1
|
Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:3954-62. [PMID: 10552749 DOI: 10.1021/jf990146l] [Citation(s) in RCA: 1664] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The antioxidative activity of a total of 92 phenolic extracts from edible and nonedible plant materials (berries, fruits, vegetables, herbs, cereals, tree materials, plant sprouts, and seeds) was examined by autoxidation of methyl linoleate. The content of total phenolics in the extracts was determined spectrometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). Among edible plant materials, remarkable high antioxidant activity and high total phenolic content (GAE > 20 mg/g) were found in berries, especially aronia and crowberry. Apple extracts (two varieties) showed also strong antioxidant activity even though the total phenolic contents were low (GAE < 12.1 mg/g). Among nonedible plant materials, high activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet. In addition, potato peel and beetroot peel extracts showed strong antioxidant effects. To utilize these significant sources of natural antioxidants, further characterization of the phenolic composition is needed.
Collapse
|
|
26 |
1664 |
2
|
Abstract
Numerous physiological effects are attributed to conjugated linoleic acid (CLA). The purpose of this presentation is to consider these effects with respect to the cis-9,trans-11 and trans-10,cis-12 CLA isomers. We review previously published data and present new findings that relate to underlying biochemical mechanisms of action. Both isomers are natural products. The cis-9,trans-11 isomer is the principal dietary form of CLA, but the concentrations of this isomer and the trans-10,cis-12 isomer in dairy products or beef vary depending on the diet fed to cows or steers, respectively. The trans-10,cis-12 CLA isomer exerts specific effects on adipocytes, in particular reducing the uptake of lipid by inhibiting the activities of lipoprotein lipase and stearoyl-CoA desaturase. The trans-10,cis-12 CLA isomer also affects lipid metabolism in cultured Hep-G2 human liver cells, whereas both the cis-9,trans-11 and trans-10,cis-12 CLA isomers appear to be active in inhibiting carcinogenesis in animal models. We present new findings indicating that the cis-9,trans-11 CLA isomer enhances growth and probably feed efficiency in young rodents. Accordingly, the effects of CLA on body composition (induced by trans-10,cis-12 CLA) and growth/feed efficiency (induced by cis-9,trans-11 CLA) appear to be due to separate biochemical mechanisms. We also show that a 19-carbon CLA cognate (conjugated nonadecadienoic acid, CNA) inhibits lipoprotein lipase activity as effectively as CLA in cultured 3T3-L1 adipocytes. Presumably, CNA is metabolized differently than the 18-carbon CLA isomers, so this finding indicates direct activity of the administered compound as opposed to acting via a metabolite.
Collapse
|
Review |
24 |
663 |
3
|
Kähkönen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:628-633. [PMID: 12537433 DOI: 10.1021/jf025551i] [Citation(s) in RCA: 548] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The antioxidant activity of the six common anthocyanidins, pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and malvidin, and their glycosidic forms was evaluated in three lipid-containing models [human low-density lipoprotein (LDL) and bulk and emulsified methyl linoleate]. In addition, the radical scavenging activity of the compounds against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was studied. Most anthocyanins and their aglycons acted as strong antioxidants in emulsion and LDL. Many compounds showed an activity comparable to the well-known antioxidants alpha-tocopherol, Trolox, catechin, and quercetin. In bulk methyl linoleate, anthocyanins and anthocyanidins possessed only a weak antioxidant activity or even oxidation-promoting activity. Depending on the anthocyanidin, different glycosylation patterns either enhanced or diminished the antioxidant power. For the most part, the activities of the glycosides and the aglycons did not differ remarkably in emulsion. In LDL the aglycons showed in general higher activities than the glycosides. In bulk oil, to the contrary, the glycosides were more effective than the aglycons.
Collapse
|
Comparative Study |
22 |
548 |
4
|
Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 1999; 34:235-41. [PMID: 10230716 DOI: 10.1007/s11745-999-0358-8] [Citation(s) in RCA: 543] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated the effects of conjugated linoleic acid (CLA) preparations, which were enriched for the cis-9,trans-11 CLA isomer or the trans-10,cis-12 CLA isomer, on body composition in mice. Body composition changes (reduced body fat, enhanced body water, enhanced body protein, and enhanced body ash) were associated with feeding the trans-10,cis-12 CLA isomer. In cultured 3T3-L1 adipocytes, the trans-10,cis-12 isomer reduced lipoprotein lipase activity, intracellular triacylglycerol and glycerol, and enhanced glycerol release into the medium. By contrast, the cis-9,trans-11 and trans-9,trans-11 CLA isomers did not affect these biochemical activities. We conclude that CLA-associated body composition change results from feeding the trans-10,cis-12 isomer.
