1
|
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640-5. [PMID: 10829079 PMCID: PMC18686 DOI: 10.1073/pnas.120163297] [Citation(s) in RCA: 12169] [Impact Index Per Article: 486.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.
Collapse
|
research-article |
25 |
12169 |
2
|
|
Letter |
26 |
4201 |
3
|
Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376:62-6. [PMID: 7596435 DOI: 10.1038/376062a0] [Citation(s) in RCA: 2784] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The receptor tyrosine kinase Flk-1 (ref. 1) is believed to play a pivotal role in endothelial development. Expression of the Flk-1 receptor is restricted to endothelial cells and their embryonic precursors, and is complementary to that of its ligand, vascular endothelial growth factor (VEGF), which is an endothelial-specific mitogen. Highest levels of flk-1 expression are observed during embryonic vasculogenesis and angiogenesis, and during pathological processes associated with neovascularization, such as tumour angiogenesis. Because flk-1 expression can be detected in presumptive mesodermal yolk-sac blood-island progenitors as early as 7.0 days postcoitum, Flk-1 may mark the putative common embryonic endothelial and haematopoietic precursor, the haemangioblast, and thus may also be involved in early haematopoiesis. Here we report the generation of mice deficient in Flk-1 by disruption of the gene using homologous recombination in embryonic stem (ES) cells. Embryos homozygous for this mutation die in utero between 8.5 and 9.5 days post-coitum, as a result of an early defect in the development of haematopoietic and endothelial cells. Yolk-sac blood islands were absent at 7.5 days, organized blood vessels could not be observed in the embryo or yolk sac at any stage, and haematopoietic progenitors were severely reduced. These results indicate that Flk-1 is essential for yolk-sac blood-island formation and vasculogenesis in the mouse embryo.
Collapse
|
|
30 |
2784 |
4
|
Fried M, Crothers DM. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 1981; 9:6505-25. [PMID: 6275366 PMCID: PMC327619 DOI: 10.1093/nar/9.23.6505] [Citation(s) in RCA: 2386] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We describe the use of gel electrophoresis in studies of equilibrium binding, site distribution, and kinetics of protein-DNA interactions. The method, which we call protein distribution analysis, is simple, sensitive and yields thermodynamically rigorous results. It is particularly well suited to studies of simultaneous binding of several proteins to a single nucleic acid. In studies of the lac repressor-operator interaction, we found that binding to the so-called third operator site (03) is 15-18 fold weaker than operator binding, and that the binding reactions with the first and third operators are uncoupled, implying that there is no communication between the sites. Pseudo-first order dissociation kinetics of the repressor-203 bp operator complex were found to be temperature sensitive, with delta E of 80 kcal mol-1 above 29 degrees C and 26 kcal mol-1 below. The half life of the complex (5 min at 21 degrees C) is shorter than that reported for very high molecular weight operator-containing DNAs, but longer than values reported for much shorter fragments. The binding of lac repressor core to DNA could not be detected by this technique: the maximum binding constant consistent with this finding is 10(5) M-1.
Collapse
|
research-article |
44 |
2386 |
5
|
Casadaban MJ, Cohen SN. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 1980; 138:179-207. [PMID: 6997493 DOI: 10.1016/0022-2836(80)90283-1] [Citation(s) in RCA: 2128] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
45 |
2128 |
6
|
Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404:293-6. [PMID: 10749213 DOI: 10.1038/35005107] [Citation(s) in RCA: 2009] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a diverse group of organisms that includes Caenorhabditis elegans, Drosophila, planaria, hydra, trypanosomes, fungi and plants, the introduction of double-stranded RNAs inhibits gene expression in a sequence-specific manner. These responses, called RNA interference or post-transcriptional gene silencing, may provide anti-viral defence, modulate transposition or regulate gene expression. We have taken a biochemical approach towards elucidating the mechanisms underlying this genetic phenomenon. Here we show that 'loss-of-function' phenotypes can be created in cultured Drosophila cells by transfection with specific double-stranded RNAs. This coincides with a marked reduction in the level of cognate cellular messenger RNAs. Extracts of transfected cells contain a nuclease activity that specifically degrades exogenous transcripts homologous to transfected double-stranded RNA. This enzyme contains an essential RNA component. After partial purification, the sequence-specific nuclease co-fractionates with a discrete, approximately 25-nucleotide RNA species which may confer specificity to the enzyme through homology to the substrate mRNAs.
