1
|
Lymperopoulou T, Balta-Brouma K, Tsakanika LA, Tzia C, Tsantili-Kakoulidou A, Tsopelas F. Identification of lentils (Lens culinaris Medik) from Eglouvi (Lefkada, Greece) based on rare earth elements profile combined with chemometrics. Food Chem 2024; 447:138965. [PMID: 38513482 DOI: 10.1016/j.foodchem.2024.138965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
An analytical approach has been developed to verify the authenticity of premium lentils originating from Eglouvi, Lefkada, Greece. The method relies on the digestion of samples followed by the analysis of their rare earth elements (REEs) content. Lentils originating from Eglouvi exhibit higher content in most REEs compared to lentils from other regions as well as distinct Sc/Y and Sc/Yb concentration ratios. Principal component analysis effectively segregates "Eglouvi" lentils into a distinct cluster. Soft Independent Modelling of Class Analogy (SIMCA) successfully models "Eglouvi" lentils. Significant enhancement in model specificity was achieved upon inclusion of Sc/Y and Sc/Yb concentration ratios as additional variables. The model is capable of detecting adulteration in blends of Eglouvi lentils, with a minimum rejection threshold of 4.6% w/w for Greek lentil adulterants and 6.0% w/w for imported lentil adulterants.
Collapse
|
2
|
Lee DJ, Cheng F, Li D, Ding K, Carlin J, Moore E, Ai Y. Important roles of coarse particles in pasting and gelling performance of different pulse flours under high-temperature heating. Food Chem 2024; 447:138896. [PMID: 38458133 DOI: 10.1016/j.foodchem.2024.138896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Dehulled pea, lentil, and faba bean grains were milled into flours with 0.5- to 2.5-mm sieves. As the particle size decreased, damaged-starch contents of the flours from the same pulse crop increased. At a holding temperature of 95 °C in RVA, peak and final viscosities and gelling ability of the flours generally increased as the particle size decreased. When the holding temperature increased from 95 to 140 °C, pasting viscosities of pea and lentil flours and gel hardness of lentil flours gradually decreased. In contrast, pasting viscosities and gel hardness of faba bean flours reached the highest values at 120 °C. The comparison of the pulse flours varying in particle size across the three market classes revealed that coarse particles comprising agglomerated starch, protein, and dietary fiber (i.e., particles of the second peak in the bimodal particle-size distribution curves) showed significant correlations with certain important functional properties of pulse flours.
Collapse
|
3
|
Yunus FM, Jalal C, Das A, Afsana K, Podder R, Vandenberg A, DellaValle DM. Consumption of Iron-Fortified Lentils Is Protective against Declining Iron Status among Adolescent Girls in Bangladesh: Evidence from a Community-Based Double-Blind, Cluster-Randomized Controlled Trial. J Nutr 2024; 154:1686-1698. [PMID: 38458577 DOI: 10.1016/j.tjnut.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND In many low-income countries, iron deficiency (ID) and its anemia (IDA) pose significant health challenges, particularly among females and girls. Finding sustainable and effective solutions to address this issue is critical. OBJECTIVES This study aimed to evaluate the efficacy of incorporating iron-fortified lentils (IFLs) into the diets of rural Bangladeshi adolescent girls on their body iron (Fe) status. METHODS A community-based, double-blind, cluster-randomized controlled trial involved n = 1195 girls aged 10-17 y. A total of 48 adolescent clubs (n = ∼27 girls each) were randomized into 3 groups: 1) 200 g cooked IFLs, 2) 200 g cooked noniron-fortified lentils (NIFLs), and 3) a control group with no lentils (usual dietary intake). The intervention, administered 5 days a week for 85 feeding days, provided ∼8.625 mg Fe from each serving of IFLs and 2.625 mg from NIFLs. Blood samples collected at baseline, midpoint (42 feeding days), and endpoint (85 feeding days) assessed key Fe and inflammation biomarkers. Statistical analyses were filtered for inflammation. RESULTS Although all groups experienced a decline in Fe status over time, the IFL group exhibited a significantly reduced decline in serum ferritin (sFer -7.2 μg/L), and total body iron (TBI -0.48 mg/kg) level compared with NIFL (sFer -14.3 μg/L and TBI -1.36 mg/kg) and usual intake group (sFer -12.8 μg/L and TBI -1.33 mg/kg). Additionally, those in the IFL group had a 57% reduced risk of developing clinical ID (sFer <15 μg/L) compared with the usual intake group. CONCLUSIONS Our findings suggest that incorporating IFLs into the diet can help mitigate a decline in sFer, indicating a positive impact on the body Fe status of adolescent girls. This research underscores the potential role of fortified foods in addressing ID and IDA in vulnerable populations, emphasizing the significance of food-based interventions in public health. TRIAL REGISTRATION NUMBER This trial was registered at the clinicaltrials.gov on May 24, 2018 (https://clinicaltrials.gov/study/NCT03516734?locStr=Bangladesh&country=Bangladesh&distance=50&cond=Anemia&intr=Iron%20fortified%20lentils&rank=1) as NCT03516734.
