1
|
De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, Dobbe I, Ince C. How to evaluate the microcirculation: report of a round table conference. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:R101. [PMID: 17845716 PMCID: PMC2556744 DOI: 10.1186/cc6118] [Citation(s) in RCA: 622] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/06/2007] [Accepted: 09/10/2007] [Indexed: 11/15/2022]
Abstract
Introduction Microvascular alterations may play an important role in the development of organ failure in critically ill patients and especially in sepsis. Recent advances in technology have allowed visualization of the microcirculation, but several scoring systems have been used so it is sometimes difficult to compare studies. This paper reports the results of a round table conference that was organized in Amsterdam in November 2006 in order to achieve consensus on image acquisition and analysis. Methods The participants convened to discuss the various aspects of image acquisition and the different scores, and a consensus statement was drafted using the Delphi methodology. Results The participants identified the following five key points for optimal image acquisition: five sites per organ, avoidance of pressure artifacts, elimination of secretions, adequate focus and contrast adjustment, and recording quality. The scores that can be used to describe numerically the microcirculatory images consist of the following: a measure of vessel density (total and perfused vessel density; two indices of perfusion of the vessels (proportion of perfused vessels and microcirculatory flow index); and a heterogeneity index. In addition, this information should be provided for all vessels and for small vessels (mostly capillaries) identified as smaller than 20 μm. Venular perfusion should be reported as a quality control index, because venules should always be perfused in the absence of pressure artifact. It is anticipated that although this information is currently obtained manually, it is likely that image analysis software will ease analysis in the future. Conclusion We proposed that scoring of the microcirculation should include an index of vascular density, assessment of capillary perfusion and a heterogeneity index.
Collapse
|
Journal Article |
17 |
622 |
2
|
Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:011109. [PMID: 20210435 PMCID: PMC2816990 DOI: 10.1117/1.3285504] [Citation(s) in RCA: 606] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 05/18/2023]
Abstract
First introduced in the 1980s, laser speckle contrast imaging is a powerful tool for full-field imaging of blood flow. Recently laser speckle contrast imaging has gained increased attention, in part due to its rapid adoption for blood flow studies in the brain. We review the underlying physics of speckle contrast imaging and discuss recent developments to improve the quantitative accuracy of blood flow measures. We also review applications of laser speckle contrast imaging in neuroscience, dermatology and ophthalmology.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
606 |
3
|
Stefanovska A, Bracic M, Kvernmo HD. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng 1999; 46:1230-9. [PMID: 10513128 DOI: 10.1109/10.790500] [Citation(s) in RCA: 433] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The wavelet transform technique, a time-frequency method with logarithmic frequency resolution, was used to analyze oscillations in human peripheral blood flow measured by laser Doppler flowmetry. The oscillations extended over a wide frequency scale and their periods varied in time. Within the frequency range studied, 0.0095-1.6 Hz, five characteristic oscillations were revealed, arising from both local and central regulatory mechanisms. After the insertion of endothelium-dependent and endothelium-independent vasodilators the spectra of blood flow markedly differed in the frequency interval 0.0095-0.02 Hz. In this way it was demonstrated that endothelial activity is a rhythmic process that contributes to oscillations in blood flow with a characteristic frequency of around 0.01 Hz. The study illustrates the potential of laser Doppler flowmetry combined with dynamical systems analysis for studies of both the micro- and macroscopic mechanisms of blood flow regulation in vivo.
