead to tubuloglomerular feedback and renin release. Apical entry of sodium chloride in both macula densa and cortical thick ascending limb (cTAL) cells occurs via furosemide-sensitive sodium-chloride-potassium cotransport. In macula densa, apical entry of sodium chloride leads to changes in cell volume, although there are conflicting data regarding the directional change in macula densa cell volume with increases in luminal sodium chloride concentration. To further assess volume changes in macula densa cells, cTAL-glomerular preparations were isolated and perfused from rabbits, and macula densa cells were loaded with fluorescent dyes calcein and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate. Cell volume was determined with wide-field and multiphoton fluorescence microscopy. Increases in luminal sodium chloride concentration from 0 to 80 mmol/l at constant osmolality led to cell swelling in macula densa and cTAL cells, an effect that was blocked by luminal application of furosemide. However, increases in luminal sodium chloride concentration from 0 to 80 mmol/l with concomitant increases in osmolality caused sustained decreases in macula densa cell volume but transient increases in cTAL cell volume. Increases in luminal osmolality with urea also resulted in macula densa cell shrinkage. These studies suggest that, under physiologically relevant conditions of concurrent increases in luminal sodium chloride concentration and osmolality, there is macula densa cell shrinkage, which may play a role in the macula densa cell signaling process.
Collapse
|
4
|
Abstract
Increases in luminal NaCl concentration at the macula densa (MD), the sensing element, activate tubuloglomerular feedback (TGF). MD cell volume increases when increments are isosmotic and shrinks if osmolality increases. This interesting finding introduces additional complexity to the role of the MD in TGF.
Collapse
|
5
|
Haiman M, Salvenmoser W, Scheiber K, Lingenhel A, Rudolph C, Schmitz G, Kronenberg F, Dieplinger H. Immunohistochemical localization of apolipoprotein A-IV in human kidney tissue. Kidney Int 2006; 68:1130-6. [PMID: 16105043 DOI: 10.1111/j.1523-1755.2005.00519.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Apolipoprotein A-IV (ApoA-IV) is a 46 kD glycoprotein thought to protect against atherosclerosis. It is synthesized primarily in epithelial cells of the small intestine. Elevated plasma concentrations of ApoA-IV in patients with chronic kidney disease suggest that the human kidney is involved in ApoA-IV metabolism. METHODS To investigate whether the human kidney directly metabolizes ApoA-IV and which kidney tissue compartment is involved therein, ApoA-IV was localized by immunohistochemistry in 28 healthy kidney tissue samples obtained from patients undergoing nephrectomy. ApoA-IV mRNA expression was analyzed by real-time polymerase chain reaction (PCR) to exclude de novo synthesis in the kidney. RESULTS ApoA-IV immunostaining was detected in proximal and distal tubular cells, capillaries and blood vessels but not inside glomeruli. ApoA-IV was predominantly found in the brush border of proximal tubules and in intracellular granules and various plasma membrane domains of both proximal and distal tubules. mRNA expression analysis revealed that no ApoA-IV was produced in the kidney. CONCLUSION The immunoreactivity of ApoA-IV observed in kidney tubular cells suggests a direct role of the human kidney in ApoA-IV metabolism. The granular staining pattern probably represents lysosomes degrading ApoA-IV. The additional ApoA-IV localization in distal tubules suggests a rescue function to reabsorb otherwise escaping ApoA-IV in case proximal tubules cannot reabsorb all ApoA-IV. Since no mRNA expression could be detected in any kidney cells, the observed ApoA-IV immunoreactivity represents uptake and not de novo synthesis of ApoA-IV.
