1
|
|
Review |
53 |
498 |
2
|
Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G, Beaudet AL. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 1997; 17:75-8. [PMID: 9288101 DOI: 10.1038/ng0997-75] [Citation(s) in RCA: 371] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angelman syndrome (AS) is a human genetic disorder characterized by mental retardation, seizures, inappropriate laughter, abnormal galt, tremor and ataxia. There is strong genetic evidence that the disorder is associated with a maternally expressed, imprinted gene mapping to chromosome 15q11-13. Affected patients demonstrate varied molecular abnormalities, including large maternal deletions, uniparental paternal disomy (UPD). Imprinting mutations and loss of function mutations of E6-associated-protein (E6-AP) ubiquitin-protein ligase (UBE3A). All of these abnormalities are associated with loss of maternal expression of UBE3A. Although mutations in UBE3A cause AS, indicating that maternal-specific expression of UBE3A is essential for a normal phenotype, evidence for maternal-specific expression of UBE3A has been lacking. Using mice with partial paternal UPD encompassing Ube3a to differentiate maternal and paternal expression, we found by in situ hybridization that expression of Ube3a in Purkinje cells, hippocampal neurons and mitral cells of the olfactory bulb in UPD mice was markedly reduced compared to non-UPD littermates. In contrast, expression of Ube3a in other regions of the brain was only moderately or not at all reduced in UPD mice. The major phenotypic features of AS correlate with the loss of maternal-specific expression of Ube3a in hippocampus and cerebellum as revealed in the mouse model.
Collapse
|
|
28 |
371 |
3
|
Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, Forno L, Gwinn-Hardy K, Petrucelli L, Hussey J, Singleton A, Tanner C, Hardy J, Langston JW. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001; 50:293-300. [PMID: 11558785 DOI: 10.1002/ana.1132] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous work has established that compound mutations and homozygous loss of function of the parkin gene cause early-onset, autosomal recessive parkinsonism. Classically, this disease has been associated with loss of dopaminergic neurons in the substantia nigra pars compacta and locus ceruleus, without Lewy body pathology. We have sequenced the parkin gene of 38 patients with early-onset Parkinson's disease (<41 years). Two probands with mutations were followed up. Clinical evaluation of their families was performed, blinded to both genetic and pathological findings. Chromosome 6q25.2-27 haplotype analysis was carried out independently of the trait; parkin gene expression was examined at both the RNA and protein levels. Haplotype analysis of these families revealed a common chromosome 6, with a novel 40 bp exon 3 deletion that cosegregated with disease. In the proband of the smaller kindred, an exon 7 R275W substitution was identified in addition to the exon 3 deletion; RNA analysis demonstrated that the mutations were on alternate transcripts. However, Lewy body pathology typical of idiopathic Parkinson's disease was found at autopsy in the proband from the smaller kindred. These data suggest that compound heterozygous parkin mutations and loss of parkin protein may lead to early-onset parkinsonism with Lewy body pathology, while a hemizygous mutation may confer increased susceptibility to typical Parkinson's disease.
Collapse
|
|
24 |
349 |
4
|
Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 2003; 37:735-49. [PMID: 12628165 DOI: 10.1016/s0896-6273(03)00084-9] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in parkin, which encodes a RING domain protein associated with ubiquitin ligase activity, lead to autosomal recessive Parkinson's disease characterized by midbrain dopamine neuron loss. Here we show that parkin functions in a multiprotein ubiquitin ligase complex that includes the F-box/WD repeat protein hSel-10 and Cullin-1. HSel-10 serves to target the parkin ubiquitin ligase activity to cyclin E, an hSel-10-interacting protein previously implicated in the regulation of neuronal apoptosis. Consistent with the notion that cyclin E is a substrate of the parkin ubiquitin ligase complex, parkin deficiency potentiates the accumulation of cyclin E in cultured postmitotic neurons exposed to the glutamatergic excitotoxin kainate and promotes their apoptosis. Furthermore, parkin overexpression attenuates the accumulation of cyclin E in toxin-treated primary neurons, including midbrain dopamine neurons, and protects them from apoptosis.