Collapse
|
4
|
Hanley L, Dobson S, Marangoni AG. Legume milk-based yogurt mimetics structured using glucono-δ-lactone. Food Res Int 2024; 184:114259. [PMID: 38609239 DOI: 10.1016/j.foodres.2024.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The potential to produce protein-structured vegan yogurts with legumes was explored to offer an alternative to conventional polysaccharide-based varieties. Glucono-δ-lactone (GDL) was employed as a slow acidifying agent and was investigated for its ability to generate cold-set, yogurt-like gels using soy and lentil milks made using minimal processing steps. Soy (5.3 % protein) and lentil (6.1 % protein) milks were successfully gelled by GDL at concentrations of 0.5 % and 1 % w/w. Soy and lentil milks experienced similar acidification profiles and demonstrated good fits with double-exponential decay models. The physical properties of these legume gels were evaluated and compared to a commercial stirred dairy yogurt. Penetration tests were carried out on intact gels, then repeated after stirring. All intact soy samples demonstrated significantly stronger gel structures compared to the commercial yogurt, and most experienced greater amounts of brittleness. Results showed that the stirring of gels caused a notable decrease in firmness and brittleness in the soy gels, making them more similar to the control. Power-law modelling of viscosity curves demonstrated that all samples experienced non-Newtonian flow behavior (n < 0.29). Susceptibility to syneresis was measured by the degree of liquid loss following centrifugation. The optimization of protein type and GDL concentration to replicate the physical properties of dairy-based yogurts can enhance their consumer acceptance and provide a more customizable and controlled approach alternative to traditional fermentation methods.
Collapse
|
5
|
Avezum L, Madode YE, Mestres C, Achir N, Delpech C, Chapron M, Gibert O, Rajjou L, Rondet E. New insights into the rapid germination process of lentil and cowpea seeds: High thiamine and folate, and low α-galactoside content. Food Chem 2024; 439:138027. [PMID: 38029561 DOI: 10.1016/j.foodchem.2023.138027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
During germination sensu-stricto in pulses, an increase in the content of thiamine (B1) and folate (B9) vitamins is expected, along with a reduction in α-galactoside levels. The aim of our study was to optimize germination to increase the nutritional quality of lentils and cowpeas. An experimental design was carried out at 12 h and 24 h of imbibition to analyze the effects of temperature, light, and water content on thiamine, folate, and α-galactoside content. Germination increased thiamine content by 152% in lentils, while in cowpeas, the increase was only 10%. Folate content in cowpea increased by 33%, while α-galactoside content decreased by 99% in cowpeas and by 48% in lentils. Germination sensu-stricto can be safely implemented by any food company worldwide as it is simple and involves less sanitary risk than sprouting. This opens up opportunities for enhancing food nutrient content and new ways of processing pulses.
Collapse
|
6
|
Singh R, Guerrero M, Nickerson MT, Koksel F. Effects of extrusion screw speed, feed moisture content, and barrel temperature on the physical, techno-functional, and microstructural quality of texturized lentil protein. J Food Sci 2024; 89:2040-2053. [PMID: 38391095 DOI: 10.1111/1750-3841.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Utilizing lentil protein as a novel ingredient for producing texturized vegetable proteins (TVPs) can provide new opportunities for the production of next-generation hybrid meat products. TVPs from lentil protein isolate were manufactured using low-moisture extrusion cooking at different combinations of screw speed (SS), feed moisture content (MC), and barrel temperature (BT) profile. In total, seven different combinations of processing treatments were tested, and the resulting TVPs were characterized for their physical (rehydration ratio, texture profile analysis, color, and bulk density), techno-functional (oil and water holding capacities), and microstructural properties. The processing conditions of higher SS and lower MC resulted in increased values of several textural profile attributes (springiness, cohesiveness, and resilience), increased water holding capacity (WHC), and decreased bulk density. Compared to raw lentil protein, TVPs showed enhanced oil holding capacity, though WHC either decreased or remained constant. The extrusion response parameters (die pressure, torque, and specific mechanical energy) showed positive correlations with several physical properties (texture, WHC, and total color change), revealing their potential for serving as important TVP quality indicators. TVPs produced at SS, MC, and BT of 450 rpm, 30%, and 140°C, respectively, showed relatively better overall physical and techno-functional quality and can be used as meat extenders in hybrid meat patties. Overall, this research evidenced the viability of lentil protein as a potential ingredient for producing low-moisture TVPs.
