1
|
Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem 1999; 274:471-7. [PMID: 9867867 DOI: 10.1074/jbc.274.1.471] [Citation(s) in RCA: 457] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arachidonic acid (20:4(n-6)) and docosahexaenoic acid (22:6(n-3)) have a variety of physiological functions that include being the major component of membrane phospholipid in brain and retina, substrates for eicosanoid production, and regulators of nuclear transcription factors. The rate-limiting step in the production of 20:4(n-6) and 22:6(n-3) is the desaturation of 18:2(n-6) and 18:3(n-3) by Delta-6 desaturase. In this report, we describe the cloning, characterization, and expression of a mammalian Delta-6 desaturase. The open reading frames for mouse and human Delta-6 desaturase each encode a 444-amino acid peptide, and the two peptides share an 87% amino acid homology. The amino acid sequence predicts that the peptide contains two membrane-spanning domains as well as a cytochrome b5-like domain that is characteristic of nonmammalian Delta-6 desaturases. Expression of the open reading frame in rat hepatocytes and Chinese hamster ovary cells instilled in these cells the ability to convert 18:2(n-6) and 18:3(n-3) to their respective products, 18:3(n-6) and 18:4(n-3). When mice were fed a diet containing 10% fat, hepatic enzymatic activity and mRNA abundance for hepatic Delta-6 desaturase in mice fed corn oil were 70 and 50% lower than in mice fed triolein. Finally, Northern analysis revealed that the brain contained an amount of Delta-6 desaturase mRNA that was several times greater than that found in other tissues including the liver, lung, heart, and skeletal muscle. The RNA abundance data indicate that prior conclusions regarding the low level of Delta-6 desaturase expression in nonhepatic tissues may need to be reevaluated.
Collapse
|
|
26 |
457 |
2
|
Cho HP, Nakamura M, Clarke SD. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 1999; 274:37335-9. [PMID: 10601301 DOI: 10.1074/jbc.274.52.37335] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Arachidonic (20:4(n-6)), eicosapentaenoic (20:5(n-3)), and docosahexaenoic (22:6(n-3)) acids are major components of brain and retina phospholipids, substrates for eicosanoid production, and regulators of nuclear transcription factors. One of the two rate-limiting steps in the production of these polyenoic fatty acids is the desaturation of 20:3(n-6) and 20:4(n-3) by Delta-5 desaturase. This report describes the cloning and expression of the human Delta-5 desaturase, and it compares the structural characteristics and nutritional regulation of the Delta-5 and Delta-6 desaturases. The open reading frame of the human Delta-5 desaturase encodes a 444-amino acid peptide which is identical in size to the Delta-6 desaturase and which shares 61% identity with the human Delta-6 desaturase. The Delta-5 desaturase contains two membrane-spanning domains, three histidine-rich regions, and a cytochrome b(5) domain that all align perfectly with the same domains located in the Delta-6 desaturase. Expression of the open reading frame in Chinese hamster ovary cells instilled the ability to convert 20:3(n-6) to 20:4(n-6). Northern analysis revealed that many human tissues including skeletal muscle, lung, placenta, kidney, and pancreas expressed Delta-5 desaturase mRNA, but Delta-5 desaturase was most abundant in the liver, brain, and heart. However, in all tissues, the abundance of Delta-5 desaturase mRNA was much lower than that observed for the Delta-6 desaturase. When rats were fed a diet containing 10% safflower oil or menhaden fish oil, the level of hepatic mRNA for Delta-5 and Delta-6 desaturase was only 25% of that found in the liver of rats fed a fat-free diet or a diet containing triolein. Finally, a BLAST and Genemap search of the human genome revealed that the Delta-5 and Delta-6 desaturase genes reside in reverse orientation on chromosome 11 and that they are separated by <11,000 base pairs.