Collapse
|
|
25 |
2009 |
7
|
Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002; 295:1065-70. [PMID: 11834834 PMCID: PMC2885915 DOI: 10.1126/science.1069609] [Citation(s) in RCA: 1733] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The primary circadian pacemaker, in the suprachiasmatic nucleus (SCN) of the mammalian brain, is photoentrained by light signals from the eyes through the retinohypothalamic tract. Retinal rod and cone cells are not required for photoentrainment. Recent evidence suggests that the entraining photoreceptors are retinal ganglion cells (RGCs) that project to the SCN. The visual pigment for this photoreceptor may be melanopsin, an opsin-like protein whose coding messenger RNA is found in a subset of mammalian RGCs. By cloning rat melanopsin and generating specific antibodies, we show that melanopsin is present in cell bodies, dendrites, and proximal axonal segments of a subset of rat RGCs. In mice heterozygous for tau-lacZ targeted to the melanopsin gene locus, beta-galactosidase-positive RGC axons projected to the SCN and other brain nuclei involved in circadian photoentrainment or the pupillary light reflex. Rat RGCs that exhibited intrinsic photosensitivity invariably expressed melanopsin. Hence, melanopsin is most likely the visual pigment of phototransducing RGCs that set the circadian clock and initiate other non-image-forming visual functions.
Collapse
|
|
23 |
1733 |
8
|
Garner MM, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 1981; 9:3047-60. [PMID: 6269071 PMCID: PMC327330 DOI: 10.1093/nar/9.13.3047] [Citation(s) in RCA: 1621] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The use of gel electrophoresis for quantitative studies of DNA-protein interactions is described. This rapid and simple technique involves separation of free DNA from DNA-protein complexes based on differences in their electrophoretic mobilities in polyacrylamide gels. Under favorable conditions both unbound DNA and DNA associated with protein can be quantified. This gel method is applied to the study of the E. coli lactose operon regulatory system. At ionic strengths in the physiological range, the catabolite activator protein (CAP) is shown to form a long-lived complex with the wild type lac promotor, but not with a CAP-insensitive mutant. Formation of a stable "open" or "melted-in" complex of RNA polymerase with the wild type promoter requires the participation of CAP and cyclic AMP. Further, it is demonstrated that even when pre-formed in the presence of CAP-cAMP, the polymerase-promoter open complex becomes unstable if CAP is then selectively removed.
Collapse
|
research-article |
44 |
1621 |
9
|
Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R. Visualizing an olfactory sensory map. Cell 1996; 87:675-86. [PMID: 8929536 DOI: 10.1016/s0092-8674(00)81387-2] [Citation(s) in RCA: 1465] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have developed a genetic approach to visualize axons from olfactory sensory neurons expressing a given odorant receptor, as they project to the olfactory bulb. Neurons expressing a specific receptor project to only two topographically fixed loci among the 1800 glomeruli in the mouse olfactory bulb. Our data provide direct support for a model in which a topographic map of receptor activation encodes odor quality in the olfactory bulb. Receptor swap experiments suggest that the olfactory receptor plays an instructive role in the guidance process but cannot be the sole determinant in the establishment of this map. This genetic approach may be more broadly applied to visualize the development and plasticity of projections in the mammalian nervous system.