Collapse
|
7
|
Maqoud F, Orlando A, Tricarico D, Antonacci M, Di Turi A, Giannelli G, Russo F. Anti-Inflammatory Effects of a Novel Acetonitrile-Water Extract of Lens Culinaris against LPS-Induced Damage in Caco-2 Cells. Int J Mol Sci 2024; 25:3802. [PMID: 38612611 PMCID: PMC11011527 DOI: 10.3390/ijms25073802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Natural compounds like flavonoids preserve intestinal mucosal integrity through their antioxidant, anti-inflammatory, and antimicrobial properties. Additionally, some flavonoids show prebiotic abilities, promoting the growth and activity of beneficial gut bacteria. This study investigates the protective impact of Lens culinaris extract (LE), which is abundant in flavonoids, on intestinal mucosal integrity during LPS-induced inflammation. Using Caco-2 cells as a model for the intestinal barrier, the study found that LE did not affect cell viability but played a cytoprotective role in the presence of LPS. LE improved transepithelial electrical resistance (TEER) and tight junction (TJ) protein levels, which are crucial for barrier integrity. It also countered the upregulation of pro-inflammatory genes TRPA1 and TRPV1 induced by LPS and reduced pro-inflammatory markers like TNF-α, NF-κB, IL-1β, and IL-8. Moreover, LE reversed the LPS-induced upregulation of AQP8 and TLR-4 expression. These findings emphasize the potential of natural compounds like LE to regulate the intestinal barrier and reduce inflammation's harmful effects on intestinal cells. More research is required to understand their mechanisms and explore therapeutic applications, especially for gastrointestinal inflammatory conditions.
Collapse
|
8
|
Muche F, Ezez D, Guadie A, Tefera M. Metal distribution and human health risk assessment in legumes crops (chickpea, lentils and peas) from Belesa districts, Ethiopia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1592-1601. [PMID: 37364006 DOI: 10.1080/09603123.2023.2229771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Accumulation of heavy metals in food is a major concern for humans' health. This study was aimed at determining the levels of Cu, Fe, Mn, Ni and Zn in chickpea, lentil and pea samples and evaluating the health risk for consumers. The concentrations (in mg/kg) of Cu, Fe, Mn, Zn, and Ni were varied from 23.6-48, 67.7-132.3, 15-26.5, 37.6-68.2, and 25.5-33.3 in chickpea, 39.8-80.5, 116.1-180.5, 12.1-21.6, 36.4-57.2, and 25.4-34.1 for lentil and 32-64.2, 51.6-100.0, 6.3-15, 25.3-42.5, and 25.5-48.5 for peas, respectively. Pearson correlation verified that strong positive correlations were observed between Cu and Zn in lentils, Ni and Mn, Fe with Cu and Mn in peas. Target hazard quotients (THQ) except Ni in all samples, Cu in lentil and pea were < 1 and the hazard index (HI) values of all heavy metals were greater than 1, thus an appropriate strategy is required to reduce exposure to heavy metals.
Collapse
|
9
|
Badia-Olmos C, Sánchez-García J, Laguna L, Zúñiga E, Mónika Haros C, Maria Andrés A, Tarrega A. Flours from fermented lentil and quinoa grains as ingredients with new techno-functional properties. Food Res Int 2024; 177:113915. [PMID: 38225151 DOI: 10.1016/j.foodres.2023.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
The need to provide novel, nutritious plant-based products requires seeking high-value, sustainable protein sources, like quinoa and lentils, having an increased digestibility and lacking antinutrients. Fungal fermentation has evidenced enhanced nutritional value of flours obtained from these grains. However, research into techno-functional properties, essential to the new product development, is lacking. This study investigated the techno-functional properties of flours made from lentil and quinoa after fermenting them with Pleurotus ostreatus and subjecting them to two drying techniques (lyophilisation and hot air drying). In both cases, the fermentation led to noteworthy improvements in swelling and water holding capacity, especially in those lyophilised than those dried. In contrast, the emulsifying, foaming, thickening, and gelling capacities decreased significantly. The loss of abilities was more severe for dried grains than for lyophilized ones. The thermomechanical analysis of the fermented flours showed lower thickening and gelling potential compared to untreated flours. Microscopy images revealed that the state and structure of starch granules were affected by both fermentation and drying processes. Starch granules in lentils were partly pre-gelatinised and trapped in the cotyledon cell, resulting in limited thickening and gelling abilities. In contrast, in quinoa, starch underwent pre-gelatinisation and retrogradation during the fermentation process, promoting the production of resistant starch and increasing fibre content. This study presents the potential of treated flours as ingredients possessing unique attributes compared to protein and fibre-rich conventional products.