Collapse
|
|
26 |
368 |
3
|
Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ. A vertebrate fatty acid desaturase with Delta 5 and Delta 6 activities. Proc Natl Acad Sci U S A 2001; 98:14304-9. [PMID: 11724940 PMCID: PMC64677 DOI: 10.1073/pnas.251516598] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Delta5 and Delta6 fatty acid desaturases are critical enzymes in the pathways for the biosynthesis of the polyunsaturated fatty acids arachidonic, eicosapentaenoic, and docosahexaenoic acids. They are encoded by distinct genes in mammals and Caenorhabditis elegans. This paper describes a cDNA isolated from zebrafish (Danio rerio) with high similarity to mammalian Delta6 desaturase genes. The 1,590-bp sequence specifies a protein that, in common with other fatty acid desaturases, contains an N-terminal cytochrome b(5) domain and three histidine boxes, believed to be involved in catalysis. When the zebrafish cDNA was expressed in Saccharomyces cerevisiae it conferred the ability to convert linoleic acid (18:2n-6) and alpha-linolenic acid (18:3n-3) to their corresponding Delta6 desaturated products, 18:3n-6 and 18:4n-3. However, in addition it conferred on the yeast the ability to convert di-homo-gamma-linoleic acid (20:3n-6) and eicosatetraenoic acid (20:4n-3) to arachidonic acid (20:4n-6) and eicosapentaenoic acid (20:5n-3), respectively, indicating that the zebrafish gene encodes an enzyme having both Delta5 and Delta6 desaturase activity. The zebrafish Delta5/Delta6 desaturase may represent a component of a prototypic vertebrate polyunsaturated fatty acids biosynthesis pathway.
Collapse
|
research-article |
24 |
202 |
4
|
Garg ML, Sebokova E, Thomson AB, Clandinin MT. Delta 6-desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or omega 3 fatty acids. Biochem J 1988; 249:351-6. [PMID: 3342019 PMCID: PMC1148710 DOI: 10.1042/bj2490351] [Citation(s) in RCA: 193] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effect of feeding semipurified diets enriched in linseed (rich in C18:3, omega 3 fatty acid) or fish (rich in C20:5, omega 3 and C22:6, omega 3 fatty acid) oil with and without cholesterol supplementation on the desaturation of linoleic acid (C18:2, omega 6) by rat liver microsomal fractions was investigated. Animals fed diets supplemented with beef tallow were used as equal-energy controls. Both linseed-oil and fish-oil diets, without added cholesterol, decrease conversion of C18:2, omega 6 fatty acid to gamma-linolenic acid (C18:3, omega 6). Reduction in delta 6-desaturation was significantly greater for animals fed the diet containing fish oil than with animals fed the linseed-oil diet. The major effect of cholesterol supplementation was to decrease the rate of desaturation of C18:2, omega 6, when fed in combination with the beef-tallow diet, whereas delta 6-desaturation was unaffected when cholesterol was fed along with diets high in omega 3 fatty acids (linseed oil or fish oil). The activity of the delta 6-desaturase in vitro is consistent with the fatty acid composition observed for the microsomal membranes on which this enzyme is localized. Dietary linseed oil and fish oil lowered the arachidonic (C20:4, omega 6) acid content of rat liver microsomes, with an accompanying increase in membrane eicosapentaenoic (C20:5, omega 3) and docosahexaenoic (C22:6, omega 3) acid content, in comparison with the group fed beef tallow. Inclusion of cholesterol into the beef-tallow or linseed-oil diets resulted in decreased membrane C20:4, omega 6-fatty-acid content, with concomitant increase in C18:2, omega 6-fatty-acid content. However, addition of cholesterol to the fish-oil diet did not alter the microsomal membrane content of C20:4, omega 6 fatty acid. Thus it is suggested that (1) the decrease in prostaglandin E2, thromboxane and prostacyclin levels generally observed after fish-oil consumption may be at least partly due to inhibition of C20:4, omega 6-fatty-acid synthesis from C18:2, omega 6 fatty acid; and (2) consumption of fish oil prevents the further decrease in C20:4, omega 6-fatty-acid levels by dietary cholesterol that is apparent when cholesterol is fed in combination with diets high in saturated fat or C18:3, omega 3 fatty acid.
Collapse
|
research-article |
37 |
193 |
5
|
Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci U S A 1997; 94:4211-6. [PMID: 9108131 PMCID: PMC20606 DOI: 10.1073/pnas.94.8.4211] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/1996] [Accepted: 01/23/1997] [Indexed: 02/04/2023] Open
Abstract
gamma-Linolenic acid (GLA; C18:3 delta(6,9,12)) is a component of the seed oils of evening primrose (Oenothera spp.), borage (Borago officinalis L.), and some other plants. It is widely used as a dietary supplement and for treatment of various medical conditions. GLA is synthesized by a delta6-fatty acid desaturase using linoleic acid (C18:2 delta(9,12)) as a substrate. To enable the production of GLA in conventional oilseeds, we have isolated a cDNA encoding the delta6-fatty acid desaturase from developing seeds of borage and confirmed its function by expression in transgenic tobacco plants. Analysis of leaf lipids from a transformed plant demonstrated the accumulation of GLA and octadecatetraenoic acid (C18:4 delta(6,9,12,15)) to levels of 13.2% and 9.6% of the total fatty acids, respectively. The borage delta6-fatty acid desaturase differs from other desaturase enzymes, characterized from higher plants previously, by the presence of an N-terminal domain related to cytochrome b5.
