1
|
Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285:248-51. [PMID: 10398600 DOI: 10.1126/science.285.5425.248] [Citation(s) in RCA: 2694] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.
Collapse
|
|
26 |
2694 |
2
|
Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 1985; 229:869-71. [PMID: 3895437 DOI: 10.1126/science.3895437] [Citation(s) in RCA: 1645] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A highly specific polyclonal rabbit antiserum directed against murine cachectin/tumor necrosis factor (TNF) was prepared. When BALB/c mice were passively immunized with the antiserum or with purified immune globulin, they were protected against the lethal effect of the endotoxin lipopolysaccharide produced by Escherichia coli. The prophylactic effect was dose-dependent and was most effective when the antiserum was administered prior to the injection of the endotoxin. Antiserum to cachectin/TNF did not mitigate the febrile response of endotoxin-treated animals, and very high doses of endotoxin could overcome the protective effect. The median lethal dose of endotoxin in mice pretreated with 50 microliters of the specific antiserum was approximately 2.5 times greater the median lethal dose for controls given nonimmune serum. The data suggest that cachectin/TNF is one of the principal mediators of the lethal effect of endotoxin.
Collapse
|
|
40 |
1645 |
3
|
Abstract
A method for the investigation of the acute toxicity of an unknown chemical substance, with an estimation on the LD50, is described. Using this, it is possible to obtain with 13 experimental animals adequate information on the acute toxicity and on the LD50. This method has no limitations and applies to drugs, agricultural and industrial chemicals. It can be used for every route of administration.
Collapse
|
Comparative Study |
42 |
1130 |
4
|
Safe SH. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 1994; 24:87-149. [PMID: 8037844 DOI: 10.3109/10408449409049308] [Citation(s) in RCA: 1026] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Commercial polychlorinated biphenyls (PCBs) and environmental extracts contain complex mixtures of congeners that can be unequivocally identified and quantitated. Some PCB mixtures elicit a spectrum of biochemical and toxic responses in humans and laboratory animals and many of these effects resemble those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons, which act through the aryl hydrocarbon (Ah)-receptor signal transduction pathway. Structure-activity relationships developed for PCB congeners and metabolites have demonstrated that several structural classes of compounds exhibit diverse biochemical and toxic responses. Structure-toxicity studies suggest that the coplanar PCBs, namely, 3,3',4,4'-tetrachlorobiphenyl (tetraCB), 3,3',4,4',5-pentaCB, 3,3',4,4',5,5'-hexaCB, and their monoortho analogs are Ah-receptor agonists and contribute significantly to the toxicity of the PCB mixtures. Previous studies with TCDD and structurally related compounds have utilized a toxic equivalency factor (TEF) approach for the hazard and risk assessment of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) congeners in which the TCDD or toxic TEQ = sigma([PCDFi x TEFi]n)+sigma([PCDDi x TEFi]n) equivalent (TEQ) of a mixture is related to the TEFs and concentrations of the individual (i) congeners as indicated in the equation (note: n = the number of congeners). Based on the results of quantitative structure-activity studies, the following TEF values have been estimated by making use of the data available for the coplanar and monoortho coplanar PCBs: 3,3',4,4',5-pentaCB, 0.1; 3,3',4,4',5,5'-hexaCB, 0.05; 3,3',4,4'-tetraCB, 0.01; 2,3,3',4,4'-pentaCB, 0.001; 2,3',4,4',5-pentaCB, 0.0001; 2,3,3',4,4',5-hexaCB, 0.0003; 2,3,3',4,4',5'-hexaCB, 0.0003; 2',3,4,4',5-pentaCB, 0.00005; and 2,3,4,4',5-pentaCB, 0.0002. Application of the TEF approach for the risk assessment of PCBs must be used with considerable caution. Analysis of the results of laboratory animal and wildlife studies suggests that the predictive value of TEQs for PCBs may be both species- and response-dependent because both additive and nonadditive (antagonistic) interactions have been observed with PCB mixtures. In the latter case, the TEF approach would significantly overestimate the toxicity of a PCB mixture. Analysis of the rodent carcinogenicity data for Aroclor 1260 using the TEF approach suggests that this response is primarily Ah-receptor-independent. Thus, risk assessment of PCB mixtures that uses cancer as the endpoint cannot solely utilize a TEF approach and requires more quantitative information on the individual congeners contributing to the tumor-promoter activity of PCB mixtures.