Collapse
|
|
29 |
1465 |
10
|
Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982; 31:147-57. [PMID: 6297745 DOI: 10.1016/0092-8674(82)90414-7] [Citation(s) in RCA: 1413] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the macronuclear rRNA genes of Tetrahymena thermophila, a 413 bp intervening sequence (IVS) interrupts the 26S rRNA-coding region. A restriction fragment of the rDNA containing the IVS and portions of the adjacent rRNA sequences (exons) was inserted downstream from the lac UV5 promoter in a recombinant plasmid. Transcription of this template by purified Escherichia coli RNA polymerase in vitro produced a shortened version of the pre-rRNA, which was then deproteinized. When incubated with monovalent and divalent cations and a guanosine factor, this RNA underwent splicing. The reactions that were characterized included the precise excision of the IVS, attachment of guanosine to the 5' end of the IVS, covalent cyclization of the IVS and ligation of the exons. We conclude that splicing activity is intrinsic to the structure of the RNA, and that enzymes, small nuclear RNAs and folding of the pre-rRNA into an RNP are unnecessary for these reactions. We propose that the IVS portion of the RNA has several enzyme-like properties that enable it to break and reform phosphodiester bonds. The finding of autocatalytic rearrangements of RNA molecules has implications for the mechanism and the evolution of other reactions that involve RNA.
Collapse
|
|
43 |
1413 |
11
|
Abstract
A new method for in vitro insertional mutagenesis of genes cloned in Escherichia coli is presented. This simple procedure combines the advantages of in vitro DNA linker mutagenesis with those of in vivo transposition mutagenesis. It makes use of the omega fragment, a 2.0-kb DNA segment consisting of an antibiotic resistance gene (the Smr/Spcr gene of the R100.1 plasmid) flanked by short inverted repeats carrying transcription and translation termination signals and synthetic polylinkers. The omega fragment is inserted into a linearized plasmid by in vitro ligation, and the recombinant DNA molecules are selected by their resistance to streptomycin and spectinomycin. The omega fragment terminates RNA and protein synthesis prematurely, thus allowing the definition and mapping of both transcription and translation units. Because of the symmetrical structure of omega, the same effect is obtained with insertions in either orientation. The antibiotic resistance gene can be subsequently excised from the mutated molecules, leaving behind its flanking restriction site(s).
Collapse
|
|
41 |
1413 |
12
|
Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 1993; 11:173-89. [PMID: 8338665 DOI: 10.1016/0896-6273(93)90281-u] [Citation(s) in RCA: 1393] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The subventricular zone of the postnatal forebrain produces mainly glia, although it supports limited neurogenesis. To determine whether the subventricular zone is positionally specified, the phenotype and destination of the progeny of subventricular zone cells along the anterior-posterior axis of the lateral ventricles were analyzed. A retroviral lineage tracer containing the E. coli reporter gene lacZ was injected into different parts of the subventricular zone of neonatal rat pups, and at various times thereafter, the expression of beta-galactosidase was detected histochemically or immunohistochemically in the descendants of infected cells. A discrete region of the anterior part of the subventricular zone (SVZa) generated an immense number of neurons that differentiated into granule cells and periglomerular cells of the olfactory bulb-the two major types of interneurons. Thus, the SVZa appears to constitute a specialized source of neuronal progenitor cells. To reach the olfactory bulb, neurons arising in the SVZa migrate several millimeters along a highly restricted route. Guidance cues must be involved to prohibit widespread dispersion of these migrating neurons.
Collapse
|
|
32 |
1393 |
13
|
Simons RW, Houman F, Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 1987; 53:85-96. [PMID: 3596251 DOI: 10.1016/0378-1119(87)90095-3] [Citation(s) in RCA: 1364] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We describe several new vectors for the construction of operon and protein fusions to the Escherichia coli lacZ gene. In vitro constructions utilize multicopy plasmids containing suitable cloning sites located between upstream transcription terminators and downstream lac operon segments whose lacZ genes retain or lack translational start signals. Single-copy lambda prophage versions of multicopy constructs can be made genetically, without in vitro manipulation. The new vectors, both single and multicopy, are improved in that they have very low levels of background lac gene expression, which makes possible the easy detection and accurate quantitation of very weak transcriptional and translational signals. These vectors were developed for analysis of the expression of IS10's transposase gene, which is transcribed less than, once per generation, and whose transcripts are translated on average less than once each. Both single and multicopy constructs can also be used to select mutations affecting fusion expression, and mutations isolated in single-copy constructs can be crossed genetically back onto multicopy plasmids for further analysis.