Collapse
|
research-article |
28 |
180 |
6
|
Abstract
Animal biosynthesis of high polyunsaturated fatty acids from linoleic, alpha-linolenic and oleic acids is mainly modulated by the delta6 and delta5 desaturases through dietary and hormonal stimulated mechanisms. From hormones, only insulin activates both enzymes. In experimental diabetes mellitus type-1, the depressed delta6 desaturase is restored by insulin stimulation of the gene expression of its mRNA. However, cAMP or cycloheximide injection prevents this effect. The depression of delta6 and delta5 desaturases in diabetes is rapidly correlated by lower contents of arachidonic acid and higher contents of linoleic in almost all the tissues except brain. However, docosahexaenoic n-3 acid enhancement, mainly in liver phospholipids, is not explained yet. In experimental non-insulin dependent diabetes, the effect upon the delta6 and delta5 desaturases is not clear. From all other hormones glucagon, adrenaline, glucocorticoids, mineralocorticoids, oestriol, oestradiol, testosterone and ACTH depress both desaturases, and a few hormones: progesterone, cortexolone and pregnanediol are inactive.
Collapse
|
Review |
22 |
163 |
7
|
Zheng X, Seiliez I, Hastings N, Tocher DR, Panserat S, Dickson CA, Bergot P, Teale AJ. Characterization and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:269-79. [PMID: 15465674 DOI: 10.1016/j.cbpc.2004.08.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/30/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which there is a relative wealth of data on the nutritional regulation of fatty acid desaturation and HUFA synthesis, and between which substantive differences occur.
Collapse
|
|
21 |
135 |
8
|
Horrobin DF. Fatty acid metabolism in health and disease: the role of delta-6-desaturase. Am J Clin Nutr 1993; 57:732S-736S; discussion 736S-737S. [PMID: 8386433 DOI: 10.1093/ajcn/57.5.732s] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Linoleic acid is the main dietary essential fatty acid (EFA). To be fully utilized by the body, it must be metabolized to a range of other substances. The first step in this pathway is delta-6-desaturation to gamma-linolenic acid (GLA). This step is slow and rate-limiting, particularly in humans. If delta-6-desaturation is impaired for any reason, the supply of further metabolites may be inadequate for normal function. If the consumption of further metabolites is excessive, then a normal rate of delta-6-desaturation may be inadequate. In these circumstances the direct supply of GLA or further metabolites may be of value. This concept is illustrated by atopic eczema and diabetes, which may represent inherited and acquired examples of inadequate delta-6-desaturation.
Collapse
|
Review |
32 |
132 |
9
|
Chambaz J, Ravel D, Manier MC, Pepin D, Mulliez N, Bereziat G. Essential fatty acids interconversion in the human fetal liver. BIOLOGY OF THE NEONATE 1985; 47:136-40. [PMID: 3986251 DOI: 10.1159/000242104] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In order to study the role played by the fetoplacental unit in providing the human fetus with arachidonic acid, delta 5- and delta 6-desaturase activities were studied in microsomes from human fetal liver and placenta after 18 and 22 weeks of gestation. We evidenced for the first time delta 5- and delta 6-desaturase activities in fetal liver microsomes. As in adult liver, delta 6-desaturation is the rate-limiting step of arachidonic acid synthesis. No activity was found in the placenta. Arachidonic acid concentrations were higher in fetal serum than in maternal serum while the opposite was observed for linoleic acid. The fetal liver microsomal content in arachidonic acid was low. Taken together the data suggest that arachidonic acid is supplied to the fetus through a preferential transfer across the placenta.