Collapse
|
Review |
31 |
1026 |
5
|
Abstract
Exposure to the metalloid arsenic is a daily occurrence because of its environmental pervasiveness. Arsenic, which is found in several different chemical forms and oxidation states, causes acute and chronic adverse health effects, including cancer. The metabolism of arsenic has an important role in its toxicity. The metabolism involves reduction to a trivalent state and oxidative methylation to a pentavalent state. The trivalent arsenicals, including those methylated, have more potent toxic properties than the pentavalent arsenicals. The exact mechanism of the action of arsenic is not known, but several hypotheses have been proposed. At a biochemical level, inorganic arsenic in the pentavalent state may replace phosphate in several reactions. In the trivalent state, inorganic and organic (methylated) arsenic may react with critical thiols in proteins and inhibit their activity. Regarding cancer, potential mechanisms include genotoxicity, altered DNA methylation, oxidative stress, altered cell proliferation, co-carcinogenesis, and tumor promotion. A better understanding of the mechanism(s) of action of arsenic will make a more confident determination of the risks associated with exposure to this chemical.
Collapse
|
Review |
23 |
957 |
6
|
Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. CHEMOSPHERE 2008; 71:1308-16. [PMID: 18194809 DOI: 10.1016/j.chemosphere.2007.11.047] [Citation(s) in RCA: 886] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 11/02/2007] [Accepted: 11/15/2007] [Indexed: 05/20/2023]
Abstract
As the production of nanoparticles of ZnO, TiO2 and CuO is increasing, their (eco)toxicity to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus was studied with a special emphasis on product formulations (nano or bulk oxides) and solubilization of particles. Our innovative approach based on the combination of traditional ecotoxicology methods and metal-specific recombinant biosensors allowed to clearly differentiate the toxic effects of metal oxides per se and solubilized metal ions. Suspensions of nano and bulk TiO2 were not toxic even at 20 g l(-1). All Zn formulations were very toxic: L(E)C50 (mg l(-1)) for bulk ZnO, nanoZnO and ZnSO4.7H2O: 1.8, 1.9, 1.1 (V. fischeri); 8.8, 3.2, 6.1 (D. magna) and 0.24, 0.18, 0.98 (T. platyurus), respectively. The toxicity was due to solubilized Zn ions as proved with recombinant Zn-sensor bacteria. Differently from Zn compounds, Cu compounds had different toxicities: L(E)C50 (mg l(-1)) for bulk CuO, nano CuO and CuSO4: 3811, 79, 1.6 (V. fischeri), 165, 3.2, 0,17 (D. magna) and 95, 2.1, 0.11 (T. platyurus), respectively. Cu-sensor bacteria showed that toxicity to V. fischeri and T. platyurus was largely explained by soluble Cu ions. However, for Daphnia magna, nano and bulk CuO proved less bioavailable than for bacterial Cu-sensor. This is the first evaluation of ZnO, CuO and TiO2 toxicity to V. fischeri and T. platyurus. For nano ZnO and nano CuO this is also a first study for D. magna.
Collapse
|
|
17 |
886 |
7
|
Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 2006; 439:344-8. [PMID: 16327776 PMCID: PMC1569948 DOI: 10.1038/nature04388] [Citation(s) in RCA: 827] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 10/25/2005] [Indexed: 12/14/2022]
Abstract
An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication. Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a 'cloud' of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection. Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population. According to this view, viral populations, rather than individual variants, are the target of evolutionary selection. Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
827 |
8
|
Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 66:319-29. [PMID: 15129773 DOI: 10.1016/j.aquatox.2003.09.008] [Citation(s) in RCA: 656] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This review summarises the wide range of toxicological effects of malachite green (MG), a triarylmethane dye on various fish species and certain mammals. MG is widely used in aquaculture as a parasiticide and in food, health, textile and other industries for one or the other purposes. It controls fungal attacks, protozoan infections and some other diseases caused by helminths on a wide variety of fish and other aquatic organisms. However, the dye has generated much concern regarding its use, due to its reported toxic effects. The toxicity of this dye increases with exposure time, temperature and concentration. It has been reported to cause carcinogenesis, mutagenesis, chromosomal fractures, teratogenecity and respiratory toxicity. Histopathological effects of MG include multi-organ tissue injury. Significant alterations occur in biochemical parameters of blood in MG exposed fish. Residues of MG and its reduced form, leucomalachite green have been reported from serum, liver, kidney, muscles and other tissues as also from eggs and fry. Toxicity occurs in some mammals, including organ damage, mutagenic, carcinogenic and developmental abnormalities. However, despite the large amount of data on its toxic effects, MG is still used as a parasiticide in aquaculture and other industries. It is concluded that the potential of alternative parasiticides, like humic acid, chlorine dioxide and Pyceze, should be explored to replace MG. Until then, MG should be used with extreme care at suitable concentrations and at times when the temperature is low. Removal of residual MG in treatment ponds should also be considered.