Collapse
|
6
|
Quaglia NB, Brandoni A, Villar SR, Torres AM. Haemodynamic and tubular renal dysfunction in rats with sustained arterial calcinosis. Clin Exp Pharmacol Physiol 2004; 31:231-6. [PMID: 15053819 DOI: 10.1111/j.1440-1681.2004.03984.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. In humans, two of the principal characteristics of vascular ageing are arterial wall calcification and decreased arterial distensibility, which induce organ damage. To amplify arterial calcium accumulation in laboratory animals, it is necessary to use an overdose of vitamin D(3). 2. The aim of the present study was to assess the impact of arterial calcium overload on renal function. 3. Adult male Wistar rats were randomly divided into two groups: control and treated rats. Treated rats were injected 10 days before the experiment with a single dose of vitamin D(3) (300 000 IU/kg, i.m.). 4. Treated rats showed a decrease in renal blood flow and glomerular filtration rate. Tubular parameters were not modified under basal conditions. In contrast, a statistically significant increase in the fractional excretion of Na, K, Ca and H(2)O were observed in treated rats after the acute increment of sodium distal delivery, suggesting that the reabsorptive capacity of the thick ascending limb may be altered in treated rats. 5. Thus, Na(+)/K(+)-ATPase activity was evaluated in homogenates from renal cortex and medulla. Rats with arterial calcinosis presented a diminished activity of Na(+)/K(+)-ATPase in medulla homogenates. 6. An increment in the abundance of the Na-K-2Cl cotransporter (NKCC2) was observed in renal medulla homogenates from treated rats. It is suggested that this may compensate for the inefficiency of Na(+)/K(+)-ATPase under basal conditions but, in the presence of acute distal sodium overload, the increment in NKCC2 abundance may not be sufficient to compensate for the decrease in Na(+)/K(+)-ATPase activity. 7. In summary, in our experimental model of arterial calcinosis, renal function is impaired, presenting a vascular compromise and altered function of the medullar thick ascending limb that becomes evident in the presence of acute high distal sodium delivery.
Collapse
|
7
|
Wang H, Carretero OA, Garvin JL. Inhibition of apical Na+/H+ exchangers on the macula densa cells augments tubuloglomerular feedback. Hypertension 2003; 41:688-91. [PMID: 12623980 DOI: 10.1161/01.hyp.0000048863.75711.b2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NO produced by neuronal NO synthase (nNOS) in the macula densa blunts tubuloglomerular feedback (TGF). nNOS activity is strongly pH-dependent. Increasing luminal NaCl concentration increases nNOS activity, NO production, and apical Na+/H+ exchange. Na+/H+ exchange alkalinizes the macula densa. We hypothesized that inhibiting apical Na+/H+ exchange in macula densa cells would augment TGF by blunting nNOS activation caused by increasing luminal NaCl concentration. Rabbit afferent arterioles and attached macula densas were microperfused in vitro. TGF response was defined as the change in afferent arteriole diameter caused by increasing the NaCl concentration in the macula densa perfusate. 7-Nitroindazole (7-NI; 10 micromol/L) alone in the macula densa lumen increased the TGF response from 2.4+/-0.1 to 3.8+/-0.2 microm (P<0.01). When dimethyl amiloride (100 micromol/L), a Na+/H+ exchange inhibitor, was added to the macula densa lumen, it increased the TGF response from 2.5+/-0.3 to 3.7+/-0.5 microm (P<0.01). In the presence of dimethyl amiloride, 7-NI had no effect on the TGF response (from 2.6+/-0.2 to 2.7+/-0.2 microm). Our data indicate that inhibiting apical Na+/H+ exchange in the macula densa mimics the effect of inhibiting NO production by nNOS in the macula densa on TGF. Thus, it is possible that increased apical Na+/H+ exchange caused by increasing the sodium concentration in the lumen of the macula densa activates macula densa nNOS. The link between nNOS and Na+/H+ exchange may be intracellular pH.