Collapse
|
|
40 |
120 |
10
|
Zheng X, Tocher DR, Dickson CA, Bell JG, Teale AJ. Highly unsaturated fatty acid synthesis in vertebrates: new insights with the cloning and characterization of a delta6 desaturase of Atlantic salmon. Lipids 2005; 40:13-24. [PMID: 15825826 DOI: 10.1007/s11745-005-1355-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fish are an important source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. The synthesis of HUFA involves enzyme-mediated desaturation, and a delta5 fatty acyl desaturase cDNA has been cloned from Atlantic salmon (Salmo salar) and functionally characterized previously. Here we report cloning and functional characterization of a delta6 fatty acyl desaturase of Atlantic salmon and describe its genomic structure, tissue expression, and nutritional regulation. A salmon genomic library was screened with a salmon delta5 desaturase cDNA and positive recombinant phage isolated and subcloned. The full-length cDNA for the putative fatty acyl desaturase was shown to comprise 2106 bp containing an open reading frame of 1365 bp specifying a protein of 454 amino acids (GenBank accession no. AY458652). The protein sequence included three histidine boxes, two transmembrane regions, and an N-terminal cytochrome b5 domain containing the heme-binding motif HPGG, all of which are characteristic of microsomal fatty acid desaturases. Functional expression showed that this gene possessed predominantly delta6 desaturase activity. Screening and sequence analysis of the genomic DNA of a single fish revealed that the delta6 desaturase gene constituted 13 exons in 7965 bp of genomic DNA. Quantitative real-time PCR assay of gene expression in Atlantic salmon showed that both delta6 and delta5 fatty acyl desaturase genes, and a fatty acyl elongase gene, were highly expressed in intestine, liver, and brain, and less so in kidney, heart, gill, adipose tissue, muscle, and spleen. Furthermore, expression of both delta6 and delta5 fatty acyl desaturase genes in intestine, liver, red muscle, and adipose tissue was higher in salmon fed a diet containing vegetable oil than in fish fed a diet containing fish oil.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
118 |
11
|
Tang C, Cho HP, Nakamura MT, Clarke SD. Regulation of human delta-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J Lipid Res 2003; 44:686-95. [PMID: 12562861 DOI: 10.1194/jlr.m200195-jlr200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The rate-limiting step in 20:4(n-6) and 22:6(n-3) synthesis is the desaturation of 18:2(n-6) and 18:3(n-3) by Delta-6 desaturase. In this report, we demonstrate that n-6 and n-3 PUFAs suppressed the hepatic expression of rodent Delta-6 desaturase by inhibiting the rate of Delta-6 desaturase gene transcription. In contrast, consumption of the peroxisome proliferator-activated receptor (PPAR)alpha activator WY 14,643 significantly enhanced the transcription of hepatic Delta-6 desaturase by more than 500%. Transfection reporter assays with HepG2 cells revealed that the PUFA response region for the human Delta-6 desaturase gene involved the proximal promoter region of -283/+1 human Delta-6 desaturase gene, while the WY 14,643 response element (RE) was identified as an imperfect direct repeat (DR-1) located at -385/-373. The WY 14,643 induction of the human Delta-6 desaturase promoter activity was dependent upon the expression of PPARalpha. Electrophoretic mobility shift assays revealed that nuclear proteins extracted from HepG2 cells expressing PPARalpha specifically interacted with the -385/-373 DR-1 sequence of the human Delta-6 desaturase gene. The interaction was eliminated by the unlabeled PPARalpha RE of the rat acyl-CoA oxidase gene, and the protein-DNA complex was super-shifted by treatment with anti-PPARalpha. The -385/-373 sequence also interacted with a mixture of in vitro translated PPARalpha-retinoic acid receptor X (RXR)alpha, but by themselves neither PPARalpha nor RXRalpha could bind to the Delta-6 desaturase DR-1. These data indicate that the 5'-flanking region of the human Delta-6 desaturase gene contains a DR-1 that functions in the regulation of human Delta-6 desaturase gene transcription, and thereby plays a role in the synthesis of 20- and 22-carbon polyenoic fatty acids.
Collapse
|
|
22 |
116 |
12
|
Bretillon L, Chardigny JM, Grégoire S, Berdeaux O, Sébédio JL. Effects of conjugated linoleic acid isomers on the hepatic microsomal desaturation activities in vitro. Lipids 1999; 34:965-9. [PMID: 10574661 DOI: 10.1007/s11745-999-0446-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of individual conjugated linoleic acid (CLA) isomers on the delta6 desaturation of linoleic and alpha-linolenic acids and on the delta9 desaturation of stearic acid was investigated in vitro, using rat liver microsomes. The delta6 desaturation of 18:2n-6 was decreased from 23 to 38% when the ratio of 9cis,11trans-18:2 to 18:2n-6 increased from 0.5 to 2. The compound 10trans,12cis-18:2 exhibited a similar effect only at the highest concentration. The delta6 desaturation of alpha-linolenic acid was slightly affected by the presence of CLA isomers. The sole isomer to induce an inhibitory effect on the delta9 desaturation of stearic acid was 10trans,12cis-18:2.