Collapse
|
Review |
21 |
656 |
9
|
Wörle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. NANO LETTERS 2006; 6:1261-8. [PMID: 16771591 DOI: 10.1021/nl060177c] [Citation(s) in RCA: 655] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
New materials of emerging technological importance are single-walled carbon nanotubes (SWCNTs). Because SWCNTs will be used in commercial products in huge amounts, their effects on human health and the environment have been addressed in several studies. Inhalation studies in vivo and submerse applications in vitro have been described with diverging results. Why some indicate a strong cytotoxicity and some do not is what we report on here. Data from A549 cells incubated with carbon nanotubes fake a strong cytotoxic effect within the MTT assay after 24 h that reaches roughly 50%, whereas the same treatment with SWCNTs, but detection with WST-1, reveals no cytotoxicity. LDH, FACS-assisted mitochondrial membrane potential determination, and Annexin-V/PI staining also reveal no cytotocicity. SWCNTs appear to interact with some tetrazolium salts such as MTT but not with others (such as WST-1, INT, XTT). This interference does not seem to affect the enzymatic reaction but lies rather in the insoluble nature of MTT-formazan. Our findings strongly suggest verifying cytotoxicity data with at least two or more independent test systems for this new class of materials (nanomaterials). Moreover, we intensely recommend standardizing nanotoxicological assays with regard to the material used: there is a clear need for reference materials. MTT-formazan crystals formed in the MTT reaction are lumped with nanotubes and offer a potential mechanism to guide bioremediation and clearance for SWCNTs from "contaminated" tissue. SWCNTs are good supporting materials for tissue growth, as attachment of focal adhesions and connections to the cytoskeleton suggest.
Collapse
|
|
19 |
655 |
10
|
Schmolka IR. Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1972; 6:571-82. [PMID: 4642986 DOI: 10.1002/jbm.820060609] [Citation(s) in RCA: 617] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
53 |
617 |
11
|
Lee KW, Shim WJ, Kwon OY, Kang JH. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11278-83. [PMID: 23988225 DOI: 10.1021/es401932b] [Citation(s) in RCA: 578] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We investigated the effects of three sizes of polystyrene (PS) microbeads (0.05, 0.5, and 6-μm diameter) on the survival, development, and fecundity of the copepod Tigriopus japonicus using acute and chronic toxicity tests. T. japonicus ingested and egested all three sizes of PS beads used and exhibited no selective feeding when phytoplankton were added. The copepods (nauplius and adult females) survived all sizes of PS beads and the various concentrations tested in the acute toxicity test for 96 h. In the two-generation chronic toxicity test, 0.05-μm PS beads at a concentration greater than 12.5 μg/mL caused the mortality of nauplii and copepodites in the F0 generation and even triggered mortality at a concentration of 1.25 μg/mL in the next generation. In the 0.5-μm PS bead treatment, despite there being no significant effect on the F0 generation, the highest concentration (25 μg/mL) induced a significant decrease in survival compared with the control population in the F1 generation. The 6-μm PS beads did not affect the survival of T. japonicus over two generations. The 0.5- and 6-μm PS beads caused a significant decrease in fecundity at all concentrations. These results suggest that microplastics such as micro- or nanosized PS beads may have negative impacts on marine copepods.