Collapse
|
10
|
Bugingo C, Brelsford M, Burrows M. Fungicide Sensitivity of Fusarium oxysporum f. sp. lentis and Fusarium acuminatum Affecting Lentil in the Northern Great Plains. PLANT DISEASE 2024; 108:286-290. [PMID: 37606958 DOI: 10.1094/pdis-07-23-1440-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fusarium oxysporum f. sp. lentis and F. acuminatum cause wilting and root rot in pulse crops including lentil. Fungicide seed treatments are widely used, but information about Fusarium spp. sensitivity in lentils is limited. Here, 30 F. oxysporum f. sp. lentis and 30 F. acuminatum isolates from Montana, southern Canada, North Dakota, and Washington were identified, tested for pathogenicity, and assayed for in vitro sensitivity to pyraclostrobin, prothioconazole, ipconazole, and thiophanate-methyl. F. oxysporum f. sp. lentis and F. acuminatum differed in their sensitivity to all fungicides. No resistant isolates were identified, but F. oxysporum f. sp. lentis had lower EC50 values in pyraclostrobin (averaging 0.47 μg a.i./ml) than F. acuminatum (averaging 0.89 μg a.i./ml) for mycelia assays. Both species had lower EC50 values in prothioconazole, averaging EC50 0.23 in F. oxysporum f. sp. lentis and 0.53 μg a.i./ml in F. acuminatum. F. oxysporum f. sp. lentis isolates had the lowest EC50 values on ipconazole compared to F. acuminatum (0.78 and 1.49 μg a.i./ml). The pathogens were least sensitive to thiophanate-methyl (1.74 μg a.i./ml for F. oxysporum f. sp. lentis and 1.91 μg a.i./ml for F. acuminatum). Overall sensitivity to the fungicides was higher in F. oxysporum f. sp. lentis than F. acuminatum. This study provides reference EC50 values while pointing to the possibility of differential fungicide efficacies on Fusarium spp. This will be helpful to monitor shifts in sensitivity of Fusarium spp. and devise robust root rot/wilt management approaches.
Collapse
|
11
|
De Angelis D, Latrofa V, Squeo G, Pasqualone A, Summo C. Dry-fractionated protein concentrate as egg replacer in sponge cake: how the rheological properties of the batters affect the physical and structural quality of the products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1190-1199. [PMID: 37752603 DOI: 10.1002/jsfa.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Egg replacement is a notable food trend for academics and industry. Dry-fractionated protein concentrates (DFp) are minimally processed and sustainable ingredients. DFp from chickpea, red lentil and mung bean, prepared as aqueous dispersions at 20-40% (w/w), were used to replace egg in sponge cakes. To understand the effect of DFp on the physicochemical features of sponge cakes, the batter rheological properties (i.e., flow behavior, frequency-dependent and temperature-dependent behaviors) were investigated. RESULTS Frequency sweep revealed a higher storage modulus (G') than loss modulus (G″), indicating predominantly elastic-like behavior, dependent on the frequency. Increasing DFp content, especially at 40%, resulted in firmer batters, indicated by elevated apparent viscosity. During temperature sweep, G' increased starting from 80 °C in all DFp-based batters, indicating protein and starch conformational changes. Higher DFp content better simulated the egg behavior, affecting specific volume and thickness variation after baking but resulting in harder cakes. Crumb structure was similar to the control, highlighting that DFp can emulate the egg behavior in cake preparation. Protein content in cakes containing 30% DFp was similar to the control. However, the addition of DFp caused an increase in phytic acid. Sensory analysis of sponge cakes revealed differences in crust color, sweetness and legume flavor, with minimal effect on astringency. Chickpea and lentil DFp are suggested as preferred alternatives because of their to milder sensory impact. CONCLUSION Overall, eggs in cake formulation can be substituted by plant-based protein produced by dry fractionation. However, further research is essential to evaluate the nutritional characteristics. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
|
12
|
Sanjeevi N, Monsivais P. Consumption Trends and Eating Context of Lentils and Dried Peas in the United States: A Nationally Representative Study. Nutrients 2024; 16:277. [PMID: 38257171 PMCID: PMC10819653 DOI: 10.3390/nu16020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Incorporation of lentils and dried peas could form the basis of a nutrient-rich diet; yet, they are among the least-consumed legumes in the United States (US). The objective of this study was to examine the prevalence of lentils/dried peas consumption in the US over time and across socio-demographic groups, as well as to examine the eating context of these foods. METHODS Analyses included adults (aged 18 years or older) and children (aged 3-17 years) participating in National Health and Nutrition Examination Survey (NHANES) 2003-2004 through 2017-2018. Participants consuming lentils/dried peas on one or both of the 24-h dietary recalls were categorized as consumers. RESULTS Although an increasing time trend in prevalence of consumption was observed over the study period, prevalence of lentils/dried peas consumption was less than 7% in NHANES 2017-2018 in adults and children. Demographic differences were observed, such that a greater proportion of non-Hispanic Asians were classified as consumers. Lentils/dried peas were primarily obtained from grocery stores and supermarkets. CONCLUSIONS Although there are signs of rising acceptance of dried peas and lentils, the low prevalence of lentils/dried peas consumption suggests that understanding barriers to consumption of these foods could further identify opportunities to improve their consumption.
