1
|
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2011; 481:380-4. [PMID: 22101433 PMCID: PMC3710581 DOI: 10.1038/nature10602] [Citation(s) in RCA: 1430] [Impact Index Per Article: 102.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 09/28/2011] [Indexed: 01/19/2023]
Abstract
Acetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty-acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate lyase in the cytosol. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near-stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle and fatty-acid synthesis. Although glutamine is consumed at levels exceeding that required for nitrogen biosynthesis, the regulation and use of glutamine metabolism in hypoxic cells is not well understood. Here we show that human cells use reductive metabolism of α-ketoglutarate to synthesize AcCoA for lipid synthesis. This isocitrate dehydrogenase-1 (IDH1)-dependent pathway is active in most cell lines under normal culture conditions, but cells grown under hypoxia rely almost exclusively on the reductive carboxylation of glutamine-derived α-ketoglutarate for de novo lipogenesis. Furthermore, renal cell lines deficient in the von Hippel-Lindau tumour suppressor protein preferentially use reductive glutamine metabolism for lipid biosynthesis even at normal oxygen levels. These results identify a critical role for oxygen in regulating carbon use to produce AcCoA and support lipid synthesis in mammalian cells.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1430 |
2
|
Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JYJ, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13:376-388. [PMID: 21459323 PMCID: PMC3086578 DOI: 10.1016/j.cmet.2011.03.009] [Citation(s) in RCA: 1346] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 10/17/2010] [Accepted: 02/18/2011] [Indexed: 12/13/2022]
Abstract
AMPK has emerged as a critical mechanism for salutary effects of polyphenols on lipid metabolic disorders in type 1 and type 2 diabetes. Here we demonstrate that AMPK interacts with and directly phosphorylates sterol regulatory element binding proteins (SREBP-1c and -2). Ser372 phosphorylation of SREBP-1c by AMPK is necessary for inhibition of proteolytic processing and transcriptional activity of SREBP-1c in response to polyphenols and metformin. AMPK stimulates Ser372 phosphorylation, suppresses SREBP-1c cleavage and nuclear translocation, and represses SREBP-1c target gene expression in hepatocytes exposed to high glucose, leading to reduced lipogenesis and lipid accumulation. Hepatic activation of AMPK by the synthetic polyphenol S17834 protects against hepatic steatosis, hyperlipidemia, and accelerated atherosclerosis in diet-induced insulin-resistant LDL receptor-deficient mice in part through phosphorylation of SREBP-1c Ser372 and suppression of SREBP-1c- and -2-dependent lipogenesis. AMPK-dependent phosphorylation of SREBP may offer therapeutic strategies to combat insulin resistance, dyslipidemia, and atherosclerosis.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1346 |
3
|
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 62:720-33. [PMID: 25450203 DOI: 10.1016/j.jhep.2014.10.039] [Citation(s) in RCA: 1119] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/22/2014] [Accepted: 10/26/2014] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor belonging, together with PPARγ and PPARβ/δ, to the NR1C nuclear receptor subfamily. Many PPARα target genes are involved in fatty acid metabolism in tissues with high oxidative rates such as muscle, heart and liver. PPARα activation, in combination with PPARβ/δ agonism, improves steatosis, inflammation and fibrosis in pre-clinical models of non-alcoholic fatty liver disease, identifying a new potential therapeutic area. In this review, we discuss the transcriptional activation and repression mechanisms by PPARα, the spectrum of target genes and chromatin-binding maps from recent genome-wide studies, paying particular attention to PPARα-regulation of hepatic fatty acid and plasma lipoprotein metabolism during nutritional transition, and of the inflammatory response. The role of PPARα, together with other PPARs, in non-alcoholic steatohepatitis will be discussed in light of available pre-clinical and clinical data.