Collapse
|
|
26 |
114 |
13
|
Napier JA, Hey SJ, Lacey DJ, Shewry PR. Identification of a Caenorhabditis elegans Delta6-fatty-acid-desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem J 1998; 330 ( Pt 2):611-4. [PMID: 9480865 PMCID: PMC1219180 DOI: 10.1042/bj3300611] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We identified a cDNA expressed sequence tag from an animal (the nematode worm Caenorhabditis elegans) that showed weak similarity to a higher-plant microsomal Delta6-desaturase. A full-length cDNA clone was isolated and expressed in the yeast Saccharomyces cerevisiae. This demonstrated that the protein encoded by the C. elegans cDNA was that of a fatty acid Delta6-desaturase, as determined by the accumulation of gamma-linolenic acid. The C. elegans Delta6-desaturase contained an N-terminalcytochrome b5 domain, indicating that it had a similar structure to that of the higher-plant Delta6-desaturase. The C. elegans Delta6-desaturase mapped to cosmid W08D2, a region of chromosome III. This is the first example of a Delta6-desaturase isolated from an animal and also the first example of an animal desaturase containing a cytochrome b5 domain.
Collapse
|
research-article |
27 |
113 |
14
|
Okayasu T, Nagao M, Ishibashi T, Imai Y. Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes. Arch Biochem Biophys 1981; 206:21-8. [PMID: 7212717 DOI: 10.1016/0003-9861(81)90061-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
|
44 |
111 |
15
|
Ge L, Gordon JS, Hsuan C, Stenn K, Prouty SM. Identification of the delta-6 desaturase of human sebaceous glands: expression and enzyme activity. J Invest Dermatol 2003; 120:707-14. [PMID: 12713571 DOI: 10.1046/j.1523-1747.2003.12123.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Delta-6 desaturase, also known as fatty acid desaturase-2 (FADS2), is a component of a lipid metabolic pathway that converts the essential fatty acids linoleate and alpha-linolenate into long-chain polyunsaturated fatty acids. Isolation of Delta-6 desaturase/FADS2 cDNA from human skin predicts an identical protein to that expressed in human brain and Southern analysis indicates a single locus, together suggestive of a single Delta-6 desaturase/FADS2 gene. Within human skin, Delta-6 desaturase/FADS2 mRNA and protein expression is restricted to differentiating sebocytes located in the suprabasal layers of the sebaceous gland. Enzymatic analysis using CHO cells overexpressing human Delta-6 desaturase/FADS2 indicates catalysis of a "polyunsaturated fatty acid type" reaction, but also an unexpected "sebaceous-type" reaction, that of converting palmitate into the mono-unsaturated fatty acid sapienate, a 16-carbon fatty acid with a single cis double bond at the sixth carbon from the carboxyl end. Sapienate is the most abundant fatty acid in human sebum, and among hair-bearing animals is restricted to humans. This work identifies Delta-6 desaturase/FADS2 as the major fatty acid desaturase in human sebaceous glands and suggests that the environment of the sebaceous gland permits catalysis of the sebaceous-type reaction and restricts catalysis of the polyunsaturated fatty acid type reaction.