Collapse
|
13
|
Gasiński A, Kawa-Rygielska J. Assessment of green lentil malt as a substrate for gluten-free beer brewing. Sci Rep 2024; 14:504. [PMID: 38177258 PMCID: PMC10767091 DOI: 10.1038/s41598-023-50724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024] Open
Abstract
The aim of this study was to analyze whether it is possible to brew beer without using cereals so that the produced beverage could be easily accessible for the population suffering from celiac disease and other gluten-related disorders. Green lentil seeds were malted and then mashed using a congress mashing procedure to assess their advantages and disadvantages in the brewing process. Based on the congress mashing procedure, the mashing process needed to produce beer was developed, and beers were produced from the lentil malts germinated during malting for 96 h, 120 h and 144 h. It was possible to produce beers from the lentil malts; however, they were characterized by a lower alcohol content, lower degree of attenuation and some discrepancies between the concentrations of various volatiles (such as acetaldehyde, ethyl acetate, and 1-propanol) compared to the control beer produced from barley malt.
Collapse
|
14
|
Kumar R, Kumari VV, Gujjar RS, Kumari M, Goswami SK, Datta J, Pal S, Jha SK, Kumar A, Pathak AD, Skalicky M, Siddiqui MH, Hossain A. Evaluating the imazethapyr herbicide mediated regulation of phenol and glutathione metabolism and antioxidant activity in lentil seedlings. PeerJ 2024; 12:e16370. [PMID: 38188166 PMCID: PMC10771082 DOI: 10.7717/peerj.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/08/2023] [Indexed: 01/09/2024] Open
Abstract
The imidazolinone group of herbicides generally work for controlling weeds by limiting the synthesis of the aceto-hydroxy-acid enzyme, which is linked to the biosynthesis of branched-chain amino acids in plant cells. The herbicide imazethapyr is from the class and the active ingredient of this herbicide is the same as other herbicides Contour, Hammer, Overtop, Passport, Pivot, Pursuit, Pursuit Plus, and Resolve. It is commonly used for controlling weeds in soybeans, alfalfa hay, corn, rice, peanuts, etc. Generally, the herbicide imazethapyr is safe and non-toxic for target crops and environmentally friendly when it is used at low concentration levels. Even though crops are extremely susceptible to herbicide treatment at the seedling stage, there have been no observations of its higher dose on lentils (Lens culinaris Medik.) at that stage. The current study reports the consequence of imazethapyr treatment on phenolic acid and flavonoid contents along with the antioxidant activity of the phenolic extract. Imazethapyr treatment significantly increased the activities of several antioxidant enzymes, including phenylalanine ammonia lyase (PAL), phenol oxidase (POD), glutathione reductase (GR), and glutathione-s-transferase (GST), in lentil seedlings at doses of 0 RFD, 0.5 RFD, 1 RFD, 1.25 RFD, 1.5 RFD, and 2 RFD. Application of imazethapyr resulted in the 3.2 to 26.31 and 4.57-27.85% increase in mean phenolic acid and flavonoid content, respectively, over control. However, the consequent fold increase in mean antioxidant activity under 2, 2- diphenylpicrylhdrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay system was in the range of 1.17-1.85 and 1.47-2.03%. Mean PAL and POD activities increased by 1.63 to 3.66 and 1.71 to 3.35-fold, respectively, in agreement with the rise in phenolic compounds, indicating that these enzyme's activities were modulated in response to herbicide treatment. Following herbicide treatments, the mean thiol content also increased significantly in corroboration with the enhancement in GR activity in a dose-dependent approach. A similar increase in GST activity was also observed with increasing herbicide dose.
Collapse
|
15
|
Ahmed J, Giri BR, Reza MA, Qasim SSB, Thomas L, Al-Attar H, Maniruzzaman M. Twin-screw extrusion of vitamin D3/iron-blend granules in corn and lentil composite flours: Stability, microstructure, and interaction of vitamin D3 with human osteoblast cells. J Food Sci 2024; 89:435-449. [PMID: 38018266 DOI: 10.1111/1750-3841.16841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Vitamin D3 (VD3) and iron-blend granules were blended with corn and lentil composite flour (75/25, w/w) and fed into a pilot-scale twin-screw extruder to produce ready-to-eat snacks. The morphology and microstructure of extruded snacks were examined using scanning electron microscopy with energy-dispersive X-ray (SEM-EDX), X-ray powder diffraction, and FT-IR. Differential scanning calorimetry and thermogravimetric analysis measured the melting temperature and thermal stability of the extrudates. SEM and FT-IR analysis demonstrate that micronutrients are mixed well in formulations used in extrudates at high shear and high temperatures. The SEM-EDX exhibited the presence of iron, whereas high performance liquid chromatography measurements confirmed the significant retention of VD3 in the extruded snacks. The interaction between VD3 and human osteoblast cells was studied using live imaging and the MMT assay. Overall, for the first time, VD3 and Fe2+ blend granules have been used in an extrusion platform, which has significant potential for the intervention of VD3 and iron deficiencies. PRACTICAL APPLICATION: For the first time, we reported the use of VD3/iron-blend granules in extruded products. The findings of this work demonstrated the thermal stability and capability of providing adequate quantities of VD3 and iron in corn flour/lentil flour/VD3-iron blend extruded snacks. Furthermore, the interaction of VD3 with osteoblast cells highlights the potential health benefits of the extrudates.