Collapse
|
Review |
10 |
1119 |
4
|
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008; 134:933-44. [PMID: 18805087 PMCID: PMC2728618 DOI: 10.1016/j.cell.2008.07.048] [Citation(s) in RCA: 856] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 06/05/2008] [Accepted: 07/22/2008] [Indexed: 12/22/2022]
Abstract
Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
856 |
5
|
den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, Bakker BM. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes 2015; 64:2398-408. [PMID: 25695945 DOI: 10.2337/db14-1213] [Citation(s) in RCA: 780] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022]
Abstract
Short-chain fatty acids (SCFAs) are the main products of dietary fiber fermentation and are believed to drive the fiber-related prevention of the metabolic syndrome. Here we show that dietary SCFAs induce a peroxisome proliferator-activated receptor-γ (PPARγ)-dependent switch from lipid synthesis to utilization. Dietary SCFA supplementation prevented and reversed high-fat diet-induced metabolic abnormalities in mice by decreasing PPARγ expression and activity. This increased the expression of mitochondrial uncoupling protein 2 and raised the AMP-to-ATP ratio, thereby stimulating oxidative metabolism in liver and adipose tissue via AMPK. The SCFA-induced reduction in body weight and stimulation of insulin sensitivity were absent in mice with adipose-specific disruption of PPARγ. Similarly, SCFA-induced reduction of hepatic steatosis was absent in mice lacking hepatic PPARγ. These results demonstrate that adipose and hepatic PPARγ are critical mediators of the beneficial effects of SCFAs on the metabolic syndrome, with clearly distinct and complementary roles. Our findings indicate that SCFAs may be used therapeutically as cheap and selective PPARγ modulators.
Collapse
|
|
10 |
780 |
6
|
Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol 2018; 68:1063-1075. [PMID: 29408694 PMCID: PMC5893377 DOI: 10.1016/j.jhep.2018.01.019] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome; its rising prevalence parallels the rise in obesity and diabetes. Historically thought to result from overnutrition and a sedentary lifestyle, recent evidence suggests that diets high in sugar (from sucrose and/or high-fructose corn syrup [HFCS]) not only increase the risk of NAFLD, but also non-alcoholic steatohepatitis (NASH). Herein, we review the experimental and clinical evidence that fructose precipitates fat accumulation in the liver, due to both increased lipogenesis and impaired fat oxidation. Recent evidence suggests that the predisposition to fatty liver is linked to the metabolism of fructose by fructokinase C, which results in ATP consumption, nucleotide turnover and uric acid generation that mediate fat accumulation. Alterations to gut permeability, the microbiome, and associated endotoxemia contribute to the risk of NAFLD and NASH. Early clinical studies suggest that reducing sugary beverages and total fructose intake, especially from added sugars, may have a significant benefit on reducing hepatic fat accumulation. We suggest larger, more definitive trials to determine if lowering sugar/HFCS intake, and/or blocking uric acid generation, may help reduce NAFLD and its downstream complications of cirrhosis and chronic liver disease.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
617 |
7
|
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH, Manning BD. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011; 14:21-32. [PMID: 21723501 PMCID: PMC3652544 DOI: 10.1016/j.cmet.2011.06.002] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/29/2011] [Accepted: 06/09/2011] [Indexed: 12/12/2022]
Abstract
Through unknown mechanisms, insulin activates the sterol regulatory element-binding protein (SREBP1c) transcription factor to promote hepatic lipogenesis. We find that this induction is dependent on the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). To further define the role of mTORC1 in the regulation of SREBP1c in the liver, we generated mice with liver-specific deletion of TSC1 (LTsc1KO), which results in insulin-independent activation of mTORC1. Surprisingly, the LTsc1KO mice are protected from age- and diet-induced hepatic steatosis and display hepatocyte-intrinsic defects in SREBP1c activation and de novo lipogenesis. These phenotypes result from attenuation of Akt signaling driven by mTORC1-dependent insulin resistance. Therefore, mTORC1 activation is not sufficient to stimulate hepatic SREBP1c in the absence of Akt signaling, revealing the existence of an additional downstream pathway also required for this induction. We provide evidence that this mTORC1-independent pathway involves Akt-mediated suppression of Insig2a, a liver-specific transcript encoding the SREBP1c inhibitor INSIG2.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
507 |
8
|
Eguchi J, Wang X, Yu S, Kershaw EE, Chiu PC, Dushay J, Estall JL, Klein U, Maratos-Flier E, Rosen ED. Transcriptional control of adipose lipid handling by IRF4. Cell Metab 2011; 13:249-59. [PMID: 21356515 PMCID: PMC3063358 DOI: 10.1016/j.cmet.2011.02.005] [Citation(s) in RCA: 471] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/12/2010] [Accepted: 02/10/2011] [Indexed: 11/22/2022]