Collapse
|
Clinical Trial |
26 |
433 |
4
|
Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, Tolias C, Oliveira-Ferreira AI, Fabricius M, Hartings JA, Vajkoczy P, Lauritzen M, Dirnagl U, Bohner G, Strong AJ. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 2009; 132:1866-81. [PMID: 19420089 PMCID: PMC2702835 DOI: 10.1093/brain/awp102] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/10/2009] [Accepted: 03/27/2009] [Indexed: 01/04/2023] Open
Abstract
The term cortical spreading depolarization (CSD) describes a wave of mass neuronal depolarization associated with net influx of cations and water. Clusters of prolonged CSDs were measured time-locked to progressive ischaemic damage in human cortex. CSD induces tone alterations in resistance vessels, causing either transient hyperperfusion (physiological haemodynamic response) in healthy tissue; or hypoperfusion [inverse haemodynamic response = cortical spreading ischaemia (CSI)] in tissue at risk for progressive damage, which has so far only been shown experimentally. Here, we performed a prospective, multicentre study in 13 patients with aneurysmal subarachnoid haemorrhage, using novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry (LDF) and direct current-electrocorticography, combined with measurements of tissue partial pressure of oxygen (ptiO(2)). Regional cerebral blood flow and electrocorticography were simultaneously recorded in 417 CSDs. Isolated CSDs occurred in 12 patients and were associated with either physiological, absent or inverse haemodynamic responses. Whereas the physiological haemodynamic response caused tissue hyperoxia, the inverse response led to tissue hypoxia. Clusters of prolonged CSDs were measured in five patients in close proximity to structural brain damage as assessed by neuroimaging. Clusters were associated with CSD-induced spreading hypoperfusions, which were significantly longer in duration (up to 144 min) than those of isolated CSDs. Thus, oxygen depletion caused by the inverse haemodynamic response may contribute to the establishment of clusters of prolonged CSDs and lesion progression. Combined electrocorticography and perfusion monitoring also revealed a characteristic vascular signature that might be used for non-invasive detection of CSD. Low-frequency vascular fluctuations (LF-VF) (f < 0.1 Hz), detectable by functional imaging methods, are determined by the brain's resting neuronal activity. CSD provides a depolarization block of the resting activity, recorded electrophysiologically as spreading depression of high-frequency-electrocorticography activity. Accordingly, we observed a spreading suppression of LF-VF, which accompanied spreading depression of high-frequency-electrocorticography activity, independently of whether CSD was associated with a physiological, absent or inverse haemodynamic response. Spreading suppressions of LF-VF thus allow the differentiation of progressive ischaemia and repair phases in a fashion similar to that shown previously for spreading depressions of high-frequency-electrocorticography activity. In conclusion, it is suggested that (i) CSI is a novel human disease mechanism associated with lesion development and a potential target for therapeutic intervention in stroke; and that (ii) prolonged spreading suppressions of LF-VF are a novel 'functional marker' for progressive ischaemia.
Collapse
|
Multicenter Study |
16 |
427 |
5
|
Lancellotti P, Tribouilloy C, Hagendorff A, Moura L, Popescu BA, Agricola E, Monin JL, Pierard LA, Badano L, Zamorano JL. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease). EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY 2010; 11:223-44. [PMID: 20375260 DOI: 10.1093/ejechocard/jeq030] [Citation(s) in RCA: 381] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
15 |
381 |
6
|
Abstract
Laser Doppler velocimetry uses the frequency shift produced by the Doppler effect to measure velocity. It can be used to monitor blood flow or other tissue movement in the body. Laser speckle is a random interference effect that gives a grainy appearance to objects illuminated by laser light. If the object consists of individual moving scatterers (such as blood cells), the speckle pattern fluctuates. These fluctuations provide information about the velocity distribution of the scatterers. It can be shown that the speckle and Doppler approaches are different ways of looking at the same phenomenon. Both these techniques measure at a single point. If a map of the velocity distribution is required, some form of scanning must be introduced. This has been done for both time-varying speckle and laser Doppler. However, with the speckle technique it is also possible to devise a full-field technique that gives an instantaneous map of velocities in real time. This review article presents the theory and practice of these techniques using a tutorial approach and compares the relative merits of the scanning and full-field approaches to velocity map imaging. The article concludes with a review of reported applications of these techniques to blood perfusion mapping and imaging.
Collapse
|
Review |
24 |
376 |
7
|
Takano T, Tian GF, Peng W, Lou N, Lovatt D, Hansen AJ, Kasischke KA, Nedergaard M. Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 2007; 10:754-62. [PMID: 17468748 DOI: 10.1038/nn1902] [Citation(s) in RCA: 362] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/29/2007] [Indexed: 11/09/2022]
Abstract
Cortical spreading depression (CSD) is a self-propagating wave of cellular depolarization that has been implicated in migraine and in progressive neuronal injury after stroke and head trauma. Using two-photon microscopic NADH imaging and oxygen sensor microelectrodes in live mouse cortex, we find that CSD is linked to severe hypoxia and marked neuronal swelling that can last up to several minutes. Changes in dendritic structures and loss of spines during CSD are comparable to those during anoxic depolarization. Increasing O2 availability shortens the duration of CSD and improves local redox state. Our results indicate that tissue hypoxia associated with CSD is caused by a transient increase in O2 demand exceeding vascular O2 supply.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