Collapse
|
8
|
Ren Y, Yu H, Wang H, Carretero OA, Garvin JL. Nystatin and valinomycin induce tubuloglomerular feedback. Am J Physiol Renal Physiol 2001; 281:F1102-8. [PMID: 11704561 DOI: 10.1152/ajprenal.00357.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The macula densa expresses a luminal Na(+)-K(+)-2Cl(-) cotransporter and a basolateral Cl(-) conductance. Although it is known that cotransport of Na(+), K(+), and Cl(-) is the first step in tubuloglomerular feedback (TGF), subsequent steps are unclear. We hypothesized that Na(+)-K(+)-2Cl(-) entry via the luminal Na(+)-K(+)-2Cl(-) cotransporter elevates intracellular Cl(-), increases electrogenic Cl(-) efflux across the basolateral membrane, and depolarizes the macula densa, initiating TGF. We perfused afferent arterioles with macula densa attached. The macula densa was perfused with solutions containing either 5 mM Na(+) and 3 mM Cl(-) (low NaCl) or 80 mM Na(+) and 77 mM Cl(-) (high NaCl). When the macula densa perfusate was changed from low to high NaCl, afferent arteriole diameter decreased from 15.8 +/- 0.8 to 13.1 +/- 0.7 mm (P < 0.05). Adding 10 microM furosemide to the macula densa lumen blocked TGF. When nystatin, a group I cation ionophore, was added to the macula densa lumen together with furosemide in the presence of low NaCl, it induced TGF (from 18.0 +/- 1.5 to 15.6 +/- 1.6 mm; P = 0.003). When valinomycin, a K(+)-selective ionophore, was added to the macula densa lumen together with furosemide in the presence of low NaCl containing 5 mM K(+), it did not induce TGF. Subsequent addition of 50 mM KCl to the macula densa perfusate induced TGF (from 21.7 +/- 0.8 to 17.5 +/- 1.3 mm; P = 0.0047; n = 6). Adding 50 mM KCl without valinomycin did not induce TGF. When 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 1 microM), a Cl(-) channel blocker, was added to the bath, it blocked TGF induced by high NaCl, but did not block TGF induced by valinomycin plus 50 mM KCl. NPPB did not alter afferent arteriole constriction induced by norepinephrine. We concluded that increased NaCl in the lumen of the macula densa leads to influx of Cl(-) via the Na(+)-K(+)-2Cl(-) cotransporter. The accelerated transport increases intracellular Cl(-). The subsequent exit of Cl(-) across the basolateral membrane via Cl( -) channels in turn leads to depolarization of the macula densa and thereby induces TGF.
Collapse
|
9
|
Ren YL, Garvin JL, Carretero OA. Role of macula densa nitric oxide and cGMP in the regulation of tubuloglomerular feedback. Kidney Int 2000; 58:2053-60. [PMID: 11044225 DOI: 10.1111/j.1523-1755.2000.00377.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies have suggested that nitric oxide (NO) produced within cells of the macula densa (MD) modulates tubuloglomerular feedback (TGF). We tested the hypothesis that NO produced in the MD acts locally as an autacoid to activate soluble guanylate cyclase and cGMP-dependent protein kinase in the MD itself. METHODS Rabbit afferent arterioles (Af-Arts) and attached MD were simultaneously microperfused in vitro. The TGF response was determined by measuring the Af-Art diameter before and after increasing NaCl in the MD perfusate (from 17 mmol/L of Na and 2 of Cl to 65 mmol/L of Na and 50 of Cl). TGF was studied before (control TGF) and after inhibiting components of the NO-cGMP-dependent cascade in the tubular or vascular compartment. RESULTS Increasing NaCl concentration in the MD perfusate decreased the Af-Art diameter by 3.2 +/- 0.5 microm (from 18.5 +/- 1.3 to 15.4 +/- 1.3 microm, P < 0.001). Adding a soluble guanylate cyclase inhibitor (LY83583) to the MD increased TGF response to 6.3 +/- 1.1 microm (P < 0.031 vs. control TGF). Similarly, when cGMP-dependent protein kinase was inhibited with KT5823, TGF was augmented from 2.6 +/- 0.3 to 4.0 +/- 0.7 microm (P < 0.023). An analogue of cGMP in the MD reversed the TGF-potentiating effect of both 7-nitroindazole (7NI; an nNOS inhibitor) and LY83583. Inhibition of MD guanylate cyclase did not alter the effect of acetylcholine (a NO-cGMP-dependent vasodilator) on the Af-Art. Perfusing the Af-Art with the guanylate cyclase inhibitor did not potentiate TGF, suggesting that the effect of NO occurred at the MD via a cGMP-dependent mechanism. To determine whether the effect of NO in the MD was entirely mediated by cGMP, TGF was studied after giving (1) LY83583 or (2) LY83583 plus 7NI. Adding the nNOS inhibitor to the MD did not potentiate the TGF response further. CONCLUSIONS We concluded the following: (1) NO produced by the MD inhibits TGF via stimulation of soluble guanylate cyclase, generating cGMP and activating cGMP-dependent protein kinase; (2) NO acts on the MD itself rather than by diffusing to the Af-Art; and (3) most, if not all, of the effect of NO in the MD is due to a cGMP-dependent mechanism rather than to other NO mediators.