Collapse
|
|
22 |
303 |
5
|
Rougeulle C, Glatt H, Lalande M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 1997; 17:14-5. [PMID: 9288088 DOI: 10.1038/ng0997-14] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
Case Reports |
28 |
286 |
6
|
Perry WL, Hustad CM, Swing DA, O'Sullivan TN, Jenkins NA, Copeland NG. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat Genet 1998; 18:143-6. [PMID: 9462742 DOI: 10.1038/ng0298-143] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-agouti-lethal 18H (a18H) mice are dark agouti with black pinna hairs. What makes these mice unique is that they develop a spectrum of immunological diseases not seen in other agouti mutant mice. On the JU/Ct background, a18H mice develop an inflammatory disease of the large intestine. On the C57BL/6J background, they develop a fatal disease characterized by pulmonary chronic interstitial inflammation and alveolar proteinosis, inflammation of the glandular stomach and skin resulting in scarring due to constant itching, and hyperplasia of lymphoid cells, haematopoietic cells and the forestomach epithelium. Previous studies suggested that the a18H mutation results from a paracentric inversion that affects two loci: agouti and another, as yet unidentified locus designated itchy (the provisional gene symbol is Itch), that is responsible for the immunological phenotype of a18H mice. Here we confirm that a18H results from an inversion and show that Itch encodes a novel E3 ubiquitin protein ligase, a protein involved in ubiquitin-mediated protein degradation. Our results indicate that ubiquitin-dependent proteolysis is an important mediator of the immune response in vivo and provide evidence for Itch's role in inflammation and the regulation of epithelial and haematopoietic cell growth.
Collapse
|
|
27 |
266 |
7
|
|
|
59 |
234 |
8
|
Klare I, Heier H, Claus H, Reissbrodt R, Witte W. vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol Lett 1995; 125:165-71. [PMID: 7875564 DOI: 10.1111/j.1574-6968.1995.tb07353.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycopeptide-resistant Enterococcus faecium strains were isolated from a pig farm and a poultry farm both using avoparcin as a food additive. Such organisms were not isolated in a hen's eggs-producing farm not using avoparcin. Glycopeptide-resistant enterococci were also detected in broiler chicken carcasses that were delivered to a hospital's kitchen. The resistance was determined by the vanA gene as indicated by the detection of the inducible 39-kDa cytoplasmic membrane protein and of a vanA-specific DNA sequence amplified by polymerase chain reaction. Genomic DNA fragment patterns of strains from animal sources were different from each other and also from those of strains isolated in hospitals and from sewage treatment plants. This findings suggest the dissemination of the vanA determinant among different enterococcal strains of distinct ecological origin.
Collapse
|
|
30 |
221 |
9
|
|
Letter |
28 |
212 |
10
|
Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. PLANT MOLECULAR BIOLOGY 1993; 22:589-602. [PMID: 8343597 DOI: 10.1007/bf00047400] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A tomato phytoene synthase gene, Psy1, has recently been isolated as the clone GTOM5 and shown by sequence identity to be the gene from which the major fruit-ripening cDNA clone TOM5 was derived. Sequence analysis of transcripts from two allelic yellow-fruited tomato mutants, mapped to chromosome 3, has shown the lack of carotenoids in fruit of these mutants to be due to the production of aberrant TOM5 transcripts which are unlikely to encode a functional phytoene synthase enzyme. In one mutant (yellow flesh) the aberrant transcript contained a sequence that, by its strong hybridization to a wide size range of genomic fragments, appeared to be repeated many times within the genome. Southern and PCR analysis of the phytoene synthase genes in the mutant revealed restriction fragment length polymorphisms, suggesting that the production of altered mRNAs was associated with specific genomic rearrangements. Constitutive over-expression of a TOM5 cDNA clone in transgenic mutant plants restored synthesis of the carotenoid lycopene in ripening fruit and also led to unscheduled pigment production in other cell types. In some mutant plants transformed with the TOM5 cDNA construct, inhibition of carotenoid production in immature green fruit, leaves and flowers was observed, due to the phenomenon of co-suppression, indicating that different insertion events with the same gene construct can lead to overexpression or co-suppression in transgenic plants. Green organs of these plants were susceptible to photobleaching, due to the lack of carotenoids. These results suggest the existence of separate Psy genes for carotenoid synthesis in green organs.