Collapse
|
|
22 |
97 |
16
|
Takahashi Y, Kushiro M, Shinohara K, Ide T. Activity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:265-73. [PMID: 12668178 DOI: 10.1016/s1388-1981(03)00038-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effects of dietary conjugated linoleic acid (CLA) on the activity and mRNA levels of hepatic enzymes involved in fatty acid synthesis and oxidation were examined in mice. In the first experiment, male ICR and C57BL/6J mice were fed diets containing either a 1.5% fatty acid preparation rich in CLA or a preparation rich in linoleic acid. In the second experiment, male ICR mice were fed diets containing either 1.5% linoleic acid, palmitic acid or the CLA preparation. After 21 days, CLA relative to linoleic acid greatly decreased white adipose tissue mass but caused hepatomegaly accompanying an approximate 10-fold increase in the tissue triacylglycerol content irrespective of mouse strain. CLA compared to linoleic acid greatly increased the activity and mRNA levels of various lipogenic enzymes in both experiments. Moreover, CLA increased the mRNA expression of Delta6- and Delta5-desaturases, and sterol regulatory element binding protein-1 (SREBP-1). The mitochondrial and peroxisomal palmitoyl-CoA oxidation rate was about 2.5-fold higher in mice fed CLA than in those fed linoleic acid in both experiments. The increase was associated with the up-regulation of the activity and mRNA expression of various fatty acid oxidation enzymes. The palmitic acid diet compared to the linoleic acid diet was rather ineffective in modulating the hepatic lipid levels or activity and mRNA levels of enzymes in fatty acid metabolism. It is apparent that dietary CLA concomitantly increases the activity and mRNA levels of enzymes involved in fatty acid synthesis and oxidation, and desaturation of polyunsaturated fatty acid in the mouse liver. Both the activation of peroxisomal proliferator alpha and up-regulation of SREBP-1 may be responsible for this.
Collapse
|
Comparative Study |
22 |
96 |
17
|
de Antueno RJ, Knickle LC, Smith H, Elliot ML, Allen SJ, Nwaka S, Winther MD. Activity of human Delta5 and Delta6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids. FEBS Lett 2001; 509:77-80. [PMID: 11734209 DOI: 10.1016/s0014-5793(01)03135-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Yeast co-expressing human elongase and desaturase genes were used to investigate whether the same desaturase gene encodes an enzyme able to desaturate n-3 and n-6 fatty acids with the same or different carbon chain length. The results clearly demonstrated that a single human Delta5 desaturase is active on 20:3n-6 and 20:4n-3. Endogenous Delta6 desaturase substrates were generated by providing to the yeast radiolabelled 20:4n-6 or 20:5n-3 which, through two sequential elongations, produced 24:4n-6 and 24:5n-3, respectively. Overall, our data suggest that a single human Delta6 desaturase is active on 18:2n-6, 18:3n-3, 24:4n-6 and 24:5n-3.
Collapse
|
|
24 |
95 |
18
|
Bourre JM, Piciotti M, Dumont O. Delta 6 desaturase in brain and liver during development and aging. Lipids 1990; 25:354-6. [PMID: 2366633 DOI: 10.1007/bf02544347] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
delta 6 Desaturase was measured in the mouse brain and liver using linoleic acid as substrate. During pre- and postnatal development, delta 6 desaturase in brain decreased dramatically (12-fold) up to postnatal day 21 and remained nearly constant thereafter. In liver, the activity increased approximately 9-fold between day 3 before birth and day 7 after birth. Then it decreased slightly up to weaning and was approximately constant up to 4 mo. From then on, delta 6 desaturase decreased with age (40% between 4 and 17 mo).
Collapse
|
|
35 |
90 |
19
|
Abstract
Aging is characterized by a wide variety of defects, particularly in the cardiovascular and immune systems. Cyclic AMP levels fall, especially in lymphocytes. Delta-6-desaturase (D6D) levels have been found to fall rapidly in the testes and more slowly in the liver in aging rats. D6D is an enzyme which converts cis-linoleic acid to gamma-linolenic acid (GLA). Other factors which inhibit D6D activity are diabetes, alcohol and radiation, all of which may be associated with accelerated aging. In meat eaters or omnivores which can acquire arachidonic acid from food, the main consequences of D6D loss will be deficiencies of GLA, dihomogamma-linolenic acid (DGLA) and prostaglandin (PG) E1. PGE1 activates T lymphocytes, inhibits smooth muscle proliferation and thrombosis, is important in gonadal function and raises cyclic AMP levels in many tissues. It is a good candidate for a key factor lost in aging. Moderate food restriction, the only manoeuvre which consistently slows aging in homoiotherms, raises D6D activity by 300%. Other factors important in regulating D6D and the conversion of GLA to PGE1 are zinc, pyridoxine, ascorbic acid, the pineal hormone, melatonin, and possibly vitamin B3. GLA administration to humans has been found to lower blood pressure and cholesterol, and to cause clinical improvement in patients with Sjogren's syndrome, scleroderma and alcoholism. These diseases are associated with some features of accelerated aging. The proposition that D6D loss is not only a marker of aging but a cause of some of its major manifestations is amenable to experimental test even in humans. The blocked enzyme can be by-passed by giving GLA directly.