Collapse
|
10
|
Kalns J, Ryan KL, Mason PA, Bruno JG, Gooden R, Kiel JL. Oxidative stress precedes circulatory failure induced by 35-GHz microwave heating. Shock 2000; 13:52-9. [PMID: 10638670 DOI: 10.1097/00024382-200013010-00010] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sustained whole-body exposure of anesthetized rats to 35-GHz radio frequency radiation produces localized hyperthermia and hypotension, leading to circulatory failure and death. The physiological mechanism underlying the induction of circulatory failure by 35-GHz microwave (MW) heating is currently unknown. We hypothesized that oxidative stress may play a role in the pathophysiology of MW-induced circulatory failure and examined this question by probing organs for 3-nitrotyrosine (3-NT), a marker of oxidative stress. Animals exposed to low durations of MW that increased colonic temperature but were insufficient to produce hypotension showed a 5- to 12-fold increase in 3-NT accumulation in lung, liver, and plasma proteins relative to the levels observed in control rats that were not exposed to MW. 3-NT accumulation in rats exposed to MW of sufficient duration to induce circulatory shock returned to low, baseline levels. Leukocytes obtained from peripheral blood showed significant accumulation of 3-NT only at exposure levels associated with circulatory shock. 3-NT was also found in the villus tips and vasculature of intestine and within the distal tubule of the kidney but not in the irradiated skin of rats with MW-induced circulatory failure. The relationship between accumulation in liver, lung, and plasma proteins and exposure duration suggests either that nitro adducts are formed in the first 20 min of exposure and are then cleared or that synthesis of nitro adducts decreases after the first 20 min of exposure. Taken together, these findings suggest that oxidative stress occurs in many organs during MW heating. Because nitration occurs after microwave exposures that are not associated with circulatory collapse, systemic oxidative stress, as evidenced by tissue accumulation of 3-NT, is not correlated with circulatory failure in this model of shock.
Collapse
|
11
|
Persy VP, Verstrepen WA, Ysebaert DK, De Greef KE, De Broe ME. Differences in osteopontin up-regulation between proximal and distal tubules after renal ischemia/reperfusion. Kidney Int 1999; 56:601-11. [PMID: 10432399 DOI: 10.1046/j.1523-1755.1999.00581.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Osteopontin (OPN) is a highly acidic phosphoprotein containing an arginine-glycine-aspartic acid (RGD) cell adhesion motif. High OPN expression has been found in tissues with high cell turnover, and OPN up-regulation has been demonstrated in several models of renal injury, suggesting a possible role in tissue remodeling and repair. However, its exact function in the kidney remains unknown. In this study, the possible contribution of OPN to regeneration and repair in the kidney was explored by studying the time course and subcellular localization of OPN up-regulation after renal ischemia/reperfusion injury in different nephron segments and by investigating its relationship with tubular morphology. METHODS Rats that underwent 60 minutes of left renal ischemia and a right nephrectomy sacrificed at 10 different time points (from 1 hr to 10 days after reperfusion) were compared with uninephrectomized rats at each time point. In renal tissue sections immunostained for OPN, proximal (PTs) and distal tubules (DTs) in both the renal cortex and outer stripe of the outer medulla (OSOM) were scored for the degree of OPN expression and tubular morphology. RESULTS Kidneys of uninephrectomized rats showed no injury, and the localization and intensity of their OPN expression remained unaltered compared with normal rats. After ischemia/reperfusion, morphological damage was most severe in PTs of the OSOM, but all examined nephron segments showed a significant increase in OPN expression. The time course of OPN up-regulation was different in PTs and DTs. DTs in both cortex and OSOM rapidly increased their OPN expression, with a maximum at 24 hours after reperfusion followed by a slow decrease. In contrast, PTs showed a delayed increase in OPN staining, with a maximum after five to seven days, higher in the OSOM than in the cortex. In OSOM PTs, OPN expression was predominantly associated with morphological regeneration, whereas DTs showed a substantial OPN up-regulation without major morphological damage. PTs and DTs displayed a different subcellular OPN staining pattern: OPN staining in DTs was located to the apical side of the cell; PTs, however, presented a vesicular, perinuclear staining pattern. CONCLUSIONS Our study found a different pattern of OPN up-regulation after renal ischemia/reperfusion in PTs versus DTs, both with regard to time course and subcellular localization. DTs show an early and persistent increase in OPN staining in the absence of major morphological injury, whereas OPN staining in PTs is delayed and is mostly associated with morphological regeneration. PTs show a vesicular, perinuclear OPN staining pattern, whereas DTs show OPN staining at the apical cell side.