362 |
8
|
Wårdell K, Jakobsson A, Nilsson GE. Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng 1993; 40:309-16. [PMID: 8375866 DOI: 10.1109/10.222322] [Citation(s) in RCA: 324] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Imaging of tissue perfusion is important in assessing the influence of peripheral vascular disease on microcirculation. This paper reports on a laser Doppler perfusion imaging technique based on dynamic light scattering in tissue. When a laser beam sequentially scans the tissue (maximal area approximately 12 cm *12 cm), moving blood cells generate Doppler components in the back-scattered light. A fraction of this light is detected by a remote photodiode and converted into an electrical signal. In the signal processor, a signal proportional to the tissue perfusion at each measurement point is calculated and stored. When the scanning procedure is completed, the system generates a color-coded perfusion image on a monitor. A perfusion image is typically built up of data from 4,096 measurement sites, recorded during a time period of 4 min. This image has a spatial resolution of about 2 mm * 2 mm. A theory for the system inherent amplification factor dependence on the distance between individual measurement points and detector is proposed and correction measures are presented. The performance of the laser Doppler perfusion imager was evaluated using a flow simulator. The correlation coefficient between the estimated flow parameter and the perfusion through a mechanical flow simulator was calculated to r = 0.996. To assess the sampling depth of the laser beam, light scattering in tissue was simulated by a Monte Carlo technique. The average sampling depth for skin tissue was calculated to 200-240 microns, depending on the blood content.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
32 |
324 |
9
|
Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PCM, Huang J, Bulte JWM. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 2008; 39:1569-74. [PMID: 18323495 PMCID: PMC2857730 DOI: 10.1161/strokeaha.107.502047] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/01/2007] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE In animal models of stroke, functional improvement has been obtained after stem cell transplantation. Successful therapy depends largely on achieving a robust and targeted cell engraftment, with intraarterial (IA) injection being a potentially attractive route of administration. We assessed the suitability of laser Doppler flow (LDF) signal measurements and magnetic resonance (MR) imaging for noninvasive dual monitoring of targeted IA cell delivery. METHODS Transient cerebral ischemia was induced in adult Wistar rats (n=25) followed by IA or intravenous (IV) injection of mesenchymal stem cells (MSCs) labeled with superparamagnetic iron oxide. Cell infusion was monitored in real time with transcranial laser Doppler flowmetry while cellular delivery was assessed with MRI in vivo (4.7 T) and ex vivo (9.4 T). RESULTS Successful delivery of magnetically labeled MSCs could be readily visualized with MRI after IA but not IV injection. IA stem cell injection during acute stroke resulted in a high variability of cerebral engraftment. The amount of LDF reduction during cell infusion (up to 80%) was found to correlate well with the degree of intracerebral engraftment, with low LDF values being associated with significant morbidity. CONCLUSIONS High cerebral engraftment rates are associated with impeded cerebral blood flow. Noninvasive dual-modality imaging enables monitoring of targeted cell delivery, and through interactive adjustment may improve the safety and efficacy of stem cell therapy.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
297 |
10
|
Kvandal P, Landsverk SA, Bernjak A, Stefanovska A, Kvernmo HD, Kirkebøen KA. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc Res 2006; 72:120-7. [PMID: 16854436 DOI: 10.1016/j.mvr.2006.05.006] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/20/2006] [Accepted: 05/15/2006] [Indexed: 11/26/2022]
Abstract
Spectral analysis of the laser Doppler flow (LDF) signal in the frequency interval from 0.0095-2.0 Hz reveals blood flow oscillations with frequencies around 1.0, 0.3, 0.1, 0.04 and 0.01 Hz. The heartbeat, the respiration, the intrinsic myogenic activity of vascular smooth muscle, the neurogenic activity of the vessel wall and the vascular endothelium influence these oscillations, respectively. The first aim of this study was to investigate if a slow oscillatory component could be detected in the frequency area below 0.0095 Hz of the human cutaneous blood perfusion signal. Unstimulated basal blood skin perfusion and enhanced perfusion during iontophoresis with the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) were measured in healthy male volunteers and the wavelet transform was computed. A low-frequency oscillation between 0.005 and 0.0095 Hz was found both during basal conditions and during iontophoresis with ACh and SNP. Iontophoresis with ACh increased the normalized amplitude to a greater extent than SNP (P = 0.001) indicating modulation by the vascular endothelium. To gain further insight into the mechanisms for this endothelium dependency, we inhibited nitric oxide (NO) synthesis with N(G)-monomethyl-L-arginine (L-NMMA) and prostaglandin (PG) synthesis by aspirin. L-NMMA did not affect the increased response to ACh vs. SNP iontophoresis in the 0.005-0.0095-Hz interval (P = 0.006) but abolished the difference in the 0.0095-0.021-Hz interval (P = 0.97). Aspirin did not affect the difference in response to ACh and SNP in either of the two frequency intervals. Thus, other endothelial mechanisms, such as endothelium-derived hyperpolarizing factor (EDHF), might be involved in the regulation of this sixth frequency interval (0.005-0.0095 Hz).