Collapse
|
|
26 |
543 |
5
|
Schneider C, Tallman KA, Porter NA, Brash AR. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem 2001; 276:20831-8. [PMID: 11259420 DOI: 10.1074/jbc.m101821200] [Citation(s) in RCA: 419] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of formation of 4-hydroxy-2E-nonenal (4-HNE) has been a matter of debate since it was discovered as a major cytotoxic product of lipid peroxidation in 1980. Recent evidence points to 4-hydroperoxy-2E-nonenal (4-HPNE) as the immediate precursor of 4-HNE (Lee, S. H., and Blair, I. A. (2000) Chem. Res. Toxicol. 13, 698-702; Noordermeer, M. A., Feussner, I., Kolbe, A., Veldink, G. A., and Vliegenthart, J. F. G. (2000) Biochem. Biophys. Res. Commun. 277, 112-116), and a pathway via 9-hydroperoxylinoleic acid and 3Z-nonenal is recognized in plant extracts. Using the 9- and 13-hydroperoxides of linoleic acid as starting material, we find that two distinct mechanisms lead to the formation of 4-H(P)NE and the corresponding 4-hydro(pero)xyalkenal that retains the original carboxyl group (9-hydroperoxy-12-oxo-10E-dodecenoic acid). Chiral analysis revealed that 4-HPNE formed from 13S-hydroperoxy-9Z,11E-octadecadienoic acid (13S-HPODE) retains >90% S configuration, whereas it is nearly racemic from 9S-hydroperoxy-10E,12Z-octadecadienoic acid (9S-HPODE). 9-Hydroperoxy-12-oxo-10E-dodecenoic acid is >90% S when derived from 9S-HPODE and almost racemic from 13S-HPODE. Through analysis of intermediates and products, we provide evidence that (i) allylic hydrogen abstraction at C-8 of 13S-HPODE leads to a 10,13-dihydroperoxide that undergoes cleavage between C-9 and C-10 to give 4S-HPNE, whereas direct Hock cleavage of the 13S-HPODE gives 12-oxo-9Z-dodecenoic acid, which oxygenates to racemic 9-hydroperoxy-12-oxo-10E-dodecenoic acid; by contrast, (ii) 9S-HPODE cleaves directly to 3Z-nonenal as a precursor of racemic 4-HPNE, whereas allylic hydrogen abstraction at C-14 and oxygenation to a 9,12-dihydroperoxide leads to chiral 9S-hydroperoxy-12-oxo-10E-dodecenoic acid. Our results distinguish two major pathways to the formation of 4-HNE that should apply also to other fatty acid hydroperoxides. Slight ( approximately 10%) differences in the observed chiralities from those predicted in the above mechanisms suggest the existence of additional routes to the 4-hydroxyalkenals.
Collapse
|
|
24 |
419 |
6
|
Schopfer FJ, Lin Y, Baker PRS, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE, Freeman BA. Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci U S A 2005; 102:2340-5. [PMID: 15701701 PMCID: PMC548962 DOI: 10.1073/pnas.0408384102] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 01/04/2005] [Indexed: 11/18/2022] Open
Abstract
Nitroalkene derivatives of linoleic acid (nitrolinoleic acid, LNO2) are formed via nitric oxide-dependent oxidative inflammatory reactions and are found at concentrations of approximately 500 nM in the blood of healthy individuals. We report that LNO2 is a potent endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARgamma; Ki approximately 133 nM) that acts within physiological concentration ranges. This nuclear hormone receptor (PPARgamma) regulates glucose homeostasis, lipid metabolism, and inflammation. PPARgamma ligand activity is specific for LNO2)and not mediated by LNO2 decay products, NO donors, linoleic acid (LA), or oxidized LA. LNO2 is a significantly more robust PPARgamma ligand than other reported endogenous PPARgamma ligands, including lysophosphatidic acid (16:0 and 18:1), 15-deoxy-Delta12,14-PGJ2, conjugated LA and azelaoyl-phosphocholine. LNO2 activation of PPARgamma via CV-1 cell luciferase reporter gene expression analysis revealed a ligand activity that rivals or exceeds synthetic PPARgamma agonists such as rosiglitazone and ciglitazone, is coactivated by 9 cis-retinoic acid and is inhibited by the PPARgamma antagonist GW9662. LNO2 induces PPARgamma-dependent macrophage CD-36 expression, adipocyte differentiation, and glucose uptake also at a potency rivaling thiazolidinediones. These observations reveal that NO-mediated cell signaling reactions can be transduced by fatty acid nitration products and PPAR-dependent gene expression.