Collapse
|
12
|
Ichihara A, Inscho EW, Imig JD, Navar LG. Neuronal nitric oxide synthase modulates rat renal microvascular function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F516-24. [PMID: 9530268 DOI: 10.1152/ajprenal.1998.274.3.f516] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study was performed to determine the influence of neuronal nitric oxide synthase (nNOS) on renal arteriolar tone under conditions of normal, interrupted, and increased volume delivery to the macula densa segment and on the microvascular responses to angiotensin II (ANG II). Experiments were performed in vitro on afferent (21.2 +/- 0.2 microns) and efferent (18.5 +/- 0.2 microns) arterioles of kidneys harvested from male Sprague-Dawley rats, using the blood-perfused juxtamedullary nephron technique. Superfusion with the specific nNOS inhibitor, S-methyl-L-thiocitrulline (L-SMTC), decreased afferent and efferent arteriolar diameters, and these decreases in arteriolar diameters were prevented by interruption of distal volume delivery by papillectomy. When 10 mM acetazolamide was added to the blood perfusate to increase volume delivery to the macula densa segment, afferent arteriolar vasoconstrictor responses to L-SMTC were enhanced, but this effect was again completely prevented after papillectomy. In contrast, the arteriolar diameter responses to the nonselective NOS inhibitor, N omega-nitro-L-arginine (L-NNA) were only attenuated by papillectomy. L-SMTC (10 microM) enhanced the efferent arteriolar vasoconstrictor response to ANG II but did not alter the afferent arteriolar vasoconstrictor responsiveness to ANG II. In contrast, L-NNA (100 microM) enhanced both afferent and efferent arteriolar vasoconstrictor responses to ANG II. These results indicate that the modulating influence of nNOS on afferent arteriolar tone of juxtamedullary nephrons is dependent on distal tubular fluid flow. Furthermore, nNOS exerts a differential modulatory action on the juxtamedullary micro-vasculature by enhancing efferent, but not afferent, arteriolar responsiveness to ANG II.
Collapse
|
13
|
Chen H, Bischoff A, Schäfers RF, Wambach G, Philipp T, Michel MC. Vasoconstriction of rat renal interlobar arteries by noradrenaline and neuropeptide Y. JOURNAL OF AUTONOMIC PHARMACOLOGY 1997; 17:137-46. [PMID: 9278773 DOI: 10.1046/j.1365-2680.1997.00452.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. We have studied the contractile effects of noradrenaline and neuropeptide Y given alone and in combination on isolated rat renal interlobar arteries. 2. Noradrenaline contracted proximal and distal intrarenal microvessels in a concentration dependent manner, with similar potency (EC50 approximately equal to 550 nM), but maximal effects were greater in the proximal than in the distal vessel segments (approximately equal to 10 and 6 nM, respectively). 3. The noradrenaline-induced contraction was inhibited by low prazosin concentrations (3-10 nM) but not by 1 microM yohimbine indicating involvement of alpha(1)-but not alpha(2)-adrenoceptors. The alpha(1)A-adrenoceptor-selective antagonist, 5-methylurapidil and tamsulosin, had high potency (apparent affinities of approximately equal to 8 nM and 57 pM, respectively) while the alpha(1)D-adrenoceptor-selective antagonist, BMY 7378, had only low potency (apparent affinity approximately equal to 300 nM). The alpha(1)B-adrenoceptor-alkylating agent, chloroethylclonidine (10 microM for 30 min at 37 degrees C), had no inhibitory effects. The Ca2+ entry blocker, nitrendipine (300 nM), reduced the potency and maximal effects of noradrenaline. 4. Neuropeptide Y (1-100 nM) also contracted interlobar arteries in a concentration dependent manner, with greater effects in the proximal than in the distal segments, but maximal effects were only small in either segment (< 2 mN). In addition, neuropeptide Y also potentiated the response to noradrenaline, i.e. lowered its EC50 but this enhancement was also small. 5. We conclude that noradrenaline contracts rat interlobar arteries by an alpha(1)A-adrenoceptor; its co-transmitter, neuropeptide Y, affects the response only marginally in this vascular bed.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Calcium/metabolism
- Dose-Response Relationship, Drug