Collapse
|
|
12 |
578 |
12
|
Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2008; 27:1972-8. [PMID: 18690762 DOI: 10.1897/08-002.1] [Citation(s) in RCA: 551] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 04/08/2008] [Indexed: 05/20/2023]
Abstract
Metallic nanoparticles are among the most widely used types of engineered nanomaterials; however, little is known about their environmental fate and effects. To assess potential environmental effects of engineered nanometals, it is important to determine which species are sensitive to adverse effects of various nanomaterials. In the present study, zebrafish, daphnids, and an algal species were used as models of various trophic levels and feeding strategies. To understand whether observed effects are caused by dissolution, particles were characterized before testing, and particle concentration and dissolution were determined during exposures. Organisms were exposed to silver, copper, aluminum, nickel, and cobalt as both nanoparticles and soluble salts as well as to titanium dioxide nanoparticles. Our results indicate that nanosilver and nanocopper cause toxicity in all organisms tested, with 48-h median lethal concentrations as low as 40 and 60 microg/L, respectively, in Daphnia pulex adults, whereas titanium dioxide did not cause toxicity in any of the tests. Susceptibility to nanometal toxicity differed among species, with filter-feeding invertebrates being markedly more susceptible to nanometal exposure compared with larger organisms (i.e., zebrafish). The role of dissolution in observed toxicity also varied, being minor for silver and copper but, apparently, accounting for most of the toxicity with nickel. Nanoparticulate forms of metals were less toxic than soluble forms based on mass added, but other dose metrics should be developed to accurately assess concentration-response relationships for nanoparticle exposures.
Collapse
|
|
17 |
551 |
13
|
Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006; 163:109-20. [PMID: 16289865 DOI: 10.1016/j.toxlet.2005.10.003] [Citation(s) in RCA: 535] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/10/2005] [Accepted: 10/04/2005] [Indexed: 01/28/2023]
Abstract
To assess the toxicity of copper nanoparticles (23.5 nm) in vivo, LD(50), morphological changes, pathological examinations and blood biochemical indexes of experimental mice are studied comparatively with micro-copper particles (17 microm) and cupric ions (CuCl(2).2H(2)O). The LD(50) for the nano-, micro-copper particles and cupric ions exposed to mice via oral gavage are 413, >5000 and 110 mg/kg body weight, respectively. The toxicity classes of nano and ionic copper particles both are class 3 (moderately toxic), and micro-copper is class 5 (practically non-toxic) of Hodge and Sterner Scale. Kidney, liver and spleen are found to be target organs of nano-copper particles. Nanoparticles induce gravely toxicological effects and heavy injuries on kidney, liver and spleen of experimental mice, but micro-copper particles do not, on mass basis. Results indicate a gender dependent feature of nanotoxicity. Several factors such as huge specific surface area, ultrahigh reactivity, exceeding consumption of H(+), etc. that likely cause the grave nanotoxicity observed in vivo are discussed.
Collapse
|
|
19 |
535 |
14
|
Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan Kim S, Seo MH. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 2001; 72:191-202. [PMID: 11389998 DOI: 10.1016/s0168-3659(01)00275-9] [Citation(s) in RCA: 533] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although the current clinical formulation of paclitaxel (Taxol) has a promising clinical activity against a wide variety of tumors, it has significant toxic side effects, some of which are associated with its formulation in a 1:1 (v/v) mixture of Cremophor EL and dehydrated alcohol. One of the problems associated with the intravenous administration of paclitaxel is its low solubility in water. Our study was designed to evaluate the pharmacokinetics, tissue distribution, toxicity and efficacy of a paclitaxel (Genexol)-containing biodegradable polymeric micellar system (Genexol-PM) in comparison to Taxol. Genexol-PM was newly developed by using a low molecular weight, nontoxic and biodegradable amphiphilic diblock copolymer, monomethoxy poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PDLLA) and paclitaxel (Genexol, Samyang Genex Co., Seoul, Korea). In a human cancer cell line model, Genexol-PM and Taxol showed comparable in vitro cytotoxicity against human ovarian cancer cell line OVCAR-3 and human breast cancer cell line MCF7. The maximum tolerated dose (MTD) of Genexol-PM and Taxol in nude mice was determined to be 60 and 20 mg/kg, respectively. The median lethal dose (LD(50)) in Sprague--Dawley rats was 205.4 mg/kg (male) and 221.6 mg/kg (female) for Genexol-PM, while 8.3 mg/kg (male) and 8.8 mg/kg (female) for Taxol. After intravenous administration of Genexol-PM in murine B16 melanoma-induced female SPF C57BL/6 mice at a dose of 50 mg/kg, the area under the plasma concentration-time curve (AUC) was similar to Taxol((R)) at a dose of 20 mg/kg, but biodistribution of paclitaxel after administration of Genexol-PM showed 2 to 3-fold higher levels in tissues including liver, spleen, kidneys, lungs, heart and tumor as compared to Taxol. The in vivo antitumor efficacy of Genexol-PM as measured by reduction in tumor volume of SKOV-3 human ovarian cancer implanted in nude (nu/nu) athymic mice and MX-1 human breast cancer implanted in Tac:Cr:(NCr)-nu athymic mice was significantly greater than that of Taxol. The results of cytotoxicity, MTD, LD(50) and antitumor efficacy suggest that Genexol-PM may have a great advantage over present-day chemotherapy with Taxol.