Collapse
|
|
19 |
250 |
11
|
Nagaoka T, Kitaya N, Sugawara R, Yokota H, Mori F, Hikichi T, Fujio N, Yoshida A. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 2004; 88:1060-3. [PMID: 15258025 PMCID: PMC1772269 DOI: 10.1136/bjo.2003.035345] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM To investigate changes in choroidal blood flow (CBF) in the foveal region in patients with type 2 diabetes. METHODS Laser Doppler flowmetry was used to determine the CBF in the foveal region in 70 patients with type 2 diabetes and 36 age and sex matched healthy subjects (control group). The patients were classified into three groups: 33 patients (33 eyes) with no diabetic retinopathy (NDR), 20 patients (20 eyes) with non-proliferative diabetic retinopathy and no macular oedema (NPDR/MO-), and 17 patients (17 eyes) with NPDR and MO (NPDR/MO+). Optical coherence tomography was also used to measure the foveal thickness. RESULTS The group averaged CBF values were 13.5 (4.9), 9.4 (2.5), 10.8 (4.8), and 5.6 (2.0) (arbitrary units) in the control, NDR, NPDR/MO-, and NPDR/MO+ groups, respectively. The group averaged CBF values in the NDR group decreased (30.2%; p<0.01) compared with the control group. The average CBF value in the NPDR/MO+ group was also significantly lower (48.2%; p<0.01) compared with that in the NPDR/MO- group. CONCLUSION The CBF in the foveal region significantly decreases in patients with diabetes, especially those with macular oedema.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
218 |
12
|
IJzerman RG, de Jongh RT, Beijk MAM, van Weissenbruch MM, Delemarre-van de Waal HA, Serné EH, Stehouwer CDA. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur J Clin Invest 2003; 33:536-42. [PMID: 12814388 DOI: 10.1046/j.1365-2362.2003.01179.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND To investigate whether microvascular function in skin is a valid model to study the relationships between cardiovascular risk factors and microvascular function, we investigated skin microvascular function in individuals with increased coronary heart disease (CHD) risk. MATERIALS AND METHODS Forty-six healthy White individuals aged 30-70 years were studied. Coronary heart disease risk was assessed with the use of the CHD risk score according to the Framingham Heart Study, which is based on the risk factors age, blood pressure, cigarette smoking, total cholesterol, HDL cholesterol and diabetes. Endothelium-dependent and -independent vasodilation in skin were evaluated with laser Doppler after iontophoresis of acetylcholine and sodium nitroprusside. Videomicroscopy was used to measure recruitment of skin capillaries after arterial occlusion. RESULTS Coronary heart disease risk score (i.e. the 10-year probability of CHD) varied from 1-37%. Microvascular function decreased with increasing quartiles of CHD risk (for acetylcholine-mediated vasodilation: 687, 585, 420 and 326%, P = 0.002; for nitroprusside-mediated vasodilation: 776, 582, 513 and 366%, P = 0.02; for capillary recruitment: 49.9, 44.6, 27.2 and 26.7%, P = 0.001). These trends were similar in men and women (P for interaction > 0.2) and independent of body mass index. CONCLUSIONS Increased CHD risk is associated with an impaired endothelium-dependent vasodilatation and capillary recruitment in skin, suggesting that microvascular function in skin is a valid model to study the relationships between cardiovascular risk factors and microvascular function.
Collapse
|
|
22 |
204 |
13
|
Namer B, Seifert F, Handwerker HO, Maihöfner C. TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol. Neuroreport 2005; 16:955-9. [PMID: 15931068 DOI: 10.1097/00001756-200506210-00015] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the psychophysical effects of both TRPA1 and TRPM8 activation in humans by application of either cinnamaldehyde or menthol. We applied 10% cinnamaldehyde or 40% menthol solutions on the forearm in 10 study participants. Quantitative sensory testing and laser Doppler imaging was performed before and after exposure to the compounds. Cinnamaldehyde evoked significant spontaneous pain and induced heat and mechanical hyperalgesia, cold hypoalgesia and a neurogenic axon reflex erythema. In contrast, TRPM8 activation by menthol produced no axon reflex reaction and resulted in cold hyperalgesia. We conclude that agonists of TRPA1 and TRPM8 channels produce strikingly different psychophysical patterns.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
197 |
14
|
Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Götting C, Kleesiek K, Mueller-Roesel M, Koschinsky T, Uribarri J, Vlassara H, Tschoepe D. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 2006; 29:2064-71. [PMID: 16936154 DOI: 10.2337/dc06-0531] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetes is characterized by marked postprandial endothelial dysfunction induced by hyperglycemia, hypertriglyceridemia, advanced glycation end products (AGEs), and dicarbonyls (e.g., methylglyoxal [MG]). In vitro hyperglycemia-induced MG formation and endothelial dysfunction could be blocked by benfotiamine, but in vivo effects of benfotiamine on postprandial endothelial dysfunction and MG synthesis have not been investigated in humans until now. RESEARCH DESIGN AND METHODS Thirteen people with type 2 diabetes were given a heat-processed test meal with a high AGE content (HAGE; 15.100 AGE kU, 580 kcal, 54 g protein, 17 g lipids, and 48 g carbohydrates) before and after a 3-day therapy with benfotiamine (1,050 mg/day). Macrovascular flow-mediated dilatation (FMD) and microvascular reactive hyperemia, along with serum markers of endothelial disfunction (E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), oxidative stress, AGE, and MG were measured during both test meal days after an overnight fast and then at 2, 4, and 6 h postprandially. RESULTS The HAGE induced a maximum reactive hyperemia decrease of -60.0% after 2 h and a maximum FMD impairment of -35.1% after 4 h, without affecting endothelium-independent vasodilatation. The effects of HAGE on both FMD and reactive hyperemia were completely prevented by benfotiamine. Serum markers of endothelial dysfunction and oxidative stress, as well as AGE, increased after HAGE. These effects were significantly reduced by benfotiamine. CONCLUSIONS Our study confirms micro- and macrovascular endothelial dysfunction accompanied by increased oxidative stress following a real-life, heat-processed, AGE-rich meal in individuals with type 2 diabetes and suggests benfotiamine as a potential treatment.