Collapse
|
|
38 |
1364 |
14
|
Lutz R, Bujard H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 1997; 25:1203-10. [PMID: 9092630 PMCID: PMC146584 DOI: 10.1093/nar/25.6.1203] [Citation(s) in RCA: 1281] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Based on parameters governing promoter activity and using regulatory elements of the lac, ara and tet operon transcription control sequences were composed which permit the regulation in Escherichia coli of several gene activities independently and quantitatively. The novel promoter PLtetO-1 allows the regulation of gene expression over an up to 5000-fold range with anhydrotetracycline (aTc) whereas with IPTG and arabinose the activity of Plac/ara-1 may be controlled 1800-fold. Escherichia coli host strains which produce defined amounts of the regulatory proteins, Lac and Tet repressor as well as AraC from chromosomally located expression units provide highly reproducible in vivo conditions. Controlling the expression of the genes encoding luciferase, the low abundance E.coli protein DnaJ and restriction endonuclease Cfr9I not only demonstrates that high levels of expression can be achieved but also suggests that under conditions of optimal repression only around one mRNA every 3rd generation is produced. This potential of quantitative control will open up new approaches in the study of gene function in vivo, in particular with low abundance regulatory gene products. The system will also provide new opportunities for the controlled expression of heterologous genes.
Collapse
|
research-article |
28 |
1281 |
15
|
Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8:739-50. [PMID: 15866164 DOI: 10.1016/j.devcel.2005.03.016] [Citation(s) in RCA: 1259] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/10/2005] [Accepted: 03/28/2005] [Indexed: 02/06/2023]
Abstract
Chondrocytes and osteoblasts are two primary cell types in the skeletal system that are differentiated from common mesenchymal progenitors. It is believed that osteoblast differentiation is controlled by distinct mechanisms in intramembranous and endochondral ossification. We have found that ectopic canonical Wnt signaling leads to enhanced ossification and suppression of chondrocyte formation. Conversely, genetic inactivation of beta-catenin, an essential component transducing the canonical Wnt signaling, causes ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Moreover, inactivation of beta-catenin in mesenchymal progenitor cells in vitro causes chondrocyte differentiation under conditions allowing only osteoblasts to form. Our results demonstrate that beta-catenin is essential in determining whether mesenchymal progenitors will become osteoblasts or chondrocytes regardless of regional locations or ossification mechanisms. Controlling Wnt/beta-catenin signaling is a common molecular mechanism underlying chondrocyte and osteoblast differentiation and specification of intramembranous and endochondral ossification.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1259 |
16
|
Abstract
Several general principles emerge from the studies of Cro, lambda repressor, and CAP. The DNA-binding sites are recognized in a form similar to B-DNA. They do not form cruciforms or other novel DNA structures. There seem to be proteins that bind left-handed Z-DNA (87) and DNA in other conformations, but it remains to be seen how these structures are recognized or how proteins recognize specific sequences in single-stranded DNA. Cro, repressor, and CAP use symmetrically related subunits to interact with two-fold related sites in the operator sequences. Many other DNA-binding proteins are dimers or tetramers and their operator sequences have approximate two-fold symmetry. It seems likely that these proteins will, like Cro, repressor, and CAP, form symmetric complexes. However, there is no requirement for symmetry in protein-DNA interactions. Some sequence-specific DNA-binding proteins, like RNA polymerase, do not have symmetrically related subunits and do not bind to symmetric recognition sequences. Cro, repressor, and CAP use alpha-helices for many of the contacts between side chains and bases in the major groove. An adjacent alpha-helical region contacts the DNA backbone and may help to orient the "recognition" helices. This use of alpha-helical regions for DNA binding appears to be a common