- Kidney Tubules, Distal/blood supply
- Kidney Tubules, Proximal/blood supply
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/ultrastructure
- Neuropeptide Y/pharmacology
- Norepinephrine/antagonists & inhibitors
- Norepinephrine/pharmacology
- Prazosin/pharmacology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Renal Artery/drug effects
- Renal Artery/physiology
- Renal Artery/ultrastructure
- Sulfonamides/pharmacology
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/physiology
- Tamsulosin
- Vasoconstriction/drug effects
- Yohimbine/pharmacology
Collapse
|
14
|
Wesson DE. Endogenous endothelins mediate increased distal tubule acidification induced by dietary acid in rats. J Clin Invest 1997; 99:2203-11. [PMID: 9151792 PMCID: PMC508050 DOI: 10.1172/jci119393] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We examined if endogenous endothelins mediate the decreased HCO3 secretion and increased H+ secretion in in vivo-perfused distal tubules of rats fed dietary acid as (NH4)2SO4. Animals given (NH4)2SO4 drinking solution had higher endothelin-1 addition to renal interstitial fluid than those given distilled H2O (480+/-51 vs. 293+/-32 fmol g kidney wt(-1) min(-1), respectively, P < 0.03). (NH4)2SO4-ingesting animals infused with bosentan (10 mg/kg) to inhibit A- and B-type endothelin receptors had higher HCO3 secretion than baseline (NH4)2SO4 animals (-4.7+/-0.4 vs. -2.4+/-0.3 pmol mm(-1) min(-1), P < 0.01), but (NH4)2SO4 animals given a specific inhibitor of A-type endothelin receptors (BQ-123) did not (-2.0+/-0.2 pmol mm(-1) min(-1), P = NS vs. baseline). H+ secretion was lower in bosentan-infused compared with baseline (NH4)2SO4 animals (27.7+/-2.5 vs. 43.9+/-4.0 pmol mm(-1) min(-1), P < 0.03), but that for BQ-123-infused (NH4)2SO4 animals was not (42.9+/-4.2 pmol mm(-1) min(-1), P = NS vs. baseline). Bosentan had no effect on distal tubule HCO3 or H+ secretion in control animals. The data show that dietary acid increases endothelin-1 addition to renal interstitial fluid and that inhibition of B- but not A-type endothelin receptors blunts the decreased HCO3 secretion and increased H+ secretion in the distal tubule of animals given dietary acid. The data are consistent with endogenous endothelins as mediators of increased distal tubule acidification induced by dietary acid.
Collapse
|
15
|
Ito S, Ren Y. Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics. J Clin Invest 1993; 92:1093-8. [PMID: 8349792 PMCID: PMC294951 DOI: 10.1172/jci116615] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
There is evidence that nitric oxide, an endothelium-derived relaxing factor, may be produced by the macula densa, as well as by blood vessels, within the kidney. To examine the role of nitric oxide in macula densa control of glomerular hemodynamics directly, we performed in vitro microperfusions of both rabbit afferent arterioles (with the glomerulus intact) and adherent tubular segments consisting of portions of the thick ascending limb, macula densa, and early distal tubule. While keeping afferent arteriolar pressure constant at 60 mmHg, we examined the effect of Nw-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthesis, added to a macula densa perfusate. When the macula densa perfusate was changed from low to high NaCl, the diameter of the arterioles decreased from 16.3 +/- 1.0 to 14.0 +/- 1.1 microns (n = 10; P < 0.001). Addition of 10(-5) M L-NAME to the high NaCl solution further decreased the diameter to 11.9 +/- 1.1 microns (P < 0.001). In contrast, when macula densa perfusion was maintained with the low NaCl solution, addition of L-NAME had no effect. L-NAME-induced constriction was completely reversed by adding 10(-3) M L-arginine (the precursor of nitric oxide) but not D-arginine (an inactive isomer) to the macula densa perfusate. We confirmed that perfusing the macula densa with L-NAME did not affect the vasodilator action of acetylcholine added to the lumen of the afferent arteriole, indicating that NO synthesis by the arteriole was not altered. Thus, our findings suggest that the macula densa may produce nitric oxide, which in turn modulates the afferent arteriolar constriction induced by high concentrations of NaCl at the macula densa.