Collapse
|
Comparative Study |
32 |
201 |
11
|
Giuliano G, Bartley GE, Scolnik PA. Regulation of carotenoid biosynthesis during tomato development. THE PLANT CELL 1993; 5:379-87. [PMID: 8485401 PMCID: PMC160278 DOI: 10.1105/tpc.5.4.379] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytoene synthase (Psy) and phytoene desaturase (Pds) are the first dedicated enzymes of the plant carotenoid biosynthesis pathway. We report here the organ-specific and temporal expression of PDS and PSY in tomato plants. Light increases the carotenoid content of seedlings but has little effect on PDS and PSY expression. Expression of both genes is induced in seedlings of the phytoene-accumulating mutant ghost and in wild-type seedlings treated with the Pds inhibitor norflurazon. Roots, which contain the lowest levels of carotenoids in the plant, have also the lowest levels of PDS and PSY expression. In flowers, expression of both genes and carotenoid content are higher in petals and anthers than in sepals and carpels. During flower development, expression of both PDS and PSY increases more than 10-fold immediately before anthesis. During fruit development, PSY expression increases more than 20-fold, but PDS expression increases less than threefold. We concluded that PSY and PDS are differentially regulated by stress and developmental mechanisms that control carotenoid biosynthesis in leaves, flowers, and fruits. We also report that PDS maps to chromosome 3, and thus it does not correspond to the GHOST locus, which maps to chromosome 11.
Collapse
|
research-article |
32 |
198 |
12
|
Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 2011; 13:319-327. [PMID: 21335099 DOI: 10.1016/j.ymben.2011.02.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/27/2010] [Accepted: 02/08/2011] [Indexed: 02/05/2023]
Abstract
Tanshinone is a group of active diterpenes widely used in treatment of cardiovascular diseases. Here, we report the introduction of genes encoding 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and geranylgeranyl diphosphate synthase (GGPPS) involved in tanshinone biosynthesis into Salvia miltiorrhiza hairy roots by Agrobacterium-mediated gene transfer technology. Overexpression of SmGGPPS and/or SmHMGR as well as SmDXS in transgenic hairy root lines can significantly enhance the production of tanshinone to levels higher than that of the control (P<0.05). SmDXS showed much more powerful pushing effect than SmHMGR in tanshinone production, while SmGGPPS plays a more important role in stimulating tanshinone accumulation than the upstream enzyme SmHMGR or SmDXS in S. miltiorrhiza. Co-expression of SmHMGR and SmGGPPS resulted in highest production of tanshinone (about 2.727 mg/g dw) in line HG9, which was about 4.74-fold higher than that of the control (0.475 mg/g dw). All the tested transgenic hairy root lines showed higher antioxidant activity than the control. To our knowledge, this is the first report on enhancement of tanshinone content and antioxidant activity achieved through metabolic engineering of hairy roots by push-pull strategy in S. miltiorrhiza.
Collapse
|
|
14 |
189 |
13
|
Nakanishi S, Numa S. Purification of rat liver acetyl coenzyme A carboxylase and immunochemical studies on its synthesis and degradation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1970; 16:161-73. [PMID: 4989552 DOI: 10.1111/j.1432-1033.1970.tb01068.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
55 |
186 |
14
|
Townsley FM, Aristarkhov A, Beck S, Hershko A, Ruderman JV. Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. Proc Natl Acad Sci U S A 1997; 94:2362-7. [PMID: 9122200 PMCID: PMC20093 DOI: 10.1073/pnas.94.6.2362] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1996] [Accepted: 12/31/1996] [Indexed: 02/04/2023] Open
Abstract
Destruction of mitotic cyclins by ubiquitin-dependent proteolysis is required for cells to complete mitosis and enter interphase of the next cell cycle. In clam eggs, this process is catalyzed by a cyclin-selective ubiquitin carrier protein, E2-C, and the cyclosome/anaphase promoting complex (APC), a 20S particle containing cyclin-selective ubiquitin ligase activity. Here we report cloning a human homolog of E2-C, UbcH10, which shares 61% amino acid identity with clam E2-C and can substitute for clam E2-C in vitro. Dominant-negative clam E2-C and human UbcH10 proteins, created by altering the catalytic cysteine to serine, inhibit the in vitro ubiquitination and destruction of cyclin B in clam oocyte extracts. When transfected into mammalian cells, mutant UbcH10 inhibits the destruction of both cyclin A and B, arrests cells in M phase, and inhibits the onset of anaphase, presumably by blocking the ubiquitin-dependent proteolysis of proteins responsible for sister chromatid separation. Thus, E2-C/UbcH10-mediated ubiquitination is involved in both cdc2 inactivation and sister chromatid separation, processes that are normally coordinated during exit from mitosis.