Collapse
|
|
44 |
84 |
20
|
Reddy AS, Nuccio ML, Gross LM, Thomas TL. Isolation of a delta 6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. PLANT MOLECULAR BIOLOGY 1993; 22:293-300. [PMID: 8389613 DOI: 10.1007/bf00014936] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The enzyme delta 6-desaturase is responsible for the conversion of linoleic acid (18:2) to gamma-linolenic acid (18:3 gamma). A cyanobacterial gene encoding delta 6-desaturase was cloned by expression of a Synechocystis genomic cosmid library in Anabaena, a cyanobacterium lacking delta 6-desaturase. Expression of the Synechocystis delta 6-desaturase gene in Anabaena resulted in the accumulation of gamma-linolenic acid (GLA) and octadecatetraenoic acid (18:4). The predicted 359 amino acid sequence of the Synechocystis delta 6-desaturase shares limited, but significant, sequence similarity with two other reported desaturases. Analysis of three overlapping cosmids revealed a delta 12-desaturase gene linked to the delta 6-desaturase gene. Expression of Synechocystis delta 6- and delta 12-desaturases in Synechococcus, a cyanobacterium deficient in both desaturases, resulted in the production of linoleic acid and gamma-linolenic acid.
Collapse
|
|
32 |
80 |
21
|
Nara TY, He WS, Tang C, Clarke SD, Nakamura MT. The E-box like sterol regulatory element mediates the suppression of human Delta-6 desaturase gene by highly unsaturated fatty acids. Biochem Biophys Res Commun 2002; 296:111-7. [PMID: 12147235 DOI: 10.1016/s0006-291x(02)00851-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Delta-6 Desaturase (D6D) catalyzes the first step of the synthesis of highly unsaturated fatty acids (HUFA) that play pivotal roles in many biological functions. The D6D expression is under feedback regulation by dietary HUFA. We co-transfected D6D promoter-reporter constructs to HepG2 cells with an expression vector of nuclear form sterol regulatory element binding protein-1c (SREBP-1c). A 90-bp region of the D6D promoter was required for the activation by SREBP-1c as well as for the suppression of the promoter activity by HUFA. The region contained two candidates of sterol regulatory element (SRE). Mutation analysis identified E-box like SRE (SRE-2) as essential for both SREBP-1c activation and HUFA suppression. SRE-2 has a core sequence of CAGCAG, and is also conserved in stearoyl CoA desatruases. Because HUFA are primarily incorporated into phospholipids (PL), our results suggest that the primary role of SREBP-1c in liver is the regulation of fatty acid supply for PL rather than for triglycerides.
Collapse
|
|
23 |
80 |
22
|
Aki T, Shimada Y, Inagaki K, Higashimoto H, Kawamoto S, Shigeta S, Ono K, Suzuki O. Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase. Biochem Biophys Res Commun 1999; 255:575-9. [PMID: 10049752 DOI: 10.1006/bbrc.1999.0235] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) sequence informations. These fragments were subsequently used to screen a rat liver cDNA library, yielding a 1573-bp clone. Expression of DNA fragment containing either of two possible open reading frames (nucleotide numbers 97-1431 and 148-1431) of the isolated clone in yeast led to the accumulation of gamma-linolenic acid in the presence of exogenous linoleic acid. In this system, the addition of alpha-linolenic acid also resulted in the accumulation of its Delta-6 desaturated product whereas dihomo-gamma-linolenic acid failed to be a substrate. These results indicate that the protein encoded by the rat cDNA is Delta-6 fatty acid desaturase, and the first 17 amino acids corresponding to the coding region 97-147 of the clone are not required to function in yeast.
Collapse
|
|
26 |
78 |
23
|
Sakuradani E, Kobayashi M, Shimizu S. Delta6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 1999; 238:445-53. [PMID: 10570972 DOI: 10.1016/s0378-1119(99)00359-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A DNA fragment was cloned from the fungal strain, Mortierella alpina 1S-4 (which is used industrially to produce arachidonic acid), after PCR amplification with oligonucleotide primers designed based on the sequence information for delta6-desaturase genes (from borage and Caenorhabditis elegans), which are involved in the desaturation of linoleic acid (delta9, delta12-18:2) to gamma-linolenic acid (delta6, delta9, delta12-18:3). This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 457 amino acids from a M. calpina 1S-4 library. The predicted amino-acid sequence showed similarity to those of the above delta6-desaturases, and contained a cytochrome b5-like domain at the N-terminus, being different from the yeast delta9-desaturase which has the corresponding domain at the C-terminus. The full-length cDNA clone was expressed under the control of the amyB promoter in a filamentous fungus, Aspergillus oryzae, resulting in the accumulation of gamma-linolenic acid (which was not detected in the control Aspergillus) to the level of 25.2% of the total fatty acids. These findings revealed that the recombinant product has delta6-desaturase activity. The Mortierella delta6-desaturase is the first to be reported in fungi.