Collapse
|
research-article |
20 |
334 |
7
|
Wahle KWJ, Heys SD, Rotondo D. Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 2004; 43:553-87. [PMID: 15522764 DOI: 10.1016/j.plipres.2004.08.002] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/12/2004] [Accepted: 08/23/2004] [Indexed: 11/29/2022]
Abstract
Conjugated linoleic acids (CLAs) comprise a family of positional and geometric isomers of linoleic acid (18:2n-6; LA) that are formed by biohydrogenation and oxidation processes in nature. The major dietary sources of these unusual fatty acids are foods derived from ruminant animals, in particular dairy products. The main form of CLA, cis-9, trans-11-18:2, can be produced directly by bacterial hydrogenation in the rumen or by delta-9 desaturation of the co-product vaccenic acid (trans-11-18:1) in most mammalian tissues including man. The second most abundant isomer of CLA is the trans-10, cis-12-18:2 form. Initially identified in grilled beef as a potential anti-carcinogen a surprising number of health benefits have subsequently been attributed to CLA mixtures and more recently to the main individual isoforms. It is also clear from recent studies that the two main isoforms can have different effects on metabolism and cell functions and can act through different cell signalling pathways. The majority of studies on body compositional effects (i.e. fat loss, lean gain), on cancer and cardiovascular disease attenuation, on insulin sensitivity and diabetes and on immune function have been conducted with a variety of animal models. Observations clearly emphasise that differences exist between mammalian species in their response to CLAs with mice being the most sensitive. Recent studies indicate that some but not all of the effects observed in animals also pertain to human volunteers. Reports of detrimental effects of CLA intake appear to be largely in mice and due mainly to the trans-10, cis-12 isomer. Suggestions of possible deleterious effects in man due to an increase in oxidative lipid products (isoprostanes) with trans-10, cis-12 CLA ingestion require substantiation. Unresponsiveness to antioxidants of these non-enzymatic oxidation products casts some doubt on their physiological relevance. Recent reports, albeit in the minority, that CLAs, particularly the trans-10, cis-12 isomer, can elicit pro-carcinogenic effects in animal models of colon and prostate cancer and can increase prostaglandin production in cells also warrant further investigation and critical evaluation in relation to the many published anti-cancer and anti-prostaglandin effects of CLAs.
Collapse
|
|
21 |
333 |
8
|
Lee SH, Oe T, Blair IA. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 2001; 292:2083-6. [PMID: 11408659 DOI: 10.1126/science.1059501] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epidemiological data suggest that dietary antioxidants play a protective role against cancer. This has led to the proposal that dietary supplementation with antioxidants such as vitamin C (vit C) may be useful in disease prevention. However, vit C has proved to be ineffective in cancer chemoprevention studies. In addition, concerns have been raised over potentially deleterious transition metal ion-mediated pro-oxidant effects. We have now determined that vit C induces lipid hydroperoxide decomposition to the DNA-reactive bifunctional electrophiles 4-oxo-2-nonenal, 4,5-epoxy-2(E)-decenal, and 4-hydroxy-2-nonenal. The compound 4,5-Epoxy-2(E)-decenal is a precursor of etheno-2'-deoxyadenosine, a highly mutagenic lesion found in human DNA. Vitamin C-mediated formation of genotoxins from lipid hydroperoxides in the absence of transition metal ions could help explain its lack of efficacy as a cancer chemoprevention agent.
Collapse
|
|
24 |
287 |
9
|
Miyamoto S, Martinez GR, Rettori D, Augusto O, Medeiros MHG, Di Mascio P. Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen. Proc Natl Acad Sci U S A 2005; 103:293-8. [PMID: 16387855 PMCID: PMC1326168 DOI: 10.1073/pnas.0508170103] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reaction of hypochlorous acid (HOCl) with hydrogen peroxide is known to generate stoichiometric amounts of singlet molecular oxygen [O2 (1Deltag)]. This study shows that HOCl can also react with linoleic acid hydroperoxide (LAOOH), generating O2 (1Deltag) with a yield of 13 +/- 2% at physiological pH. Characteristic light emission at 1,270 nm, corresponding to O2 (1Deltag) monomolecular decay, was observed when HOCl was reacted with LAOOH or with liposomes containing phosphatidylcholine hydroperoxides, but not with cumene hydroperoxide or tert-butyl hydroperoxide. The generation of O2 (1Deltag) was confirmed by the acquisition of the spectrum of the light emitted in the near-infrared region showing a band with maximum intensity at 1,270 nm and by the observation of the enhancing effect of deuterium oxide and the quenching effect of sodium azide. Mechanistic studies using 18O-labeled linoleic acid hydroperoxide (LA18O18OH) showed that its reaction with HOCl yields 18O-labeled O2 (1Deltag) [18O2 (1Deltag)], demonstrating that the oxygen atoms in O2 (1Deltag) are derived from the hydroperoxide group. Direct analysis of radical intermediates in the reaction of LAOOH with HOCl by continuous-flow electron paramagnetic resonance spectroscopy showed a doublet signal with a g-value of 2.014 and a hyperfine coupling constant from the alpha-hydrogen of a(H) = 4.3 G, indicating the formation of peroxyl radicals. Taken together, our results clearly demonstrate that HOCl reacts with biologically relevant lipid hydroperoxides, generating O2 (1Deltag). In addition, the detection of 18O2 (1Deltag) and peroxyl radicals strongly supports the involvement of a Russell mechanism in the generation of O2 (1Deltag).