mode of recognition. Most of the contacts made by Cro, repressor, and CAP occur on one side of the double helix. However, lambda repressor contacts both sides of the double helix by using a flexible region of protein to wrap around the DNA. Recognition of specific base sequences involves hydrogen bonds and van der Waals interactions between side chains and the edges of base pairs. These specific interactions, together with backbone interactions and electrostatic interactions, stabilize the protein-DNA complexes. The current models for the complexes of Cro, repressor, and CAP with operator DNA are probably fundamentally correct, but it should be emphasized that model building alone, even when coupled with genetic and biochemical studies, cannot be expected to provide a completely reliable "high-resolution" view of the protein-DNA complex. For example, the use of standard B-DNA geometry for the operator is clearly an approximation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Review |
41 |
1240 |
17
|
Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005; 8:751-64. [PMID: 15866165 DOI: 10.1016/j.devcel.2005.02.017] [Citation(s) in RCA: 1184] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Revised: 01/31/2005] [Accepted: 02/16/2005] [Indexed: 12/31/2022]
Abstract
Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.
Collapse
MESH Headings
- Animals
- Bone Development
- Cell Differentiation
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Gene Expression Regulation, Developmental
- Glycoproteins/genetics
- Glycoproteins/metabolism
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/physiology
- LDL-Receptor Related Proteins
- Lac Operon
- Low Density Lipoprotein Receptor-Related Protein-5
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Osteoclasts/cytology
- Osteoclasts/metabolism
- Osteogenesis
- Osteopetrosis/etiology
- Osteoprotegerin
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Wnt Proteins
- beta Catenin
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1184 |
18
|
Abstract
The bending locus of trypanosome kinetoplast DNA, identified by gel electrophoresis, has tracts of a simple repeat sequence (CA5-6 T) symmetrically distributed about it, with a repeat interval of 10 base pairs. The analogous bending induced when catabolite gene activating protein binds to its recognition sequence near the promoter of the Escherichia coli lac operon is centred on a site about 5-7 base pairs away from the centre of the protein binding site.
Collapse
|
|
41 |
1182 |
19
|
Naldini L, Blömer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 1996; 93:11382-8. [PMID: 8876144 PMCID: PMC38066 DOI: 10.1073/pnas.93.21.11382] [Citation(s) in RCA: 1130] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We describe the construction of a safe, replication-defective and efficient lentiviral vector suitable for in vivo gene delivery. The reverse transcription of the vector was found to be a rate-limiting step; therefore, promoting the reaction inside the vector particles before delivery significantly enhanced the efficiency of gene transfer. After injection into the brain of adult rats, sustained long-term expression of the transgene was obtained in the absence of detectable pathology. A high proportion of the neurons in the areas surrounding the injection sites of the vector expressed the transduced beta-galactosidase gene. This pattern was invariant in animals sacrificed several months after a single administration of the vector. Transduction occurs by integration of the vector genome, as it was abolished by a single amino acid substitution in the catalytic site of the integrase protein incorporated in the vector. Development of clinically acceptable derivatives of the lentiviral vector may thus enable the sustained delivery of significant amounts of a therapeutic gene product in a wide variety of somatic tissues.
Collapse
|
research-article |
29 |
1130 |
20
|
Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008; 40:915-20. [PMID: 18536716 PMCID: PMC2906135 DOI: 10.1038/ng.165] [Citation(s) in RCA: 961] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/02/2008] [Indexed: 12/17/2022]
Abstract
Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of beta-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1(+) cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.