Collapse
|
16
|
Marshall J, Vargas A, Bett K. B vitamin quantification in lentil seed tissues using ultra-performance liquid chromatography-selected reaction monitoring mass spectrometry. Food Chem 2024; 430:136922. [PMID: 37517945 DOI: 10.1016/j.foodchem.2023.136922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Lentils are a nutritious food in the human diet. High in protein and with low glycemic index, lentils are also a source of folate and other B vitamins. Understanding variability in B vitamin contents among lentils will allow breeders to select for increased levels. We analyzed 34 cultivated and three wild genotypes for vitamins B1, B2, B3, B5, B6, B7, and B9 in the cotyledons and seed coats. Variation for all B vitamins was observed across the genotypes. Cotyledons had higher concentrations of B1 and B3, while seed coats had higher concentrations of B2, B5, B6, and B9. Wild accessions had the highest concentrations of vitamin B9 and were among the highest for B2. Differential distribution of B vitamins across seed tissues and lentil genotypes has implications for consumption and for breeding. There is useful genetic variability which could be used to increase B vitamin levels in future lentil varieties.
Collapse
|
17
|
Sánchez-García J, Muñoz-Pina S, García-Hernández J, Heredia A, Andrés A. Volatile profile of quinoa and lentil flour under fungal fermentation and drying. Food Chem 2024; 430:137082. [PMID: 37549623 DOI: 10.1016/j.foodchem.2023.137082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Solid-state fermentation reportedly improves the nutritional and sensory properties of legumes and pseudocereals. This study examined changes in the volatile profile using HS-SPME-GC-MS of two varieties of lentil and quinoa flour fermented with Pleurotus ostreatus and dried using hot-air drying and lyophilisation. Fermentation significantly increased the volatile profile. Pardina lentil flour showed a 570% increase in its volatile profile, and 10 compounds were created. In white quinoa, the total area rose from 96 to 4500, and 30 compounds were created. Compounds such as 1-octen-3-ol, benzaldehyde, 3-octanone and hexanal were generated during fermentation, providing a sweet, grassy, cocoa flavour. Hot-air drying led to decrease of over 40% in total peak area. Dried fermented flour retained higher levels of compounds that provide a sweet, cocoa aroma. Air-drying temperature had no significant influence on the volatile profile. This a allows the inclusion of these flours in a wide variety of food products.
Collapse
|
18
|
Barnett AL, Wenger MJ, Yunus FM, Jalal C, DellaValle DM. The Effect of Iron-Fortified Lentils on Blood and Cognitive Status among Adolescent Girls in Bangladesh. Nutrients 2023; 15:5001. [PMID: 38068859 PMCID: PMC10707902 DOI: 10.3390/nu15235001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Iron deficiency is highly prevalent in South Asia, especially among women and children in Bangladesh. Declines in cognitive performance are among the many functional consequences of iron deficiency. OBJECTIVE We tested the hypothesis that, over the course of a 4-month iron fortification trial, cognitive performance would improve, and that improvement would be related to improvements in iron status. METHODS Participants included 359 adolescent girls attending Bangladesh Rural Advancement Committee (BRAC) clubs as a subsample of a larger double-blind, cluster-randomized community trial in which participants were assigned to one of three conditions: a condition in which no lentils were supplied (NL, n = 118, but which had the usual intake of lentils), a control (non-fortified) lentil condition (CL, n = 124), and an iron-fortified lentil condition (FL, n = 117). In the FL and CL conditions, approximately 200 g of cooked lentils were served five days per week for a total of 85 feeding days. In addition to biomarkers of iron status, five cognitive tasks were measured at baseline (BL) and endline (EL): simple reaction time task (SRT), go/no-go task (GNG), attentional network task (ANT), the Sternberg memory search Task (SMS), and a cued recognition task (CRT). RESULTS Cognitive performance at EL was significantly better for those in the FL relative to the CL and NL conditions, with this being true for at least one variable in each task, except for the GNG. In addition, there were consistent improvements in cognitive performance for those participants whose iron status improved. Although there were overall declines in iron status from BL to EL, the declines were smallest for those in the FL condition, and iron status was significantly better for those in FL condition at EL, relative to those in the CL and NL conditions. CONCLUSIONS the provision of iron-fortified lentils provided a protective effect on iron status in the context of declines in iron status and supported higher levels of cognitive performance for adolescent girls at-risk of developing iron deficiency.