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
281 |
10
|
Coleman JD, Prabhu KS, Thompson JT, Reddy PS, Peters JM, Peterson BR, Reddy CC, Vanden Heuvel JP. The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Free Radic Biol Med 2007; 42:1155-64. [PMID: 17382197 PMCID: PMC1892209 DOI: 10.1016/j.freeradbiomed.2007.01.003] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 11/18/2022]
Abstract
Liver insufficiency and damage are major causes of death and disease worldwide and may result from exposure to environmental toxicants, specific combinations or dosages of pharmaceuticals, and microbial metabolites. The generation of reactive intermediates, in particular 4-hydroxynonenal (4-HNE), is a common event in liver damage caused by a variety of hepatotoxic drugs and solvents. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that are involved in the transcriptional regulation of lipid metabolism as well as other biological functions. Importantly, we have observed that the PPARbeta/delta-/- mouse is more susceptible to chemically induced hepatotoxicity than its wild-type counterpart, and our objective in this study was to elucidate the mechanism(s) by which PPARbeta/delta confers protection to hepatocytes. We hypothesized that PPARbeta/delta plays a protective role by responding to toxic lipids and altering gene expression accordingly. In support, oxidized-VLDL and constituents including 13-S-hydroxyoctadecadienoic acid (13-S-HODE) and 4-HNE are PPARbeta/delta ligands. A structure-activity relationship was established where 4-HNE and 4-hydroperoxynonenal (4-HpNE) enhanced the activity of the PPARbeta/delta subtype while 4-hyroxyhexenal (4-HHE), 4-oxo-2-Nonenal (4-ONE), and trans-4,5-epoxy-2(E)-decenal did not activate this receptor. Increasing PPARbeta/delta activity with a synthetic agonist decreased sensitivity of hepatocytes to 4-HNE and other toxic agents, whereas inhibition of this receptor had the opposite result. Gene expression microarray analysis identified several important PPARbeta/delta-regulated detoxification enzymes involved in 4-HNE metabolism that are regulated at the transcript level. This research established 4-HNE as an endogenous modulator of PPARbeta/delta activity and raises the possibility that agonists of this nuclear receptor may be utilized to prevent or treat liver disease associated with oxidative damage.
Collapse
|
research-article |
18 |
269 |
11
|
Pariza MW, Park Y, Cook ME. Mechanisms of action of conjugated linoleic acid: evidence and speculation. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 223:8-13. [PMID: 10632956 DOI: 10.1046/j.1525-1373.2000.22302.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conjugated linoleic acid (CLA) has been shown to inhibit carcinogenesis and atherosclerosis, enhance immunologic function while protecting against the catabolic effects of immune stimulation, affect body composition change (reducing body fat gain while enhancing lean body mass gain), and stimulate the growth of young rats. We discuss possible biochemical mechanisms that underlie these physiological effects. We emphasize the importance of considering the effects, both individually and combined, of the two CLA isomers (cis-9, trans-11 CLA and trans-10, cis-12 CLA) that have been shown to exhibit biological activity and which appear to exert their effects via different biochemical mechanisms.
Collapse
|
Review |
25 |
214 |
12
|
Risérus U, Basu S, Jovinge S, Fredrikson GN, Arnlöv J, Vessby B. Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation 2002; 106:1925-9. [PMID: 12370214 DOI: 10.1161/01.cir.0000033589.15413.48] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Conjugated linoleic acids (CLAs), a group of fatty acids shown to have beneficial effects in animals, are also used as weight loss supplements. Recently, we reported that the t10c12 CLA-isomer caused insulin resistance in abdominally obese men via unknown mechanisms. The aim of the present study was to examine whether CLA has isomer-specific effects on oxidative stress or inflammatory biomarkers and to investigate the relationship between these factors and induced insulin resistance. METHODS AND RESULTS In a double-blind placebo-controlled trial, 60 men with metabolic syndrome were randomized to one of 3 groups receiving t10c12 CLA, a CLA mixture, or placebo for 12 weeks. Insulin sensitivity (euglycemic clamp), serum lipids, in vivo lipid peroxidation (determined as urinary 8-iso-PGF(2alpha) [F2-isoprostanes]), 15-ketodihydro PGF(2alpha), plasma vitamin E, plasma C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 were assessed before and after treatment. Supplementation with t10c12 CLA markedly increased 8-iso-PGF(2alpha) (578%) and C-reactive protein (110%) compared with placebo (P<0.0001 and P<0.01, respectively) and independent of changes in hyperglycemia or dyslipidemia. The increases in 8-iso-PGF(2alpha), but not in C-reactive protein, were significantly and independently related to aggravated insulin resistance. Oxidative stress was related to increased vitamin E levels, suggesting a compensatory mechanism. CONCLUSIONS t10c12 CLA supplementation increases oxidative stress and inflammatory biomarkers in obese men. The oxidative stress seems closely related to induced insulin resistance, suggesting a link between the fatty acid-induced lipid peroxidation seen in the present study and insulin resistance. These unfavorable effects of t10c12 CLA might be of clinical importance with regard to cardiovascular disease, in consideration of the widespread use of dietary supplements containing this fatty acid.