Collapse
|
research-article |
17 |
961 |
21
|
Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 1983; 101:181-91. [PMID: 6310321 DOI: 10.1016/0076-6879(83)01013-7] [Citation(s) in RCA: 943] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
42 |
943 |
22
|
Casadaban MJ, Chou J, Cohen SN. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 1980; 143:971-80. [PMID: 6162838 PMCID: PMC294402 DOI: 10.1128/jb.143.2.971-980.1980] [Citation(s) in RCA: 925] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We report the construction and use of a series of plasmid vectors suitable for the detection and cloning of translational control signals and 5' coding sequences of exogenously derived genes. In these plasmids, the first eight codons of the amino-terminal end of the lactose operon beta-galactosidase gene, lacZ, were removed, and unique BamHI, EcoRI, and SmaI (XmaI) endonuclease cleavage sites were incorporated adjacent to the eighth codon of lacZ. Introduction of deoxyribonucleic acid fragments containing appropriate regulatory signals and 5' coding sequences into such lac fusion plasmids led to the production of hybrid proteins consisting of the carboxyl-terminal segment of a beta-galactosidase remnant plus a peptide fragment that contained the amino-terminal amino acids encoded by the exogenous deoxyribonucleic acid sequence. These hybrid peptides retained beta-galactosidase enzymatic activity and yielded a Lac+ phenotype. Such hybrid proteins are useful for purifying peptide sequences encoded by exogenous deoxyribonucleic acid fragments and for studies relating the structure and function of specific peptide segments.
Collapse
|
research-article |
45 |
925 |
23
|
Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283:534-7. [PMID: 9915700 DOI: 10.1126/science.283.5401.534] [Citation(s) in RCA: 924] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stem cells are found in various organs where they participate in tissue homeostasis by replacing differentiated cells lost to physiological turnover or injury. An investigation was performed to determine whether stem cells are restricted to produce specific cell types, namely, those from the tissue in which they reside. After transplantation into irradiated hosts, genetically labeled neural stem cells were found to produce a variety of blood cell types including myeloid and lymphoid cells as well as early hematopoietic cells. Thus, neural stem cells appear to have a wider differentiation potential than previously thought.
Collapse
|
|
26 |
924 |
24
|
Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8:403-409. [PMID: 11927948 DOI: 10.1038/nm0402-403] [Citation(s) in RCA: 859] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Excessive accumulation of smooth-muscle cells (SMCs) has a key role in the pathogenesis of vascular diseases. It has been assumed that SMCs derived from the outer medial layer migrate, proliferate and synthesize extracellular matrix components on the luminal side of the vessel. Although much effort has been devoted to targeting migration and proliferation of medial SMCs, there is no effective therapy that prevents occlusive vascular remodeling. We show here that in models of post-angioplasty restenosis, graft vasculopathy and hyperlipidemia-induced atherosclerosis, bone-marrow cells give rise to most of the SMCs that contribute to arterial remodeling. Notably, purified hematopoietic stem cells differentiate into SMCs in vitro and in vivo. Our findings indicate that somatic stem cells contribute to pathological remodeling of remote organs, and may provide the basis for the development of new therapeutic strategies for vascular diseases through targeting mobilization, homing, differentiation and proliferation of bone marrow-derived vascular progenitor cells.
Collapse
|
|
23 |
859 |
25
|
Abstract
Transcription factors regulate gene expression through their binding to DNA. In a living Escherichia coli cell, we directly observed specific binding of a lac repressor, labeled with a fluorescent protein, to a chromosomal lac operator. Using single-molecule detection techniques, we measured the kinetics of binding and dissociation of the repressor in response to metabolic signals. Furthermore, we characterized the nonspecific binding to DNA, one-dimensional (1D) diffusion along DNA segments, and 3D translocation among segments through cytoplasm at the single-molecule level. In searching for the operator, a lac repressor spends approximately 90% of time nonspecifically bound to and diffusing along DNA with a residence time of <5 milliseconds. The methods and findings can be generalized to other nucleic acid binding proteins.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
776 |