Collapse
|
|
24 |
533 |
15
|
Abstract
Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.
Collapse
|
research-article |
11 |
506 |
16
|
Omura S, Iwai Y, Hirano A, Nakagawa A, Awaya J, Tsuchya H, Takahashi Y, Masuma R. A new alkaloid AM-2282 OF Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J Antibiot (Tokyo) 1977; 30:275-82. [PMID: 863788 DOI: 10.7164/antibiotics.30.275] [Citation(s) in RCA: 490] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AM-2282, a new alkaloid has been isolated from cultures of Streptomyces sp. AM-2282 by solvent extraction and silica gel chromatography. The compound exhibits a strong absorption maximum at 292 nm and shows antimicrobial activity against fungi and yeast. The LD50 of its hydrochloride (i.p. in mice) is 6.6 mg/kg. The molecular formula of AM-2282 has been determined as C28H26N4O3. The producing strain, AM-2282 was classified as a new species and the name, Streptomyces staurosporeus AWAYA, TAKAHASHI and OMURA, nov. sp. is proposed.
Collapse
|
|
48 |
490 |
17
|
Cleuvers M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2004; 59:309-15. [PMID: 15388270 DOI: 10.1016/s0147-6513(03)00141-6] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/08/2003] [Accepted: 07/19/2003] [Indexed: 05/09/2023]
Abstract
The ecotoxicity of the nonsteroidal anti-inflammatory drugs (NSAIDs) diclofenac, ibuprofen, naproxen, and acetylsalicylic acid (ASA) has been evaluated using acute Daphnia and algal tests. Toxicities were relatively low, with half-maximal effective concentration (EC50) values obtained using Daphnia in the range from 68 to 166 mg L(-1) and from 72 to 626 mg L(-1) in the algal test. Acute effects of these substances seem to be quite improbable. The quantitative structure-activity relationships (QSAR) approach showed that all substances act by nonpolar narcosis; thus, the higher the n-octanol/water partitioning coefficient (log Kow) of the substances, the higher is their toxicity. Mixture toxicity of the compounds could be accurately predicted using the concept of concentration addition. Toxicity of the mixture was considerable, even at concentrations at which the single substances showed no or only very slight effects, with some deviations in the Daphnia test, which could be explained by incompatibility of the very steep dose-response curves and the probit analysis of the data. Because pharmaceuticals in the aquatic environment occur usually as mixtures, an accurate prediction of the mixture toxicity is indispensable for environmental risk assessment.
Collapse
|
|
21 |
480 |
18
|
Abstract
Polyvinyl alcohols (PVA) (CAS no. 9002-89-5) are synthetic polymers used in a wide range of industrial, commercial, medical and food applications. The purpose of this review, this critical evaluation of the available information on PVA, is to support the safety of PVA as a coating agent for pharmaceutical and dietary supplement products. All the available information on PVA gleaned from a comprehensive search of the scientific literature were critically evaluated. Orally administered PVA is relatively harmless. The safety of PVA is based on the following: (1) the acute oral toxicity of PVA is very low, with LD(50)s in the range of 15-20 g/kg; (2) orally administered PVA is very poorly absorbed from the gastrointestinal tract; (3) PVA does not accumulate in the body when administered orally; (4) PVA is not mutagenic or clastogenic; and (5) NOAELs of orally administered PVA in male and female rats were 5000 mg/kg body weight/day in the 90-day dietary study and 5000 mg/kg body weight/day in the two-generation reproduction study, which was the highest dose tested. A critical evaluation of the existing information on PVA supports its safety for use as a coating agent for pharmaceutical and dietary supplement products.