Collapse
|
16
|
Morsing P, Velazquez H, Ellison D, Wright FS. Resetting of tubuloglomerular feedback by interrupting early distal flow. ACTA PHYSIOLOGICA SCANDINAVICA 1993; 148:63-8. [PMID: 8333296 DOI: 10.1111/j.1748-1716.1993.tb09532.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell-cell contact between the macula densa and the glomerular arterioles is is thought to provide the information pathway for the tubuloglomerular feedback (TGF) mechanism. When concentrations of sodium and chloride in the macula densa segment are increased, a signal is transmitted through the extraglomerular mesangium to contract the afferent arteriole. In addition, some observers have described a second region of contact between a later part of the distal tubule and the afferent arteriole of the same nephron. In this region the connecting tubule (CNT), and sometimes nerves that make contact with the cells of this CNT, were found. This arrangement gives another potential tubular segment, besides the macula densa plaque, in which the composition of tubular fluid may regulate glomerular dynamics. The present study was designed to investigate whether interrupting flow in the distal tubule downstream from the macula densa would influence the TGF mechanism. TGF was examined in rats by orthograde microperfusion, before and after blockade of the distal nephron with castor oil. Two variables were measured: maximum decrease in stop-flow pressure (delta Psf), and perfusion rate which elicits half-maximal decrease in delta Psf (V1/2). The fluid arriving at the blocking point was collected into a micro-pipette. The results show a significant increase in V1/2 from 19 to 25 nl min-1 after 30 min of blockade. In conclusion the results support a role of the distal nephron in the control of the TGF mechanism.
Collapse
|
17
|
Stenvinkel P, Bolinder J, Alvestrand A. Effects of insulin on renal haemodynamics and the proximal and distal tubular sodium handling in healthy subjects. Diabetologia 1992; 35:1042-8. [PMID: 1473613 DOI: 10.1007/bf02221679] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of insulin on renal haemodynamics and renal sodium handling were studied in 10 healthy males. Using the euglycaemic insulin clamp technique, insulin was infused on separate days resulting in two levels of hyperinsulinaemia (41 +/- 3 and 90 +/- 7 mU/l, respectively). Renal haemodynamics and the proximal and distal tubular sodium handling were studied using inulin, para-amino-hippuric acid, sodium and lithium clearances. Low- and high-dose insulin infusions were followed by a fall in sodium clearance from 1.6 +/- 0.1 ml/min to 1.2 +/- 0.1 and 1.0 +/- 0.1 ml/min, respectively. Both levels of hyperinsulinaemia resulted in increased distal tubular sodium reabsorption. The distal antinatriuretic effect of insulin was associated with dose- and time-dependent decline in proximal tubular sodium reabsorption. The changes in proximal tubular sodium handling occurred without any significant changes in natriuretic factors, such as renal dopamine and plasma atrial natriuretic peptide levels. However, hyperinsulinaemia resulted in time- and dose-dependent increases in renal plasma flow, and renal vasodilatation could, possibly via changes in renal interstitial pressure, have contributed to the fall in the proximal tubular sodium reabsorption. The results also suggest that decreased proximal sodium reabsorption may be a compensatory mechanism counteracting the insulin-induced sodium retention.