Collapse
|
Clinical Trial |
19 |
190 |
15
|
Parthasarathy AB, Tom WJ, Gopal A, Zhang X, Dunn AK. Robust flow measurement with multi-exposure speckle imaging. OPTICS EXPRESS 2008; 16:1975-89. [PMID: 18542277 DOI: 10.1364/oe.16.001975] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Laser Speckle Contrast Imaging (LSCI) is a minimally invasive full field optical technique used to generate blood flow maps with high spatial and temporal resolution. The lack of quantitative accuracy and the inability to predict flows in the presence of static scatterers such as an intact or thinned skull have been the primary limitation of LSCI. We present a new Multi-Exposure Speckle Imaging (MESI) instrument that has potential to obtain quantitative baseline flow measures. We show that the MESI instrument extends the range over which relative flow measurements are linear. We also present a new speckle model which can discriminate flows in the presence of static scatters. We show that in the presence of static scatterers the new model used along with the new MESI instrument can predict correlation times of flow consistently to within 10% of the value without static scatterers compared to an average deviation of more than 100% from the value without static scatterers using traditional LSCI. We also show that the new speckle model used with the MESI instrument can maintain the linearity of relative flow measurements in the presence of static scatterers.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
189 |
16
|
Yasuhara T, Shingo T, Kobayashi K, Takeuchi A, Yano A, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. Eur J Neurosci 2004; 19:1494-504. [PMID: 15066146 DOI: 10.1111/j.1460-9568.2004.03254.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vascular endothelial growth factor (VEGF) has previously been shown to display neuroprotective effects following ischemia, suggesting that VEGF may potentially be applied as a neuroprotective agent for the treatment of other neurological diseases. In this study, we investigated the neuroprotective capacity of VEGF in a model of Parkinson's disease. VEGF was found to be neuroprotective against cell death of primary E14 murine ventral mesencephalic neurons induced by 6-hydroxydopamine (6-OHDA) treatment in vitro. Further, rats receiving a continuous infusion of VEGF into the striatum via encapsulated hVEGF-secreting cells (baby hamster kidney-VEGF) displayed a significant decrease in amphetamine-induced rotational behavior and a significant preservation of tyrosine hydroxylase-positive neurons and fibers compared with control animals. VEGF likely functions via direct mechanisms by signaling through the neuropilin receptor expressed upon dopaminergic neurons in response to 6-OHDA treatment. Further, VEGF is likely to promote neuroprotection indirectly by activating the proliferation of glia and by promoting angiogenesis. Our results support a potential neuroprotective role for VEGF in the treatment of Parkinson's disease.
Collapse
|
|
21 |
171 |
17
|
Anderson C, Andersson T, Wårdell K. Changes in skin circulation after insertion of a microdialysis probe visualized by laser Doppler perfusion imaging. J Invest Dermatol 1994; 102:807-11. [PMID: 8176267 DOI: 10.1111/1523-1747.ep12378630] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microdialysis makes possible in vivo estimation of endogenous and exogenous substances in the dermal extracellular space. Insertion of the microdialysis probe and its subsequent presence in the skin may affect both the reactivity of the skin test site and the measurement of target substances. Laser Doppler flowmetry is a non-invasive method for estimating cutaneous blood flow. A further development of this technique, laser Doppler perfusion imaging, has been used to study the time course of the circulatory changes caused in the area of microdialysis probe insertion. Laser Doppler perfusion imaging was performed prior to, during, and after microdialysis probe insertion in the skin of the ventral forearm in three subjects. Probe insertion caused an increase in skin blood perfusion in the whole test area. About 15 min after probe insertion, the flare, which is presumed to be of chiefly axon reflex origin, began to subside and the circulatory response could be seen to center around the site of insertion and the tip of the probe. Skin perfusion levels had returned to near normal levels within 60 min. Local anesthesia of the point of guide insertion inhibited the flare, but did not affect circulatory reactivity in the skin nearby. Both microdialysis and laser Doppler perfusion imaging seem to be promising new methods in dermatologic research.