Collapse
|
19
|
Das T, Sen A, Mahapatra S. Characterization of plant growth-promoting bacteria isolated from rhizosphere of lentil (Lens culinaris L.) grown in two different soil orders of eastern India. Braz J Microbiol 2023; 54:3101-3111. [PMID: 37620686 PMCID: PMC10689660 DOI: 10.1007/s42770-023-01100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Lentil, which is an important grain legume, can be co-inoculated with plant growth-promoting rhizobia and rhizobacteria to boost nitrogen fixation, increase biomass, and a possibility for early nodulation. The goal of the ongoing study was to identify plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of lentil growing soils in eastern India. Sixteen rhizosphere bacteria were isolated from two different soil orders, and their capacity to solubilize phosphate and generate hydrogen cyanide (HCN), siderophore, and indole acetic acid (IAA) was assessed. The three best strains were selected for compatibility study with twenty Rhizobium isolated from lentil root nodules. The isolated rhizobacteria were able to produce ammonia and different mycolytic enzymes. Isolate B3 produced the highest amount of IAA and siderophore; the highest amount of phosphate solubilized by PSB1 strain; and isolates AB1, AB2, B3, PS2, and PSB2 produced considerable amount of HCN gas. Among all the isolates, B3, PSB1, and PS2 performed better based on different plant growth-promoting abilities. These three bacterial isolates showed compatible reaction with most of the Rhizobium strains. Isolates B3, PS2, and PSB1 were identified as Bacillus subtilis (MT729775), Pseudomonas palmensis (MT729782), and Paraburkholderia caribenis (MZ956803), respectively. Lentil shoot weight, root length, nodule number, N uptake, and P uptake were increased in the pot culture experiment when inoculated with these strains. PGPR strain B3 performed best among the three strains in the pot culture experiment. Strain B3 can be used as potential biofertilizer along with compatible Rhizobium species for better production of lentil.
Collapse
|
20
|
Theologidou GS, Ipsilantis I, Tsialtas IT. Leaf manganese and phenolics as proxies of soil acidification and phosphorus acquisition mechanisms in lentil cultivars on alkaline soil. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1028-1036. [PMID: 37806674 DOI: 10.1071/fp23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Leaf manganese (Mn) concentration has been used as a proxy for root exudation and phosphorus (P) uptake under controlled conditions, but there are limited field studies that confirm its validity. On an alkaline, P-poor soil, four lentil cultivars ('Samos', 'Thessaly', 'Flip', 'Algeria') received two P rates (0 and 26.2kgPha-1 ), for two growing seasons, to study whether aboveground assessments [leaf P, Mn, phenolic concentration (TPhe)] can approximate rhizosphere physiological traits related to P acquisition [soil acidification (ΔpH), arbuscular mycorrhizal fungi (AMF) colonisation, acid phosphatase activity (APase)]. Phosphorus addition had no effect on the determined traits. Cultivars differed in leaf P, Mn, TPhe and AMF, but there was no clear pattern relating aboveground traits to rhizosphere traits related to P acquisition, thus not confirming that leaf Mn can be a proxy of root exudation. Of three growth stages [V 7-8, R1 (first bloom), R4 (flat pod)], R1 seemed to be critical, showing the highest leaf P, ΔpH, AMF and TPhe. Precipitation and temperatures over the growing season were determinants of lentil responses affecting rhizosphere activity, soil P availability and finally leaf traits. In conclusion, in lentil on alkaline and P-limiting soils, high leaf Mn and phenolic concentration are not reliable indicators of rhizosphere P-acquiring mechanisms.
Collapse
|
21
|
Brescia F, Sillo F, Franchi E, Pietrini I, Montesano V, Marino G, Haworth M, Zampieri E, Fusini D, Schillaci M, Papa R, Santamarina C, Vita F, Chitarra W, Nerva L, Petruzzelli G, Mennone C, Centritto M, Balestrini R. The 'microbiome counterattack': Insights on the soil and root-associated microbiome in diverse chickpea and lentil genotypes after an erratic rainfall event. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:459-483. [PMID: 37226644 PMCID: PMC10667653 DOI: 10.1111/1758-2229.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later. Rhizobia were associated with the soil of the more productive chickpea genotypes in terms of flower and fruit number. The root-associated bacteria and fungi were surveyed in lentil genotypes, considering that several parcels showed disease symptoms. The metabarcoding analysis revealed that reads related to fungal pathogens were significantly associated with one lentil genotype. A lentil core prokaryotic community common to all genotypes was identified as well as a genotype-specific one. A higher number of specific bacterial taxa and an enhanced tolerance to fungal diseases characterized a lentil landrace compared to the commercial varieties. This outcome supported the hypothesis that locally adapted landraces might have a high recruiting efficiency of beneficial soil microbes.