Abstract
Adipocytes store triglyceride during periods of nutritional affluence and release free fatty acids during fasting through coordinated cycles of lipogenesis and lipolysis. While much is known about the acute regulation of these processes during fasting and feeding, less is understood about the transcriptional basis by which adipocytes control lipid handling. Here, we show that interferon regulatory factor 4 (IRF4) is a critical determinant of the transcriptional response to nutrient availability in adipocytes. Fasting induces IRF4 in an insulin- and FoxO1-dependent manner. IRF4 is required for lipolysis, at least in part due to direct effects on the expression of adipocyte triglyceride lipase and hormone-sensitive lipase. Conversely, reduction of IRF4 enhances lipid synthesis. Mice lacking adipocyte IRF4 exhibit increased adiposity and deficient lipolysis. These studies establish a link between IRF4 and the disposition of calories in adipose tissue, with consequences for systemic metabolic homeostasis.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
471 |
9
|
Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, Destefanis G, Delogu S, Zimmermann A, Ericsson J, Brozzetti S, Staniscia T, Chen X, Dombrowski F, Evert M. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 2011; 140:1071-83. [PMID: 21147110 PMCID: PMC3057329 DOI: 10.1053/j.gastro.2010.12.006] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/23/2010] [Accepted: 12/02/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS De novo lipogenesis is believed to be involved in oncogenesis. We investigated the role of aberrant lipid biosynthesis in the pathogenesis of human hepatocellular carcinoma (HCC). METHODS We evaluated expression of enzymes that regulate lipogenesis in human normal liver tissues and HCC and surrounding, nontumor, liver tissues from patients using real-time reverse transcription polymerase chain reaction, immunoblotting, immunohistochemistry, and biochemical assays. Effects of lipogenic enzymes on human HCC cell lines were evaluated using inhibitors and overexpression experiments. The lipogenic role of the proto-oncogene AKT was assessed in vitro and in vivo. RESULTS In human liver samples, de novo lipogenesis was progressively induced from nontumorous liver tissue toward the HCC. Extent of aberrant lipogenesis correlated with clinical aggressiveness, activation of the AKT-mammalian target of rapamycin signaling pathway, and suppression of adenosine monophosphate-activated protein kinases. In HCC cell lines, the AKT-mammalian target of rapamycin complex 1-ribosomal protein S6 pathway promoted lipogenesis via transcriptional and post-transcriptional mechanisms that included inhibition of fatty acid synthase ubiquitination by the USP2a de-ubiquitinase and disruption of the SREBP1 and SREBP2 degradation complexes. Suppression of the genes adenosine triphosphate citrate lyase, acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase 1, or sterol regulatory element-binding protein 1, which are involved in lipogenesis, reduced proliferation, and survival of HCC cell lines and AKT-dependent cell proliferation. Overexpression of an activated form of AKT in livers of mice induced lipogenesis and tumor development. CONCLUSIONS De novo lipogenesis has pathogenic and prognostic significance for HCC. Inhibitors of lipogenic signaling, including those that inhibit the AKT pathway, might be useful as therapeutics for patients with liver cancer.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
469 |
10
|
Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Rüegg MA, Hall MN. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 2012; 15:725-38. [PMID: 22521878 DOI: 10.1016/j.cmet.2012.03.015] [Citation(s) in RCA: 435] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/17/2011] [Accepted: 03/06/2012] [Indexed: 12/15/2022]
Abstract
Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates and activates AGC kinase family members, including Akt, SGK1, and PKC, in response to insulin/IGF1. The liver is a key organ in insulin-mediated regulation of metabolism. To assess the role of hepatic mTORC2, we generated liver-specific rictor knockout (LiRiKO) mice. Fed LiRiKO mice displayed loss of Akt Ser473 phosphorylation and reduced glucokinase and SREBP1c activity in the liver, leading to constitutive gluconeogenesis, and impaired glycolysis and lipogenesis, suggesting that the mTORC2-deficient liver is unable to sense satiety. These liver-specific defects resulted in systemic hyperglycemia, hyperinsulinemia, and hypolipidemia. Expression of constitutively active Akt2 in mTORC2-deficient hepatocytes restored both glucose flux and lipogenesis, whereas glucokinase overexpression rescued glucose flux but not lipogenesis. Thus, mTORC2 regulates hepatic glucose and lipid metabolism via insulin-induced Akt signaling to control whole-body metabolic homeostasis. These findings have implications for emerging drug therapies that target mTORC2.