Collapse
|
|
31 |
171 |
18
|
Levy D, Burstein R, Strassman AM. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: Implications for the pathophysiology of migraine. Ann Neurol 2005; 58:698-705. [PMID: 16240341 DOI: 10.1002/ana.20619] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Migraine is among the most common types of pain, but its mechanisms are poorly understood. A growing body of evidence points to a critical role of calcitonin gene-related peptide (CGRP) in the pathophysiology of migraine headache. During migraine, CGRP is thought to be released from peripheral endings of perivascular meningeal nociceptors primary and to promote vasodilatation. A current hypothesis suggests that peripheral CGRP and its related meningeal vasodilatation results in activation and sensitization, leading to the generation of migraine headache. However, direct evidence supporting this idea is lacking. Here, using electrophysiological, extracellular, single-unit recording combined with laser-Doppler flowmetry measurements of dural blood flow (DBF), we examined whether CGRP and meningeal vasodilatation promote activation or sensitization of meningeal nociceptors. Changes in (DBF), ongoing discharge, and responsiveness to mechanical stimulation of the dura were studied after either topical administration or intravenous infusion of rat alpha-CGRP in anesthetized rats. Both topical and systemic administration of CGRP caused a significant increase in dural blood flow; however, neither method of CGRP administration resulted in activation or sensitization of meningeal nociceptors. The results of this study suggest that CGRP effects in the meninges, including meningeal vasodilatation, are not sufficient to activate or sensitize meningeal nociceptors.
Collapse
|
|
20 |
166 |
19
|
Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Götting C, Kleesiek K, Mueller-Roesel M, Koschinsky T, Uribarri J, Vlassara H, Tschoepe D. Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr 2007; 85:1236-43. [PMID: 17490958 DOI: 10.1093/ajcn/85.5.1236] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND An advanced glycation endproducts (AGEs)-rich diet induces significant increases in inflammatory and endothelial dysfunction markers in type 2 diabetes mellitus (T2DM). OBJECTIVE The aim was to investigate the acute effects of dietary AGEs on vascular function in T2DM patients. DESIGN Twenty inpatients with T2DM [x (+/-SEM) age: 55.4 +/- 2.2 y; glycated hemoglobin: 8.8 +/- 0.5%] were investigated. In a randomized crossover design, the effects of a low-AGE (LAGE) and high-AGE (HAGE) meal on macrovascular [by flow-mediated dilatation (FMD)] and microvascular (by Laser-Doppler flowmetry) function, serum markers of endothelial dysfunction (E-selectin, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), oxidative stress, and serum AGE were assessed. The meals had identical ingredients but different AGE amounts (15.100 compared with 2.750 kU AGE for the HAGE and LAGE meals, respectively), which were obtained by varying the cooking temperature and time. The measurements were performed at baseline and 2, 4, and 6 h after each meal. RESULTS After the HAGE meal, FMD decreased by 36.2%, from 5.77 +/- 0.65% (baseline) to 3.93 +/- 0.48 (2 h), 3.70 +/- 0.42 (4 h), and 4.42 +/- 0.54% (6 h) (P<0.01 for all compared with baseline). After the LAGE meal, FMD decreased by 20.9%, from 6.04 +/- 0.68% (baseline) to 4.75 +/- 0.48% (2 h), 4.69 +/- 0.51% (4 h), and 5.62 +/- 0.63% (6 h), respectively (P<0.01 for all compared with baseline; P<0.001 for all compared with the HAGE meal). This impairment of macrovascular function after the HAGE meal was paralleled by an impairment of microvascular function (-67.2%) and increased concentrations of serum AGE and markers of endothelial dysfunction and oxidative stress. CONCLUSIONS In patients with T2DM, a HAGE meal induces a more pronounced acute impairment of vascular function than does an otherwise identical LAGE meal. Therefore, chemical modifications of food by means of cooking play a major role in influencing the extent of postprandial vascular dysfunction.