Collapse
|
22
|
Sarker RR, Rashid MH, Islam MA, Jahiruddin M, Islam KR, Jahangir MMR. Conservation agriculture's impact on total and labile organic carbon pools in calcareous and non-calcareous floodplain soils under a sub-tropical rice-based system. PLoS One 2023; 18:e0293257. [PMID: 37939097 PMCID: PMC10631677 DOI: 10.1371/journal.pone.0293257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
To evaluate the effects of conservation agriculture (CA) on SOC pools and their lability, field experiments (2015-2020) were conducted on contrasting soils under subtropical climates. The experiment on non-calcareous soils, was comprised of tillage (minimum [MT] vs. conventional [CT]) in main plots, cropping systems (Wheat [Triticum aestivum]-Aus and Aman rice [Oryza sativa L.], WRR; Lentil [Lens culinaris]-Aus and Aman rice, LRR; and Mustard [Brassica nigra]- Boro and Aman rice, MRR) in the sub-plots, and crop residue (with or without 20% residue) in the sub-sub plots. The experiment on calcareous soils, was comprised of tillage (strip-till, ST; no-till, NT; and CT) and crop residue (high residue, HR at 50% by height vs. low residue, LR at 15%). Results showed that the MT had higher SOC contents by 18.8% than the CT in non-calcareous soils. Likewise, SOC was 12.5% and 6.7% higher in the NT and ST, respectively, than in the CT in calcareous soils. Significantly higher particulate organic (POC), permanganate oxidizable (POXC), and microbial biomass carbon (MBC) were observed in the MT, NT, and ST than in the CT at both locations. Reduced tillage with residue retention under LRR had a higher SOC, including labile C pools compared to WRR and MRR systems. Similarly, carbon management index (1.2-1.5 and 1.0-1.2) in both soils had significant positive correlations with SOC lability via POXC, POC, and MBC pools, indicating a SOC sequestration potential. In conclusion, our results showed positive effects of CA on SOC and its lability across soils.
Collapse
|
23
|
Bulut M, Wendenburg R, Bitocchi E, Bellucci E, Kroc M, Gioia T, Susek K, Papa R, Fernie AR, Alseekh S. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1152-1171. [PMID: 37285370 DOI: 10.1111/tpj.16329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.
Collapse
|
24
|
Sánchez-García J, Muñoz-Pina S, García-Hernández J, Tárrega A, Heredia A, Andrés A. In Vitro Digestion Assessment (Standard vs. Older Adult Model) on Antioxidant Properties and Mineral Bioaccessibility of Fermented Dried Lentils and Quinoa. Molecules 2023; 28:7298. [PMID: 37959717 PMCID: PMC10649959 DOI: 10.3390/molecules28217298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The growing number of older adults necessitates tailored food options that accommodate the specific diseases and nutritional deficiencies linked with ageing. This study aims to investigate the influence of age-related digestive conditions in vitro on the phenolic profile, antioxidant activity, and bioaccessibility of minerals (Ca, Fe, and Mg) in two types of unfermented, fermented, and fermented dried quinoa and lentils. Solid-state fermentation, combined with drying at 70 °C, significantly boosted the total phenolic content in Castellana and Pardina lentils from 5.05 and 6.6 to 10.5 and 7.5 mg gallic acid/g dry weight, respectively, in the bioaccessible fraction following the standard digestion model, compared to the unfermented samples. The phenolic profile post-digestion revealed elevated levels of vanillic and caffeic acids in Castellana lentils, and vanillic acid in Pardina lentils, while caffeic acids in Castellana lentils were not detected in the bioaccessible fraction. The highest antioxidant potency composite index was observed in digested fermented dried Castellana lentils, with white quinoa samples exhibiting potency above 80%. Mineral bioaccessibility was greater in fermented and fermented dried samples compared to unfermented ones. Finally, the digestive changes that occur with ageing did not significantly affect mineral bioaccessibility, but compromised the phenolic profile and antioxidant activity.
Collapse
|
25
|
Lopes C, Akel Ferruccio C, de Albuquerque Sales AC, Tavares GM, de Castro RJS. Effects of processing technologies on the antioxidant properties of common bean (Phaseolus vulgaris L.) and lentil (Lens culinaris) proteins and their hydrolysates. Food Res Int 2023; 172:113190. [PMID: 37689943 DOI: 10.1016/j.foodres.2023.113190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The effects of ultrasound (280 W, 5 min), heat treatment (75 °C and 90 °C for 10 min) and microfluidization (125 MPa, 4 cycles) as pre or post treatments and their combination with enzymatic hydrolysis on the antioxidant properties of common bean and lentil protein hydrolysates were investigated. In general, hydrolysis resulted in increases of antioxidant activity, both in the presence and absence of processing technologies. The increases reached maximum values of 158% (ABTS), 105% (DPPH), 279% (FRAP) and 107% (TAC) for the bean protein hydrolysates submitted to post-treatment with ultrasound (ABTS, FRAP and TAC) and pre-treatment with microfluidization (DPPH), compared to their respective controls (untreated samples). For lentil proteins, the increases reached 197% (ABTS), 170% (DPPH), 690% (FRAP) and 213% (TAC) for samples submitted to ultrasound post-treatment (ABTS), microfluidization pre-treatment (DPPH) and post-treatment (FRAP), and 75 °C pre-treatment (TAC) compared to their respective controls. Surface hydrophobicity and molecular weight profile by SEC-HPLC analysis indicated modifications in the structures of proteins in function of the different processing technologies. For both proteins, electrophoresis indicated a similar profile for all hydrolysates, regardless of the process applied as pre or post treatment. Solubility of bean and lentil protein concentrates was also improved. These results indicated that different processing technologies can be successfully used in association with enzymatic hydrolysis to improve the antioxidant properties of lentil and bean proteins.
Collapse
|