Collapse
|
Review |
22 |
478 |
19
|
Abstract
Nrf2 is a member of the "cap 'n' collar" family of transcription factors. These transcription factors bind to the NF-E2 binding sites (GCTGAGTCA) that are essential for the regulation of erythroid-specific genes. Nrf2 is expressed in a wide range of tissues, many of which are sites of expression for phase 2 detoxification genes. Nrf2(-/-) mice are viable and have a normal phenotype under normal laboratory conditions. The NF-E2 binding site is a subset of the antioxidant response elements that have the sequence GCNNNGTCA. The antioxidant response elements are regulatory sequences found on promoters of several phase 2 detoxification genes that are inducible by xenobiotics and antioxidants. We report here that Nrf2(-/-) mice are extremely susceptible to the administration of the antioxidant butylated hydroxytoluene. With doses of butylated hydroxytoluene that are tolerated by wild-type mice, the Nrf2(-/-) mice succumb from acute respiratory distress syndrome. Gene expression studies show that the expression of several detoxification enzymes is altered in the Nrf2(-/-) mice. The Nrf2(-/-) mice may prove to be a good in vivo model for toxicological studies. As oxidative damage causes DNA breakage, these mice may also be useful for testing carcinogenic agents.
Collapse
|
research-article |
26 |
471 |
20
|
Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. NATURE NANOTECHNOLOGY 2011; 6:175-8. [PMID: 21317892 DOI: 10.1038/nnano.2011.10] [Citation(s) in RCA: 449] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/14/2011] [Indexed: 05/23/2023]
Abstract
It is expected that the number and variety of engineered nanoparticles will increase rapidly over the next few years, and there is a need for new methods to quickly test the potential toxicity of these materials. Because experimental evaluation of the safety of chemicals is expensive and time-consuming, computational methods have been found to be efficient alternatives for predicting the potential toxicity and environmental impact of new nanomaterials before mass production. Here, we show that the quantitative structure-activity relationship (QSAR) method commonly used to predict the physicochemical properties of chemical compounds can be applied to predict the toxicity of various metal oxides. Based on experimental testing, we have developed a model to describe the cytotoxicity of 17 different types of metal oxide nanoparticles to bacteria Escherichia coli. The model reliably predicts the toxicity of all considered compounds, and the methodology is expected to provide guidance for the future design of safe nanomaterials.
Collapse
|
Letter |
14 |
449 |
21
|
|
|
46 |
429 |
22
|
|
|
49 |
427 |
23
|
Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2005; 346:87-98. [PMID: 15993685 DOI: 10.1016/j.scitotenv.2004.11.017] [Citation(s) in RCA: 424] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 11/04/2004] [Indexed: 05/03/2023]
Abstract
The ecotoxicity of the following six antibiotics on aquatic organisms was investigated: Erythromycin, Oxytetracyclin, Sulfamethoxazole, Ofloxacin, Lincomycin and Clarithromycin. Bioassays were performed on bacteria, algae, rotifers, microcrustaceans and fish to assess acute and chronic toxicity, while SOS Chromotest and Ames test were used to detect the genotoxic potential of the investigated drugs. For risk assessment, the environmental impact was calculated by MEC/PNEC ratio using the available data from the literature regarding their occurrence in the aquatic environment and the toxicity data obtained from the bioassays performed. The ecotoxicological results showed that acute toxicity was in the order of mg/L while, for the chronic data the antibiotics were bioactive at concentrations in the order of microg/L, mainly for the algae. Drugs investigated were one or two order of magnitude less active against rotifers and crustaceans. Ofloxacin was the only genotoxic compound and Sulfamethoxazole, Ofloxacin and Lincomycin were mutagenic. As for environmental risk, the macrolides were found to be the most harmful for the aquatic environment.