Collapse
|
Clinical Trial |
23 |
212 |
13
|
O'Donnell VB, Eiserich JP, Chumley PH, Jablonsky MJ, Krishna NR, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol 1999; 12:83-92. [PMID: 9894022 DOI: 10.1021/tx980207u] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactive nitrogen species derived from nitric oxide are potent oxidants formed during inflammation that can oxidize membrane and lipoprotein lipids in vivo. Herein, it is demonstrated that several of these species react with unsaturated fatty acid to yield nitrated oxidation products. Using HPLC coupled with both UV detection and electrospray ionization mass spectrometry, products of reaction of ONOO- with linoleic acid displayed mass/charge (m/z) characteristics of LNO2 (at least three products at m/z 324, negative ion mode). Further analysis by MS/MS gave a major fragment at m/z 46. Addition of a NO2 group was confirmed using [15N]ONOO- which gave a product at m/z 325, fragmenting to form a daughter ion at m/z 47. Formation of nitrated lipids was inhibited by bicarbonate, superoxide dismutase (SOD), and Fe3+-EDTA, while the yield of oxidation products was decreased by bicarbonate and SOD, but not by Fe3+-EDTA. Reaction of linoleic acid with both nitrogen dioxide (*NO2) or nitronium tetrafluoroborate (NO2BF4) also yielded nitrated lipid products (m/z 324), with HPLC retention times and MS/MS fragmentation patterns identical to the m/z 324 species formed by reaction of ONOO- with linoleic acid. Finally, reaction of HPODE, but not linoleate, with nitrous acid (HONO) or isobutyl nitrite (BuiONO) yielded a product at m/z 340, or 341 upon reacting with [15N]HONO. MS/MS analysis gave an NO2- fragment, and 15N NMR indicated that the product contained a nitro (RNO2) functional group, suggesting that the product was nitroepoxylinoleic acid [L(O)NO2]. This species could form via homolytic dissociation of LOONO to LO* and *NO2 and rearrangement of LO* to an epoxyallylic radical L(O)* followed by recombination of L(O)* with *NO2. Since unsaturated lipids of membranes and lipoproteins are critical targets of reactive oxygen and nitrogen species, these pathways lend insight into mechanisms for the formation of novel nitrogen-containing lipid products in vivo and provide synthetic strategies for further structural and functional studies.
Collapse
|
|
26 |
199 |
14
|
Belury MA. Conjugated dienoic linoleate: a polyunsaturated fatty acid with unique chemoprotective properties. Nutr Rev 1995; 53:83-9. [PMID: 7624062 DOI: 10.1111/j.1753-4887.1995.tb01525.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Conjugated dienoic linoleate (CLA), a linoleic acid derivative, has received considerable attention as a chemoprotective agent in the past few years because it has been shown experimentally to inhibit rat mammary tumorigenesis, mouse forestomach neoplasia, and mouse skin carcinogenesis. CLA has several unique structural and functional properties resulting in chemical and physiological effects that are different from those of all-cis, nonconjugated polyunsaturated fatty acids. In turn, these unique qualities appear to modulate cellular processes involved in carcinogenesis. This review will introduce the chemical background of conjugated dienoic linoleate, examine findings describing its chemoprotective qualities, present possible mechanisms of chemoprotection, and correlate the possible significance of dietary CLA modulation to carcinogenesis to humans.
Collapse
|
Review |
30 |
178 |
15
|
Pekkarinen SS, Stöckmann H, Schwarz K, Heinonen IM, Hopia AI. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:3036-43. [PMID: 10552604 DOI: 10.1021/jf9813236] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To evaluate the effect of colloidal parameters on the activity of natural antioxidants, the effect of selected phenolic acids on both bulk and emulsified methyl linoleate oxidation (in the dark at 40 degrees C) was examined. Oxidation was monitored by determining the formation of hydroperoxides; their isomer distribution and ketodiene (oxodiene) products were monitored by using high-performance liquid chromatography. This study showed the system- and concentration-dependent antioxidant activity of phenolic acids. The scavenging of alpha,alpha-diphenyl-beta-picrazylhydrazyl radicals reflected the antioxidant activity in a bulk oil system but not in an emulsion. Specific interactions of the antioxidant with other compounds, for example, the emulsifier, and intramolecular hydrogen bonds may play an important role in reducing the antioxidant activity. Furthermore, these interactions of antioxidants with emulsifier have a strong influence on the partitioning of antioxidants. Thus, the proportion of the antioxidant solubilized in the lipid phase and particularly in the interface did not necessarily reflect the efficiency of the antioxidant.
Collapse
|
|
26 |
178 |
16
|
Osawa T, Sugiyama Y, Inayoshi M, Kawakishi S. Antioxidative activity of tetrahydrocurcuminoids. Biosci Biotechnol Biochem 1995; 59:1609-12. [PMID: 8520105 DOI: 10.1271/bbb.59.1609] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to develop a new type of antioxidative compound which has both the phenolic and beta-diketone moiety in the same molecule, we converted three known curcuminoids, curcumin (diferuloylmethane, U1), (4-hydroxy-3-methoxycinnamoyl)methane (U2), and bis-(4-hydroxycinnamoyl)methane (U3), which are the natural antioxidants of Curcuma longa L. (tumeric), to tetrahydrocurcuminoids (THU1, THU2, and THU3, respectively) by hydrogenation, and evaluated their antioxidative activity by using linoleic acid as the substrate in an ethanol/water system. Further, we used the rabbit erythrocyte membrane ghost and rat liver microsome as in vitro systems and determined the antioxidative activity of these curcuminoids. When we evaluated their antioxidative activity by these assays, it was found that THU1 had the strongest antioxidative activity among all curcuminoids in each assay system. THU1 has been reported to be one of the main metabolites of U1 in vivo [Holder et al., Xenobiotica, 8, 761-768 (1978)]. These results suggest that THU1 must play an important role in the antioxidative mechanism of U1 in vivo by converting U1 into THU1.