Collapse
|
|
13 |
435 |
11
|
Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H, Zhong Z, Valasek MA, Seki E, Hidalgo J, Koike K, Kaufman RJ, Karin M. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 2014; 26:331-343. [PMID: 25132496 PMCID: PMC4165611 DOI: 10.1016/j.ccr.2014.07.001] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/28/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of viral hepatitis, insulin resistance, hepatosteatosis, and nonalcoholic steatohepatitis (NASH), disorders that increase risk of hepatocellular carcinoma (HCC). To determine whether and how ER stress contributes to obesity-driven hepatic tumorigenesis we fed wild-type (WT) and MUP-uPA mice, in which hepatocyte ER stress is induced by plasminogen activator expression, with high-fat diet. Although both strains were equally insulin resistant, the MUP-uPA mice exhibited more liver damage, more immune infiltration, and increased lipogenesis and, as a result, displayed classical NASH signs and developed typical steatohepatitic HCC. Both NASH and HCC development were dependent on TNF produced by inflammatory macrophages that accumulate in the MUP-uPA liver in response to hepatocyte ER stress.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress
- Fatty Liver/etiology
- Fatty Liver/metabolism
- Heat-Shock Proteins/metabolism
- Lipogenesis
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Transgenic
- Overnutrition/complications
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Tumor Burden
- Tumor Necrosis Factor-alpha/physiology
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
11 |
413 |
12
|
Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, Klotsas A, Matika R, Xiao X, Franks R, Heidenreich KA, Sajan MP, Farese RV, Stolz DB, Tso P, Koo SH, Montminy M, Unterman TG. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 2006; 281:10105-17. [PMID: 16492665 DOI: 10.1074/jbc.m600272200] [Citation(s) in RCA: 403] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
FoxO transcription factors are important targets of insulin action. To better understand the role of FoxO proteins in the liver, we created transgenic mice expressing constitutively active FoxO1 in the liver using the alpha1-antitrypsin promoter. Fasting glucose levels are increased, and glucose tolerance is impaired in transgenic (TGN) versus wild type (WT) mice. Interestingly, fasting triglyceride and cholesterol levels are reduced despite hyperinsulinemia, and post-prandial changes in triglyceride levels are markedly suppressed in TGN versus WT mice. Activation of pro-lipogenic signaling pathways (atypical protein kinase C and protein kinase B) and the ability to suppress beta-hydroxybutyrate levels are not impaired in TGN. In contrast, de novo lipogenesis measured with (3)H(2)O is suppressed by approximately 70% in the liver of TGN versus WT mice after refeeding. Gene-array studies reveal that the expression of genes involved in gluconeogenesis, glycerol transport, and amino acid catabolism is increased, whereas genes involved in glucose utilization by glycolysis, the pentose phosphate shunt, lipogenesis, and sterol synthesis pathways are suppressed in TGN versus WT. Studies with adenoviral vectors in isolated hepatocytes confirm that FoxO1 stimulates expression of gluconeogenic genes and suppresses expression of genes involved in glycolysis, the shunt pathway, and lipogenesis, including glucokinase and SREBP-1c. Together, these results indicate that FoxO proteins promote hepatic glucose production through multiple mechanisms and contribute to the regulation of other metabolic pathways important in the adaptation to fasting and feeding in the liver, including glycolysis, the pentose phosphate shunt, and lipogenic and sterol synthetic pathways.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
403 |
13
|
Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A, Chen Z, Cozacov Z, Zhou D, Okunade AL, Su X, Li S, Blüher M, Lin JD. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 2014; 20:1436-1443. [PMID: 25401691 PMCID: PMC4257907 DOI: 10.1038/nm.3713] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/10/2014] [Indexed: 12/15/2022]
Abstract
Brown fat activates uncoupled respiration in response to cold temperature and contributes to systemic metabolic homeostasis. To date, the metabolic action of brown fat has been primarily attributed to its role in fuel oxidation and uncoupling protein 1 (UCP1)-mediated thermogenesis. Whether brown fat engages other tissues through secreted factors remains largely unexplored. Here we show that neuregulin 4 (Nrg4), a member of the epidermal growth factor (EGF) family of extracellular ligands, is highly expressed in adipose tissues, enriched in brown fat and markedly increased during brown adipocyte differentiation. Adipose tissue Nrg4 expression was reduced in rodent and human obesity. Gain- and loss-of-function studies in mice demonstrated that Nrg4 protects against diet-induced insulin resistance and hepatic steatosis through attenuating hepatic lipogenic signaling. Mechanistically, Nrg4 activates ErbB3 and ErbB4 signaling in hepatocytes and negatively regulates de novo lipogenesis mediated by LXR and SREBP1c in a cell-autonomous manner. These results establish Nrg4 as a brown fat-enriched endocrine factor with therapeutic potential for the treatment of obesity-associated disorders, including type 2 diabetes and nonalcoholic fatty liver disease (NAFLD).