Collapse
|
research-article |
28 |
180 |
15
|
Aarestrup FM. Occurrence of glycopeptide resistance among Enterococcus faecium isolates from conventional and ecological poultry farms. Microb Drug Resist 2000; 1:255-7. [PMID: 9158784 DOI: 10.1089/mdr.1995.1.255] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
|
25 |
176 |
16
|
Ke S, Rabson AB, Germino JF, Gallo MA, Tian Y. Mechanism of suppression of cytochrome P-450 1A1 expression by tumor necrosis factor-alpha and lipopolysaccharide. J Biol Chem 2001; 276:39638-44. [PMID: 11470802 DOI: 10.1074/jbc.m106286200] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proinflammatory cytokines, such as tumor necrosis factor (TNF)-alpha, interleukin-1beta, and lipopolysaccharides (LPS), suppress the gene expression of cytochrome P-450 1A1 (cyp1a1). The mechanism of the suppression is not well understood. In present study, we show that activation of nuclear factor-kappaB (NF-kappaB) is a critical event leading to the suppression of cyp1a1 gene expression, thus providing an underlying mechanism for the TNF-alpha- and LPS-induced cyp1a1 suppression. We demonstrated that: (i) inducible RelA expression down-regulated aryl hydrocarbon receptor (AhR) activated reporter gene; (ii) the suppressive effects of LPS and TNF-alpha on the AhR-activated reporter gene could be blocked by pyrrolidine dithiocarbamate, which is known to inhibit NF-kappaB action; and (iii) TNF-alpha and LPS-imposed repression could be reversed by the NF-kappaB super repressor (SRIkappaBalpha), thus demonstrating the specific involvement of NF-kappaB. Furthermore, nuclear receptor coactivators p300/CBP and steroid receptor coactivator-1 act individually as well as cooperatively to reverse the suppressive effects by NF-kappaB on the AhR-activated reporter gene, suggesting that these transcriptional coactivators serve as the common integrators for the two pathways, thereby mediating the cross-interactions between AhR and NF-kappaB. Finally, using the chromatin immunoprecipitation assay, we demonstrated that AhR ligand induces histone H4 acetylation at the cyp1a1 promoter region containing the TATA box, whereas TNF-alpha inhibits this acetylation, suggesting that AhR/NF-kappaB interaction converges at level of transcription involving chromatin remodeling.
Collapse
|
|
24 |
160 |
17
|
Traweger A, Fang D, Liu YC, Stelzhammer W, Krizbai IA, Fresser F, Bauer HC, Bauer H. The tight junction-specific protein occludin is a functional target of the E3 ubiquitin-protein ligase itch. J Biol Chem 2002; 277:10201-8. [PMID: 11782481 DOI: 10.1074/jbc.m111384200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tight junctions create a highly selective diffusion barrier between epithelial and endothelial cells by preventing the free passage of molecules and ions across the paracellular pathway. Although the regulation of this barrier is still enigmatic, there is evidence that junctional transmembrane proteins are critically involved. Recent evidence confirms the notion that occludin, a four-pass integral plasma-membrane protein, is a functional component of the paracellular barrier. The overall hydrophilicity of occludin predicts two extracellular loops bounded by NH(2)- and COOH-terminal cytoplasmic domains. To date, the binding of the COOH terminus of occludin to intracellular proteins is well documented, but information concerning the function of the cytoplasmic NH(2) terminus is still lacking. Using yeast two-hybrid screening we have identified a novel interaction between occludin and the E3 ubiquitin-protein ligase Itch, a member of the HECT domain-containing ubiquitin-protein ligases. We have found that the NH(2)-terminal portion of occludin binds specifically to a multidomain of Itch, consisting of four WW motifs. This interaction has been confirmed by our results from in vivo and in vitro co-immunoprecipitation experiments. In addition, we provide evidence that Itch is specifically involved in the ubiquitination of occludin in vivo, and that the degradation of occludin is sensitive to proteasome inhibition.