Collapse
|
|
30 |
175 |
17
|
Sehat N, Yurawecz MP, Roach JA, Mossoba MM, Kramer JK, Ku Y. Silver-ion high-performance liquid chromatographic separation and identification of conjugated linoleic acid isomers. Lipids 1998; 33:217-21. [PMID: 9507244 DOI: 10.1007/s11745-998-0198-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This is the first report of the application of silver-ion impregnated high-performance liquid chromatography (Ag(+)-HPLC) to the separation of complex mixtures of conjugated linolenic acid (CLA) isomers present in commercial CLA sources and foods and in biological specimens. This method showed a clear separation of CLA isomers into three groups related to their trans,trans, cis,trans or trans,cis, and cic,cis configuration of the conjugated double-bond system. In addition, this method separated individual positional isomers of the conjugated diene system within each geometrical isomeric group. Following Ag(+)-HPLC isolation, gas chromatography (GC)-electron impact mass spectrometry, and GC-direct deposition-Fourier transformed infrared spectroscopy were used to confirm the identity of two major positional isomers in the cis/trans region, i.e., delta 8,10- and delta 11,13-octadecadienoic acids, which had not been chromatographically resolved previously. Furthermore, the potential of this method was demonstrated by showing different Ag(+)-HPLC profiles exhibiting patterns of isomeric distributions for biological specimens from animals fed a diet containing a commercial CLA preparation, as well as for a commercial cheese product.
Collapse
|
|
27 |
173 |
18
|
Kramer JK, Sehat N, Dugan ME, Mossoba MM, Yurawecz MP, Roach JA, Eulitz K, Aalhus JL, Schaefer AL, Ku Y. Distributions of conjugated linoleic acid (CLA) isomers in tissue lipid classes of pigs fed a commercial CLA mixture determined by gas chromatography and silver ion-high-performance liquid chromatography. Lipids 1998; 33:549-58. [PMID: 9655369 DOI: 10.1007/s11745-998-0239-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigs were fed a commercial conjugated linoleic acid (CLA) mixture, prepared by alkali isomerization of sunflower oil, at 2% of the basal diet, from 61.5 to 106 kg live weight, and were compared to pigs fed the same basal diet with 2% added sunflower oil. The total lipids from liver, heart, inner back fat, and omental fat of pigs fed the CLA diet were analyzed for the incorporation of CLA isomers into all the tissue lipid classes. A total of 10 lipid classes were isolated by three-directional thin-layer chromatography and analyzed by gas chromatography (GC) on long capillary columns and by silver-ion high-performance liquid chromatography (Ag+-HPLC); cholesterol was determined spectrophotometrically. Only trace amounts (<0.1%; by GC) of the 9,11-18:2 cis/trans and trans,trans isomers were observed in pigs fed the control diet. Ten and twelve CLA isomers in the diet and in pig tissue lipids were separated by GC and Ag+- HPLC, respectively. The relative concentration of all the CLA isomers in the different lipid classes ranged from 1 to 6% of the total fatty acids. The four major cis/trans isomers (18.9% 11 cis,13 trans-18:2; 26.3% 10 trans,12 cis-18:2; 20.4% 9 cis,11 trans-18:2; and 16.1% 8 trans, 10 cis-18:2) constituted 82% of the total CLA isomers in the dietary CLA mixture, and smaller amounts of the corresponding cis,cis (7.4%) and trans,trans (10.1%) isomers were present. The distribution of CLA isomers in inner back fat and in omental fat of the pigs was similar to that found in the diet. The liver triacylglycerols (TAG), free fatty acids (FFA), and cholesteryl esters showed a similar pattern to that found in the diet. The major liver phospholipids showed a marked increase of 9 cis,11 trans-18:2, ranging from 36 to 54%, compared to that present in the diet. However, liver diphosphatidylglycerol (DPG) showed a high incorporation of the 11 cis,13 trans-18:2 isomer (43%). All heart lipid classes, except TAG, showed a high content of 11 cis,13 trans-18:2, which was in marked contrast to results in the liver. The relative proportion of 11 cis,13 trans-18:2 ranged from 30% in the FFA to 77% in DPG. The second major isomer in all heart lipids was 9 cis,11 trans-18:2. In both liver and heart lipids the relative proportions of both 10 trans,12 cis-18:2 and 8 trans, 10 cis-18:2 were significantly lower compared to that found in the diet. The FFA in liver and heart showed the highest content of trans,trans isomers (31 to 36%) among all the lipid classes. The preferential accumulation of the 11 cis,13 trans-18:2 into cardiac lipids, and in particular the major phospholipid in the inner mitochondrial membrane, DPG, in both heart and liver, appears unique and may be of concern. The levels of 11 cis,13 trans-18:2 naturally found in foods have not been established.