Collapse
|
18
|
Navar LG, Inscho EW, Ibarrola M, Carmines PK. Communication between the macula densa cells and the afferent arteriole. KIDNEY INTERNATIONAL. SUPPLEMENT 1991; 32:S78-82. [PMID: 1881057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Schnermann J, Weihprecht H, Lorenz JN, Briggs JP. The afferent arteriole--the target for macula densa-generated signals. KIDNEY INTERNATIONAL. SUPPLEMENT 1991; 32:S74-7. [PMID: 1881056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The contractile characteristics of the afferent arteriole revealed in the present series of experiments lead one to predict that TGF-induced vasoconstriction should be dependent on both A-II and adenosine. In fact, previous evidence has suggested a role for both adenosine and angiotensin in the TGF mechanism. Acceleration of adenosine deamination as well as adenosine receptor blockade markedly reduced the effect of distal NaCl concentration on SNGFR or PSF. Conversely, inhibition of adenosine breakdown or cellular adenosine uptake, two interventions which are likely to increase interstitial adenosine levels, augmented TGF responses. The same effect was seen when adenosine1-receptor analogs were locally applied by microinfusion. The administration of A-II-converting-enzyme blockers or A-II-receptor antagonists reduced TGF responses, while peritubular or intravenous administration of A-II augmented them. Furthermore, the inhibition of TGF responses caused by volume expansion-induced reductions in plasma A-II concentrations could be restored to normal by A-II infusion. The present results raise the possibility that normal TGF responsiveness depends upon the availability of both adenosine and A-II in sufficiently high concentrations. Figure 1 outlines a mechanism of this mutual dependency. One may assume that adenosine is generated as a consequence of NaCl-dependent changes in NaCl transport by macula densa cells or by TALH cells in the immediate vicinity of the macula densa. The absence of capillaries in the juxtaglomerular interstitium could permit an accumulation of the autacoid to an extent not possible in other regions of the renal interstitium.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
20
|
Chan YL, Malnic G, Giebisch G. Renal bicarbonate reabsorption in the rat. III. Distal tubule perfusion study of load dependence and bicarbonate permeability. J Clin Invest 1989; 84:931-8. [PMID: 2760220 PMCID: PMC329738 DOI: 10.1172/jci114255] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using continuous microperfusion techniques, we studied the load dependence of bicarbonate reabsorption along cortical distal tubules of the rat kidney and their bicarbonate permeability. Net bicarbonate transport was evaluated from changes in tracer inulin concentrations and total CO2 measurements by microcalorimetry. Bicarbonate permeability was estimated from the flux of total CO2 along known electrochemical gradients into bicarbonate-and chloride-free perfusion solution containing 10(-4) M acetazolamide. Transepithelial potential differences were measured with conventional glass microelectrodes. Significant net bicarbonate reabsorption occurred at luminal bicarbonate levels from 5 to 25 mM, and at perfusion rates from 5 to 30 nl/min. Bicarbonate reabsorption increased in a load-dependent manner, both during increments in luminal bicarbonate concentration or perfusion rate, reaching saturation at a load of 250 pmol/min with a maximal reabsorption rate of approximately 75 pmol/min.mm. Rate of bicarbonate reabsorption was flow dependent at luminal concentrations of 10 but not at 25 mM. During chronic metabolic alkalosis, maximal rates of reabsorption were significantly reduced to 33 pmol/min.mm. The bicarbonate permeability was 2.32 +/- 0.13 x 10(-5) cm/s in control rats, and 2.65 +/- 0.26 x 10(-5) cm/s in volume-expanded rats. Our data indicate that at physiological bicarbonate concentrations in the distal tubule passive bicarbonate fluxes account for only 16-21% of net fluxes. At high luminal bicarbonate concentrations, passive bicarbonate reabsorption contributes moderately to net reabsorption of this anion.
Collapse
|
21
|
Barajas L, Powers K, Wang P. Innervation of the late distal nephron: an autoradiographic and ultrastructural study. JOURNAL OF ULTRASTRUCTURE RESEARCH 1985; 92:146-57. [PMID: 3854360 DOI: 10.1016/0889-1605(85)90042-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A study of the monoaminergic innervation of the cortical distal nephron beyond the thick ascending limb of Henle (TALH) was carried out by surveying nine autoradiograms, from three rats injected with exogenous tritiated norepinephrine, for overlapping of the tubule by accumulations of autoradiographic grains (AAGs). The largest number of the AAGs appeared on the late distal convoluted tubule-connecting tubule (LDCT-CNT) portion and the vast majority of the AAGs were related to the afferent arteriole. The distal convoluted tubule (DCT) and cortical collecting duct (CCD) showed half of their AAGs related to the efferent arterioles and capillary-interstitium although a substantial amount was associated with the afferent arterioles or arteries. Electron microscopy of reembedded autoradiograms demonstrated the presence of neuroeffector junctions with the CNT and CCD at sites of AAG overlap. The presence of adrenoceptors in the late distal nephron suggests the possibility of a local response of the nephron to the action of the adrenergic nerves shown in this study.
Collapse
|