Collapse
|
|
23 |
157 |
18
|
Lee JD, Amanai K, Shearn A, Treisman JE. The ubiquitin ligase Hyperplastic discs negatively regulates hedgehog and decapentaplegic expression by independent mechanisms. Development 2002; 129:5697-706. [PMID: 12421709 DOI: 10.1242/dev.00159] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photoreceptor differentiation in the Drosophila eye disc progresses from posterior to anterior in a wave driven by the Hedgehog and Decapentaplegic signals. Cells mutant for the hyperplastic discs gene misexpress both of these signaling molecules in anterior regions of the disc, leading to premature photoreceptor differentiation and overgrowth of surrounding tissue. The two genes are independently regulated by hyperplastic discs; decapentaplegic can still be misexpressed in cells mutant for both hyperplastic discs and hedgehog, and a repressor form of the transcription factor Cubitus interruptus can block decapentaplegic misexpression but not hedgehog misexpression. Loss of hyperplastic discs causes the accumulation of full-length Cubitus interruptus protein, but not of Smoothened, in both the eye and wing discs. hyperplastic discs encodes a HECT domain E3 ubiquitin ligase that is likely to act by targeting Cubitus interruptus and an unknown activator of hedgehog expression for proteolysis.
Collapse
|
|
23 |
154 |
19
|
Gibson DM, Lyons RT, Scott DF, Muto Y. Synthesis and degradation of the lipogenic enzymes of rat liver. ADVANCES IN ENZYME REGULATION 1972; 10:187-204. [PMID: 4653823 DOI: 10.1016/0065-2571(72)90014-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
53 |
150 |
20
|
Barker DF, Campbell AM. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J Mol Biol 1981; 146:469-92. [PMID: 6456358 DOI: 10.1016/0022-2836(81)90043-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
|
44 |
147 |
21
|
Tansakul P, Shibuya M, Kushiro T, Ebizuka Y. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 2006; 580:5143-9. [PMID: 16962103 DOI: 10.1016/j.febslet.2006.08.044] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/11/2006] [Accepted: 08/18/2006] [Indexed: 11/30/2022]
Abstract
Panax ginseng produces triterpene saponins called ginsenosides, which are classified into two groups by the skeleton of aglycones, namely dammarane type and oleanane type. Dammarane-type ginsenosides dominate over oleanane type not only in amount but also in structural varieties. However, their sapogenin structure is restricted to two aglycones, protopanaxadiol and protopanaxatriol. So far, the genes encoding oxidosqualene cyclase (OSC) responsible for formation of dammarane skeleton have not been cloned, although OSC yielding oleanane skeleton (beta-amyrin synthase) has been successfully cloned from this plant. In this study, cDNA cloning of OSC producing dammmarane triterpene was attempted from hairy root cultures of P. ginseng by homology based PCR method. A new OSC gene (named as PNA) obtained was expressed in a lanosterol synthase deficient (erg7) Saccharomyces cerevisiae strain GIL77. LC-MS and NMR analyses identified the accumulated product in the yeast transformant to be dammarenediol-II, demonstrating PNA to encode dammarenediol-II synthase.