Collapse
|
Randomized Controlled Trial |
18 |
160 |
20
|
Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Shaffner DH. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke 2008; 39:2531-7. [PMID: 18669896 PMCID: PMC2566962 DOI: 10.1161/strokeaha.108.514877] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 02/13/2008] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Clinical application of continuous autoregulation monitoring would benefit from a comparison of curves generated by online monitoring with standard autoregulation curves in animal models. We characterized the accuracy of 3 continuous monitors of autoregulation in a piglet model of hypotension. METHODS Piglets 5 to10 days old with intracranial pressure (ICP) at naïve or elevated (20 mm Hg) levels had gradual arterial hypotension induced by a balloon catheter in the inferior vena cava. Elevated ICP was maintained by a continuous infusion of artificial cerebrospinal fluid. Three indices of autoregulation were simultaneously and continuously calculated. A moving, linear Pearson's coefficient between spontaneous slow waves of cerebral perfusion pressure and slow waves of laser-Doppler flux or cortical oxygenation rendered the laser-Doppler index and cerebral-oximetry index, respectively. Similar correlation between slow waves of arterial blood pressure and ICP rendered the pressure-reactivity index. The lower limit of autoregulation was determined directly for each animal by plotting laser-Doppler cortical red blood cell flux as a function of cerebral perfusion pressure. Receiver-operator characteristics were determined for the 3 indices. RESULTS The areas under the receiver-operator characteristics curves for discriminating the individual lower limit of autoregulation at low and high ICP were 0.89 and 0.85 for the laser-Doppler index, 0.89 and 0.84 for the cerebral-oximetry index, and 0.79 and 0.79 for the pressure-reactivity index. The pressure-reactivity index performed equally well at low and high ICPs. CONCLUSIONS Continuous monitoring of autoregulation by spontaneous slow waves of cerebral perfusion pressure can accurately detect loss of autoregulation due to hypotension in piglets by all 3 modalities.
Collapse
|
Comparative Study |
17 |
157 |
21
|
Eke A, Hermán P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, Balla I, Ikrényi C. Physiological time series: distinguishing fractal noises from motions. Pflugers Arch 2000; 439:403-15. [PMID: 10678736 DOI: 10.1007/s004249900135] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Many physiological signals appear fractal, in having self-similarity over a large range of their power spectral densities. They are analogous to one of two classes of discretely sampled pure fractal time signals, fractional Gaussian noise (fGn) or fractional Brownian motion (fBm). The fGn series are the successive differences between elements of a fBm series; they are stationary and are completely characterized by two parameters, sigma2, the variance, and H, the Hurst coefficient. Such efficient characterization of physiological signals is valuable since H defines the autocorrelation and the fractal dimension of the time series. Estimation of H from Fourier analysis is inaccurate, so more robust methods are needed. Dispersional analysis (Disp) is good for noise signals while bridge detrended scaled windowed variance analysis (bdSWV) is good for motion signals. Signals whose slopes of their power spectral densities lie near the border between fGn and fBm are difficult to classify. A new method using signal summation conversion (SSC), wherein an fGn is converted to an fBm or an fBm to a summed fBm and bdSWV then applied, greatly improves the classification and the reliability of H, the estimates of H, for the times series. Applying these methods to laser-Doppler blood cell perfusion signals obtained from the brain cortex of anesthetized rats gave H of 0.24+/-0.02 (SD, n=8) and defined the signal as a fractional Brownian motion. The implication is that the flow signal is the summation (motion) of a set of local velocities from neighboring vessels that are negatively correlated, as if induced by local resistance fluctuations.
Collapse
|
|
25 |
156 |
22
|
Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H. Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp Eye Res 1995; 60:373-83. [PMID: 7789417 DOI: 10.1016/s0014-4835(05)80094-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new apparatus has been developed using the laser speckle phenomenon for non-contact, two-dimensional analysis of tissue circulation in the choroid and optic nerve head (ONH). The fundus was illuminated by a diode laser spot and its image speckle was detected by an image sensor. The difference between the average of the speckle intensity (Imean) and the speckle intensity for successive scannings was calculated, and the ratio of Imean to this difference was defined as normalized blur (NB), which is a quantitative index of blood velocity. The results were displayed on color graphic monitors showing the two-dimensional variation of the NB level in the measurement field. In the rabbit, this apparatus was used to study the relationship between the results of NB measurement and the choroidal blood flow determined by the microsphere technique, the relationship between NB obtained from the ONH tissue free of visible surface vessels and the ocular perfusion pressure (OPP) after a lethal injection of pentobarital, and the effect of intraocular pressure (IOP) on the NB in the choroid or in the ONH. A stepwise reduction in the OPP was introduced by elevating the IOP manometrically. The relative decrease in the average NB over the field measured, NBav, in the choroid with the reduction in OPP showed a significant correlation with the relative change in the blood flow rate determined using the microsphere technique (r = 0.60, P < 0.001). NBav in the ONH had a good correlation with the OPP after a lethal injection of pentobarbital (r = 0.98, P < 0.001). NBav in the choroid decreased with reduction in the OPP. Although NBav in the ONH was little affected by OPP change when OPP was above 40 mmHg, at OPP levels below 40 mmHg, NBav in the ONH decreased along with a reduction in the OPP. These results suggest that by using the present apparatus, the blood velocity in the choroid or ONH under various conditions can be studied non-invasively in the living eye.