Collapse
|
Research Support, N.I.H., Extramural |
11 |
363 |
14
|
Saponaro C, Gaggini M, Carli F, Gastaldelli A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015; 7:9453-74. [PMID: 26580649 PMCID: PMC4663603 DOI: 10.3390/nu7115475] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/19/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Excessive accumulation of lipids can lead to lipotoxicity, cell dysfunction and alteration in metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. This is now a recognized risk factor for the development of metabolic disorders, such as obesity, diabetes, fatty liver disease (NAFLD), cardiovascular diseases (CVD) and hepatocellular carcinoma (HCC). The causes for lipotoxicity are not only a high fat diet but also excessive lipolysis, adipogenesis and adipose tissue insulin resistance. The aims of this review are to investigate the subtle balances that underlie lipolytic, lipogenic and oxidative pathways, to evaluate critical points and the complexities of these processes and to better understand which are the metabolic derangements resulting from their imbalance, such as type 2 diabetes and non alcoholic fatty liver disease.
Collapse
|
Review |
10 |
363 |
15
|
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021; 50:101238. [PMID: 33892169 PMCID: PMC8324684 DOI: 10.1016/j.molmet.2021.101238] [Citation(s) in RCA: 346] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease, or as recently proposed 'metabolic-associated fatty liver disease' (MAFLD), is characterized by pathological accumulation of triglycerides and other lipids in hepatocytes. This common disease can progress from simple steatosis to steatohepatitis, and eventually end-stage liver diseases. MAFLD is closely related to disturbances in systemic energy metabolism, including insulin resistance and atherogenic dyslipidemia. SCOPE OF REVIEW The liver is the central organ in lipid metabolism by secreting very low density lipoproteins (VLDL) and, on the other hand, by internalizing fatty acids and lipoproteins. This review article discusses recent research addressing hepatic lipid synthesis, VLDL production, and lipoprotein internalization as well as the lipid exchange between adipose tissue and the liver in the context of MAFLD. MAJOR CONCLUSIONS Liver steatosis in MAFLD is triggered by excessive hepatic triglyceride synthesis utilizing fatty acids derived from white adipose tissue (WAT), de novo lipogenesis (DNL) and endocytosed remnants of triglyceride-rich lipoproteins. In consequence of high hepatic lipid content, VLDL secretion is enhanced, which is the primary cause of complex dyslipidemia typical for subjects with MAFLD. Interventions reducing VLDL secretory capacity attenuate dyslipidemia while they exacerbate MAFLD, indicating that the balance of lipid storage versus secretion in hepatocytes is a critical parameter determining disease outcome. Proof of concept studies have shown that promoting lipid storage and energy combustion in adipose tissues reduces hepatic lipid load and thus ameliorates MAFLD. Moreover, hepatocellular triglyceride synthesis from DNL and WAT-derived fatty acids can be targeted to treat MAFLD. However, more research is needed to understand how individual transporters, enzymes, and their isoforms affect steatosis and dyslipidemia in vivo, and whether these two aspects of MAFLD can be selectively treated. Processing of cholesterol-enriched lipoproteins appears less important for steatosis. It may, however, modulate inflammation and consequently MAFLD progression.