Collapse
|
|
19 |
144 |
22
|
Reynolds PE, Depardieu F, Dutka-Malen S, Arthur M, Courvalin P. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol Microbiol 1994; 13:1065-70. [PMID: 7854121 DOI: 10.1111/j.1365-2958.1994.tb00497.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cloning and nucleotide sequencing indicated that transposon Tn1546 from Enterococcus faecium BM4147 encodes a 23,365 Da protein, VanX, required for glycopeptide resistance. The vanX gene was located downstream from genes encoding the VanA ligase and the VanH dehydrogenase which synthesize the depsipeptide D-alanyl-D-lactate (D-Ala-D-Lac). In the presence of ramoplanin, an Enterococcus faecalis JH2-2 derivative producing VanH, VanA and VanX accumulated mainly UDP-MurNAc-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Lac (pentadepsipeptide) and small amounts of UDP-MurNAc-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala (pentapeptide) in the ratio 49:1. Insertional inactivation of vanX led to increased synthesis of pentapeptide with a resulting change in the ratio of pentadepsipeptide: pentapeptide to less than 1:1. Expression of vanX in E. faecalis and Escherichia coli resulted in production of a D,D-dipeptidase that hydrolysed D-Ala-D-Ala. Pentadepsipeptide, pentapeptide and D-Ala-D-Lac were not substrates for the enzyme. These results establish that VanX is required for production of a D,D-dipeptidase that hydrolyses D-Ala-D-Ala, thereby preventing pentapeptide synthesis and subsequent binding of glycopeptides to D-Ala-D-Ala-containing peptidoglycan precursors at the cell surface.
Collapse
|
|
31 |
143 |
23
|
Stancovski I, Gonen H, Orian A, Schwartz AL, Ciechanover A. Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol Cell Biol 1995; 15:7106-16. [PMID: 8524278 PMCID: PMC230966 DOI: 10.1128/mcb.15.12.7106] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transcription factor c-Fos is a short-lived cellular protein. The levels of the protein fluctuate significantly and abruptly during changing pathophysiological conditions. Thus, it is clear that degradation of the protein plays an important role in its tightly regulated activity. We examined the involvement of the ubiquitin pathway in c-Fos breakdown. Using a mutant cell line, ts20, that harbors a thermolabile ubiquitin-activating enzyme, E1, we demonstrate that impaired function of the ubiquitin system stabilizes c-Fos in vivo. In vitro, we reconstituted a cell-free system and demonstrated that the protein is multiply ubiquitinated. The adducts serve as essential intermediates for degradation by the 26S proteasome. We show that both conjugation and degradation are significantly stimulated by c-Jun, with which c-Fos forms the active heterodimeric transcriptional activator AP-1. Analysis of the enzymatic cascade involved in the conjugation process reveals that the ubiquitin-carrier protein E2-F1 and its human homolog UbcH5, which target the tumor suppressor p53 for degradation, are also involved in c-Fos recognition. The E2 enzyme acts along with a novel species of ubiquitin-protein ligase, E3. This enzyme is distinct from other known E3s, including E3 alpha/UBR1, E3 beta, and E6-AP. We have purified the novel enzyme approximately 350-fold and demonstrated that it is a homodimer with an apparent molecular mass of approximately 280 kDa. It contains a sulfhydryl group that is essential for its activity, presumably for anchoring activated ubiquitin as an intermediate thioester prior to its transfer to the substrate. Taken together, our in vivo and in vitro studies strongly suggest that c-Fos is degraded in the cell by the ubiquitin-proteasome proteolytic pathway in a process that requires a novel recognition enzyme.
Collapse
|
research-article |
30 |
139 |
24
|
Billiar TR, Curran RD, Stuehr DJ, Stadler J, Simmons RL, Murray SA. Inducible cytosolic enzyme activity for the production of nitrogen oxides from L-arginine in hepatocytes. Biochem Biophys Res Commun 1990; 168:1034-40. [PMID: 2346476 DOI: 10.1016/0006-291x(90)91133-d] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The in vivo conditions needed for the induction of nitrogen oxide synthesis by hepatocytes were determined. Hepatocytes obtained from rats injected with killed Corynebacterium parvum spontaneously produced NO2(-)+NO3- in culture and were found to contain cytosolic enzyme activity for nitrogen oxide synthesis. The enzyme activity required both L-arginine and NADPH, and was not found in hepatocytes obtained from normal rats or rats injected with lipopolysaccharide (LPS) alone. In contrast, nonparenchymal cells were stimulated to synthesize NO2(-)+NO3- by LPS. These results show the presence of inducible cytosolic enzyme activity for nitrogen oxide synthesis in hepatocytes, which is distinct from nonparenchymal cell NO. synthesis.
Collapse
|
|
35 |
138 |
25
|
|
|
44 |
135 |