Collapse
|
|
30 |
155 |
23
|
Bircher A, de Boer EM, Agner T, Wahlberg JE, Serup J. Guidelines for measurement of cutaneous blood flow by laser Doppler flowmetry. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 1994; 30:65-72. [PMID: 8187504 DOI: 10.1111/j.1600-0536.1994.tb00565.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The report reviews individual-related variables (age, sex, race, anatomical site), intra- and inter-individual variation (temporal, physical and mental activity, food and drugs), and environment-related variables (air convection, temperature). Technical variation, instrument validation including a standard reactive hyperemia experiment, and a standard operating procedure are discussed and included in the guidelines.
Collapse
|
Guideline |
31 |
151 |
24
|
Shin HK, Jones PB, Garcia-Alloza M, Borrelli L, Greenberg SM, Bacskai BJ, Frosch MP, Hyman BT, Moskowitz MA, Ayata C. Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain 2007; 130:2310-9. [PMID: 17638859 DOI: 10.1093/brain/awm156] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tg2576 transgenic mouse model of human cerebral amyloid angiopathy is characterized by age-dependent cerebrovascular deposition of amyloid-beta (Abeta) starting from 9 months of age and progressively worsening to involve most pial arterioles by 18 months; soluble Abeta levels are elevated long before vascular deposition takes place in this model. It has been suggested that elevated soluble Abeta levels alone are sufficient to impair cerebral blood flow (CBF) regulation thereby contributing to the early progression of Alzheimer's disease. Using laser speckle flowmetry through an intact skull, we studied the impact of elevated soluble Abeta levels and vascular Abeta deposition on a wide range of CBF responses to evaluate vasodilation and vasoconstriction in young or aged Tg2576 mice. Nineteen-month-old Tg2576 with severe vascular Abeta deposits showed an attenuated hyperaemic response during hypercapnia and whisker stimulation compared to wild-type littermates. The anticipated increase in CBF due to isoflurane anaesthesia was also suppressed, as were the typical hypoperfusion responses during cortical spreading depression and alpha-chloralose anaesthesia. The responses of 8-month-old Tg2576 with elevated soluble Abeta levels, but without vascular Abeta deposition, did not differ from age-matched controls. In conclusion, our data suggest that vascular Abeta deposition is associated with impaired vasodilator as well as vasoconstrictor responses to a wide range of stimuli. These responses do not differ from controls when studied non-invasively prior to vascular Abeta deposition, thus challenging the view that elevated soluble Abeta levels are sufficient to cause cerebrovascular dysfunction.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
148 |
25
|
Kunkler PE, Ballard CJ, Oxford GS, Hurley JH. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain 2011; 152:38-44. [PMID: 21075522 PMCID: PMC3012007 DOI: 10.1016/j.pain.2010.08.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 07/01/2010] [Accepted: 08/16/2010] [Indexed: 10/18/2022]
Abstract
The TRPA1 receptor is a member of the transient receptor potential (TRP) family of ion channels expressed in nociceptive neurons. TRPA1 receptors are targeted by pungent compounds from mustard and garlic and environmental irritants such as formaldehyde and acrolein. Ingestion or inhalation of these chemical agents causes irritation and burning in the nasal and oral mucosa and respiratory lining. Headaches have been widely reported to be induced by inhalation of environmental irritants, but it is unclear how these agents produce headache. Stimulation of trigeminal neurons releases CGRP and substance P and induces neurogenic inflammation associated with the pain of migraine. Here we test the hypothesis that activation of TRPA1 receptors is the mechanistic link between environmental irritants and peptide-mediated neurogenic inflammation. Known TRPA1 agonists and environmental irritants stimulate CGRP release from dissociated rat trigeminal ganglia neurons and this release is blocked by a selective TRPA1 antagonist, HC-030031. Further, TRPA1 agonists and environmental irritants increase meningeal blood flow following intranasal administration. Prior dural application of the CGRP antagonist, CGRP(8-37), or intranasal or dural administration of HC-030031, blocks the increases in blood flow elicited by environmental irritants. Together these results demonstrate that TRPA1 receptor activation by environmental irritants stimulates CGRP release and increases cerebral blood flow. We suggest that these events contribute to headache associated with environmental irritants.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
144 |