Collapse
|
|
20 |
424 |
24
|
Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 1995; 104:129-40. [PMID: 8560491 DOI: 10.1016/0300-483x(95)03156-a] [Citation(s) in RCA: 417] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reactive oxygen species may be involved in the toxicity of various pesticides and we have, therefore, examined the in vivo effects of structurally dissimilar polyhalogenated cyclic hydrocarbons (PCH), such as endrin and chlordane, chlorinated acetamide herbicides (CAH), such as alachlor, and organophosphate pesticides (OPS), such as chlorpyrifos and fenthion, on the production of hepatic and brain lipid peroxidation and DNA-single strand breaks (SSB), two indices of oxidative stress and oxidative tissue damage. The selected pesticides were administered p.o. to female Sprague-Dawley rats in two 0.25 LD50 doses at 0 h and 21 h and killed at 24 h. In a parallel set of experiments, we have determined the in vitro effects of these pesticides on the DNA-SSB and enhanced lactate dehydrogenase leakage (LDH) from neuroactive PC-12 cells in culture. In vitro production of reactive oxygen species by these pesticides was also assessed by determining the enhanced chemiluminescence responses of hepatic and brain homogenates. Following treatment of rats with endrin, chlordane, alachlor, chlorpyrifos and fenthion, increases of 2.8-, 3.0-, 4.2-, 4.3- and 4.8-fold were observed in hepatic lipid peroxidation, respectively, while at these same doses, increases in lipid peroxidation of 2.4-, 2.1-, 3.6-, 4.6- and 5.3-fold, respectively, were observed in brain homogenates. Increases of 4.4-, 3.9-, 1.6-, 3.0- and 3.5-fold were observed in hepatic DNA-SSB following treatment of the rats with endrin, chlordane, alachlor, chlorpyrifos and fenthion, respectively, while at these same doses, increases of 1.9-, 1.7-, 2.2-, 1.4-, 1.4-fold, respectively, were observed in brain nuclear DNA-SSB. Following in vitro incubation of hepatic and brain tissues with 1 nmol/ml of each of the five pesticides, maximum increases in chemiluminescence occurred within 4-7 min of incubation and persisted for over 10 min. Increases of 3.0-, 2.7-, 3.6-, 4.9- and 4.4-fold were observed in chemiluminescence following in vitro incubation of the liver homogenates with endrin, chlordane, alachlor, chlorpyrifos and fenthion, respectively, while increases of 1.7-, 1.8-, 2.0-, 3.4- and 3.7-fold, respectively, were observed in the brain homogenates. Increases of 2.2-, 2.3-, 2.9-, 2.9- and 3.4-fold were observed in the chemiluminescence responses in the liver homogenates of the animals treated with endrin, chlordane, alachlor, chlorpyrifos and fenthion, respectively, while increases of 1.8-, 2.0-, 3.2-, 2.9- and 2.4-fold, respectively, were observed in the brain homogenates. Cultured neuroactive PC-12 cells were incubated with the pesticides and the release of the enzyme lactate dehydrogenase (LDH) into the media as an indicator of cellular damage and cytotoxicity was examined. Maximal release of LDH from cultured PC-12 cells was observed at 100 nM concentrations of the pesticides. Increases of 2.3-, 2.5-, 2.8-, 3.1 and 3.4-fold were observed in LDH leakage following incubation of the PC-12 cells with endrin, chlordane, alachlor, chlorpyrifos and fenthion, respectively. Following incubation of the cultured PC-12 cells with 100 nM concentrations of these same pesticides, increases in DNA-SSB of 2.5-, 2.2-, 2.1-, 2.4- and 2.5-fold, respectively, were observed. The results clearly demonstrate that these different classes of pesticides induce production of reactive oxygen species and oxidative tissue damage which may contribute to the toxic manifestations of these xenobiotics. Reactive oxygen species may serve as common mediators of programmed cell death (apoptosis) in response to many toxicants and pathological conditions.
Collapse
|
|
30 |
417 |
25
|
Liess M, Von Der Ohe PC. Analyzing effects of pesticides on invertebrate communities in streams. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2005; 24:954-65. [PMID: 15839571 DOI: 10.1897/03-652.1] [Citation(s) in RCA: 408] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of this investigation was to find patterns in aquatic invertebrate community composition that are related to the effects of pesticides. Investigations were carried out in 20 central European streams. To reduce the site-specific variation of community descriptors due to environmental factors other than pesticides, species were classified and grouped according to their vulnerability to pesticides. They were classified as species at risk (SPEAR) and species not at risk (SPEnotAR). Ecological traits used to define these groups were sensitivity to toxicants, generation time, migration ability, and presence of aquatic stages during time of maximum pesticide application. Results showed that measured pesticide concentrations of 1:10 of the acute 48-h median lethal concentration (LC50) of Daphnia magna led to a short- and long-term reduction of abundance and number of SPEAR and a corresponding increase in SPEnotAR. Concentrations of 1:100 of the acute 48-h LC50 of D. magna correlated with a long-term change of community composition. However, number and abundance of SPEAR in disturbed stream sections are increased greatly when undisturbed stream sections are present in upstream reaches. This positive influence compensated for the negative effect of high concentrations of pesticides through recolonization. The results emphasize the importance of considering ecological traits and recolonization processes on the landscape level for ecotoxicological risk assessment.
Collapse
|
|
20 |
408 |