Collapse
|
|
27 |
169 |
19
|
Piperova LS, Sampugna J, Teter BB, Kalscheur KF, Yurawecz MP, Ku Y, Morehouse KM, Erdman RA. Duodenal and milk trans octadecenoic acid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis-9-containing CLA in lactating dairy cows. J Nutr 2002; 132:1235-41. [PMID: 12042439 DOI: 10.1093/jn/132.6.1235] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Duodenal and milk samples obtained from lactating cows in a previous study were analyzed to compare the content and isomer distribution of conjugated linoleic acids (CLA) and trans-18:1 fatty acids (tFA). Four diets containing either low [25 g/100 g dry matter (DM)] or high (60 g/100 g DM) forage were fed with or without 2% added buffer to four multiparous Holstein dairy cows in a 2 x 2 factorial, 4 x 4 Latin square design with 3-wk experimental periods. Duodenal flows of CLA were low (1.02-1.84 g/d), compared with that of tFA (57-120 g/d), regardless of diet. The greatest amounts of CLA and tFA, as well as the greatest proportions of trans-10-18:1 (P < 0.02), and cis-9, trans-11 (P < 0.01) and trans-10, cis-12 CLA (P < 0.01) were in the duodenal flow of cows fed the low forage unbuffered diet. In milk fat, tFA were increased by the low forage unbuffered diet and the trans-10-18:1 (P < 0.02) replaced trans-11-18:1 as the major 18:1 isomer. Milk CLA secretion (7.2-9.1 g/d) was greater (P < 0.001) than that in the duodenal flow with each diet. This was due to the increase in cis-9, trans-11-18:2 and trans-7, cis-9 CLA, resulting most likely from endogenous synthesis via Delta9-desaturation of ruminally derived tFA. For other CLA isomers, duodenal flow was always greater than milk secretion, suggesting that they essentially were produced in the rumen.
Collapse
|
|
23 |
168 |
20
|
Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P. Singlet molecular oxygen generated from lipid hydroperoxides by the russell mechanism: studies using 18(O)-labeled linoleic acid hydroperoxide and monomol light emission measurements. J Am Chem Soc 2003; 125:6172-9. [PMID: 12785849 DOI: 10.1021/ja029115o] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The decomposition of lipid hydroperoxides into peroxyl radicals is a potential source of singlet oxygen ((1)O(2)) in biological systems. We report herein on evidence of the generation of (1)O(2) from lipid hydroperoxides involving a cyclic mechanism from a linear tetraoxide intermediate proposed by Russell. Using (18)O-labeled linoleic acid hydroperoxide (LA(18)O(18)OH) in the presence of Ce(4+) or Fe(2+), we observed the formation of (18)O-labeled (1)O(2) ((18)[(1)O(2)]) by chemical trapping of (1)O(2) with 9,10-diphenylanthracene (DPA) and detected the corresponding (18)O-labeled DPA endoperoxide (DPA(18)O(18)O) by high-performance liquid chromatography coupled to tandem mass spectrometry. Spectroscopic evidence for the generation of (1)O(2) was obtained by measuring (i) the dimol light emission in the red spectral region (lambda > 570 nm); (ii) the monomol light emission in the near-infrared (IR) region (lambda = 1270 nm); and (iii) the quenching effect of sodium azide. Moreover, the presence of (1)O(2) was unequivocally demonstrated by the direct spectral characterization of the near-IR light emission. For the sake of comparison, (1)O(2) deriving from the H(2)O(2)/OCl(-) and H(2)O(2)/MoO(4)(2)(-) systems or from the thermolysis of the endoperoxide of 1,4-dimethylnaphthalene was also monitored. These chemical trapping and photoemission properties clearly demonstrate that the decomposition of LA(18)O(18)OH generates (18)[(1)O(2)], consistent with the Russell mechanism and pointing to the involvement of (1)O(2) in lipid hydroperoxide mediated cytotoxicity.
Collapse
|
|
22 |
165 |
21
|
Li Y, Watkins BA. Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3 fatty acids. Lipids 1998; 33:417-25. [PMID: 9590630 DOI: 10.1007/s11745-998-0223-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study evaluated the effects of conjugated linoleic acids (CLA) on tissue fatty acid composition and ex vivo prostaglandin E2 (PGE2) production in rats given diets varying in n-6 and n-3 fatty acids. Four groups of rats were given a basal semipurified diet (AIN-93G) containing 70 g/kg of added fat for 42 d. The fat treatments were formulated to contain CLA (0 vs. 10 g/kg of diet) and n-6 (soybean oil having an n-6/n-3 ratio of 7.3) and n-3 fatty acids (menhaden oil + safflower oil having an n-6/n-3 ratio of 1.8) in different ratios in a 2 x 2 factorial design. Fatty acids in liver, serum, muscle, heart, brain, spleen, and bone (cortical, marrow, and periosteum) were analyzed by capillary gas-liquid chromatography. The various dietary lipid treatments did not affect growth; however, CLA improved feed efficiency. The CLA isomers were found in all rat tissues analyzed although their concentrations varied. Dietary CLA decreased the concentrations of 16:1n-7, 18:1, total monounsaturates and n-6 fatty acids, but increased the concentrations of n-3 fatty acids (22:5n-3 and 22:6n-3), and saturates in the tissues analyzed. Ex vivo PGE2 production in bone organ culture was decreased by n-3 fatty acids and CLA. We speculate that CLA reduced the concentration of 18:1 fatty acids by inhibiting liver delta9-desaturase activity. The fact that CLA lowered ex vivo PGE2 production in bone organ culture suggests that these conjugated fatty acids have the potential to influence bone formation and resorption.