Collapse
|
|
26 |
77 |
24
|
D'andrea S, Guillou H, Jan S, Catheline D, Thibault JN, Bouriel M, Rioux V, Legrand P. The same rat Delta6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. Biochem J 2002; 364:49-55. [PMID: 11988075 PMCID: PMC1222544 DOI: 10.1042/bj3640049] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recently cloned Delta6-desaturase is known to catalyse the first step in very-long-chain polyunsaturated fatty acid biosynthesis, i.e. the desaturation of linoleic and alpha-linolenic acids. The hypothesis that this enzyme could also catalyse the terminal desaturation step, i.e. the desaturation of 24-carbon highly unsaturated fatty acids, has never been elucidated. To test this hypothesis, the activity of rat Delta6-desaturase expressed in COS-7 cells was investigated. Recombinant Delta6-desaturase expression was analysed by Western blot, revealing a single band at 45 kDa. The putative involvement of this enzyme in the Delta6-desaturation of C(24:5) n-3 to C(24:6) n-3 was measured by incubating transfected cells with C(22:5) n-3. Whereas both transfected and non-transfected COS-7 cells were able to synthesize C(24:5) n-3 by elongation of C(22:5) n-3, only cells expressing Delta6-desaturase were also able to produce C(24:6) n-3. In addition, Delta6-desaturation of [1-(14)C]C(24:5) n-3 was assayed in vitro in homogenates from COS-7 cells expressing Delta6-desaturase or not, showing that Delta6-desaturase catalyses the conversion of C(24:5) n-3 to C(24:6) n-3. Evidence is therefore presented that the same rat Delta6-desaturase catalyses not only the conversion of C(18:3) n-3 to C(18:4) n-3, but also the conversion of C(24:5) n-3 to C(24:6) n-3. A similar mechanism in the n-6 series is strongly suggested.
Collapse
|
research-article |
23 |
77 |
25
|
Sperling P, Lee M, Girke T, Zähringer U, Stymne S, Heinz E. A bifunctional delta-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b5 superfamily. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3801-11. [PMID: 10848999 DOI: 10.1046/j.1432-1327.2000.01418.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many plant genes have been cloned that encode regioselective desaturases catalyzing the formation of cis-unsaturated fatty acids. However, very few genes have been cloned that encode enzymes catalyzing the formation of the functional groups found in unusual fatty acids (e.g. hydroxy, epoxy or acetylenic fatty acids). Here, we describe the characterization of an acetylenase from the moss Ceratodon purpureus with a regioselectivity differing from the previously described Delta12-acetylenase. The gene encoding this protein, together with a Delta6-desaturase, was cloned by a PCR-based approach with primers derived from conserved regions in Delta5-, Delta6-fatty-acid desaturases and Delta8-sphingolipid desaturases. The proteins that are encoded by the two cloned cDNAs are likely to consist of a N-terminal extension of unknown function, a cytochrome b5-domain, and a C-terminal domain that is similar to acyl lipid desaturases with characteristic histidine boxes. The proteins were highly homologous in sequence to the Delta6-desaturase from the moss Physcomitrella patens. When these two cDNAs were expressed in Saccharomyces cerevisiae, both transgenic yeast cultures desaturated Delta9-unsaturated C16- and C18-fatty acids by inserting an additional Delta6cis-double bond. One of these transgenic yeast clones was also able to introduce a Delta6-triple bond into gamma-linolenic and stearidonic acid. This resulted in the formation of 9,12,15-(Z,Z,Z)-octadecatrien-6-ynoic acid, the main fatty acid found in C. pupureus. These results demonstrate that the Delta6-acetylenase from C. pupureus is a bifunctional enzyme, which can introduce a Delta6cis-double bond into 9,12,(15)-C18-polyenoic acids as well as converting a Delta6cis-double bond to a Delta6-triple bond.
Collapse
|
|
25 |
75 |