Collapse
|
Comparative Study |
27 |
160 |
22
|
Lee SH, Williams MV, DuBois RN, Blair IA. Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2168-2176. [PMID: 14515314 DOI: 10.1002/rcm.1170] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There is an increasing need to be able to conduct quantitative lipidomics analyses as a complement to proteomics studies. The highest specificity for proteomics analysis can be obtained using methodology based on electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) coupled with liquid chromatography/tandem mass spectrometry (LC/MS/MS). For lipidomics analysis it is often necessary to be able to separate enantiomers and regioisomers. This can be very challenging when using methodology based on conventional reversed-phase chromatography. Normal-phase chromatography using chiral columns can provide dramatic improvements in the resolution of enantiomers and regioisomers. However, conventional ESI- and APCI-MS/MS has limited sensitivity, which makes it difficult to conduct studies in cell culture systems where only trace amounts of non-esterified bioactive lipids are present. The use of electron capture APCI-MS/MS overcomes this problem. Enantiomers and regioisomers of diverse bioactive lipids can be quantified using stable isotope dilution methodology coupled with normal-phase chiral chromatography and electron capture APCI-MS/MS. This methodology has allowed a lipidomics profile from rat epithelial cells maintained in culture to be delineated and allowed the effect of a non-selective lipoxygenase inhibitor to be assessed.
Collapse
|
|
22 |
143 |
23
|
Spiteller P, Kern W, Reiner J, Spiteller G. Aldehydic lipid peroxidation products derived from linoleic acid. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:188-208. [PMID: 11325611 DOI: 10.1016/s1388-1981(01)00100-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipid peroxidation (LPO) processes observed in diseases connected with inflammation involve mainly linoleic acid. Its primary LPO products, 9-hydroperoxy-10,12-octadecadienoic acid (9-HPODE) and 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), decompose in multistep degradation reactions. These reactions were investigated in model studies: decomposition of either 9-HPODE or 13-HPODE by Fe(2+) catalyzed air oxidation generates (with the exception of corresponding hydroxy and oxo derivatives) identical products in often nearly equal amounts, pointing to a common intermediate. Pairs of carbonyl compounds were recognized by reacting the oxidation mixtures with pentafluorobenzylhydroxylamine. Even if a pure lipid hydroperoxide is subjected to decomposition a great variety of products is generated, since primary products suffer further transformations. Therefore pure primarily decomposition products of HPODEs were exposed to stirring in air with or without addition of iron ions. Thus we observed that primary products containing the structural element R-CH=CH-CH=CH-CH=O add water and then they are cleaved by retroaldol reactions. 2,4-Decadienal is degraded in the absence of iron ions to 2-butenal, hexanal and 5-oxodecanal. Small amounts of buten-1,4-dial were also detected. Addition of m-chloroperbenzoic acid transforms 2,4-decadienal to 4-hydroxy-2-nonenal. 4,5-Epoxy-2-decenal, synthetically available by treatment of 2,4-decadienal with dimethyldioxirane, is hydrolyzed to 4,5-dihydroxy-2-decenal.
Collapse
|
|
24 |
140 |
24
|
Schopfer FJ, Baker PRS, Giles G, Chumley P, Batthyany C, Crawford J, Patel RP, Hogg N, Branchaud BP, Lancaster JR, Freeman BA. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J Biol Chem 2005; 280:19289-97. [PMID: 15764811 DOI: 10.1074/jbc.m414689200] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
139 |
25
|
Moya-Camarena SY, Van den Heuvel JP, Belury MA. Conjugated linoleic acid activates peroxisome proliferator-activated receptor alpha and beta subtypes but does not induce hepatic peroxisome proliferation in Sprague-Dawley rats. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:331-42. [PMID: 9989264 DOI: 10.1016/s0005-2760(98)00121-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since conjugated linoleic acid (CLA) has structural and physiological characteristics similar to peroxisome proliferators, we hypothesized that CLA would activate peroxisome proliferator-activated receptor (PPAR). We compared the effects of dietary CLA (0.0, 0.5, 1.0 and 1.5% by weight) with a peroxisome proliferator (0.01% Wy-14,643) in female and male Sprague-Dawley (SD) rats. Dietary CLA had little effect on body weight, liver weight, and hepatic peroxisome proliferation, compared to male rats fed Wy-14,643 diet. Lipid content in livers from rats fed 1.5% CLA and Wy-14,643 diets was increased (P < 0.01) when compared to rats fed control diets regardless of gender. Hepatic acyl-CoA oxidase (ACO) mRNA levels were increased 3-fold in male rats fed 1.5% CLA diet compared to rats fed control diets while Wy-14,643 supported approximately 30-fold ACO mRNA accumulation. A similar response was observed for liver fatty acid-binding protein (L-FABP) mRNA. The effect of dietary treatments on hepatic PPAR-responsive genes in female rats was weaker than in male rats. The (9Z,11E)-CLA isomer activated PPAR alpha in transfected cells to a similar extent as Wy-14,643, whereas the furan-CLA metabolite was comparable to bezafibrate on activating PPAR beta. These data suggest that while CLA was able to activate PPARs it is not a peroxisome proliferator in SD rats.
Collapse
|
|
26 |
134 |