Collapse
|
Review |
4 |
346 |
16
|
Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ, Vance DE, Tzoneva M, Hart AC, Näär AM. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 2011; 147:840-52. [PMID: 22035958 DOI: 10.1016/j.cell.2011.09.045] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/14/2011] [Accepted: 09/19/2011] [Indexed: 12/17/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
333 |
17
|
Abstract
PURPOSE OF REVIEW The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. RECENT FINDINGS Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor alpha, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22:6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor alpha. Hepatic metabolism of 22:6,n-3, however, generates 20:5,n-3, a strong peroxisome proliferator-activated receptor alpha activator. In contrast to peroxisome proliferator-activated receptor alpha, 22:6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22:6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. SUMMARY These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor alpha, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
302 |
18
|
YOUNG JW, SHRAGO E, LARDY HA. METABOLIC CONTROL OF ENZYMES INVOLVED IN LIPOGENESIS AND GLUCONEOGENESIS. Biochemistry 1964; 3:1687-92. [PMID: 14235331 DOI: 10.1021/bi00899a015] [Citation(s) in RCA: 296] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
61 |
296 |
19
|
LIEBER CS, SCHMID R. The effect of ethanol on fatty acid metabolism; stimulation of hepatic fatty acid synthesis in vitro. J Clin Invest 1998; 40:394-9. [PMID: 13761991 PMCID: PMC290732 DOI: 10.1172/jci104266] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
Journal Article |
27 |
291 |
20
|
|
Journal Article |
29 |
270 |
21
|
Buettner C, Muse ED, Cheng A, Chen L, Scherer T, Pocai A, Su K, Cheng B, Li X, Harvey-White J, Schwartz GJ, Kunos G, Rossetti L, Buettner C. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med 2008; 14:667-75. [PMID: 18516053 PMCID: PMC2671848 DOI: 10.1038/nm1775] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/18/2008] [Indexed: 12/14/2022]
Abstract
Leptin (encoded by Lep) controls body weight by regulating food intake and fuel partitioning. Obesity is characterized by leptin resistance and increased endocannabinoid tone. Here we show that leptin infused into the mediobasal hypothalamus (MBH) of rats inhibits white adipose tissue (WAT) lipogenesis, which occurs independently of signal transducer and activator of transcription-3 (STAT3) signaling. Correspondingly, transgenic inactivation of STAT3 signaling by mutation of the leptin receptor (s/s mice) leads to reduced adipose mass compared to db/db mice (complete abrogation of leptin receptor signaling). Conversely, the ability of hypothalamic leptin to suppress WAT lipogenesis in rats is lost when hypothalamic phosphoinositide 3-kinase signaling is prevented or when sympathetic denervation of adipose tissue is performed. MBH leptin suppresses the endocannabinoid anandamide in WAT, and, when this suppression of endocannabinoid tone is prevented by systemic CB1 receptor activation, MBH leptin fails to suppress WAT lipogenesis. These data suggest that the increased endocannabinoid tone observed in obesity is linked to a failure of central leptin signaling to restrain peripheral endocannabinoids.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
262 |
22
|
Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 2008; 197:189-204. [PMID: 18434349 DOI: 10.1677/joe-08-0054] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glucocorticoid hormones constitute an integral component of the response to stress, and many of the manifestations of glucocorticoid excess (Cushing's syndrome) are predictable on the basis of their acute effects to raise blood pressure, induce insulin resistance, increase protein catabolism and elevate plasma glucose. However, it appears to be a paradox that the acute lipolytic effect of glucocorticoids is not manifest in long-term weight loss in humans. The effects of glucocorticoids on glucose metabolism are well characterised, involving impaired peripheral glucose uptake and hepatic insulin resistance, and there is mounting evidence that subtle abnormalities in glucocorticoid concentrations in the plasma and/or in tissue sensitivity to glucocorticoids are important in metabolic syndrome. The effects of glucocorticoids on fatty acid metabolism are less well understood than their influence on glucose metabolism. In this article, we review the literature describing the effects of glucocorticoids on fatty acid metabolism, with particular reference to in vivo human studies. We consider the implications for contrasting acute versus chronic effects of glucocorticoids on fat accumulation, effects in different adipose depots and the potential role of glucocorticoid signalling in the pathogenesis and therapy of metabolic syndrome.
Collapse
|
|
17 |
260 |
23
|
TEPPERMAN J, TEPPERMAN HM. Effects of antecedent food intake pattern on hepatic lipogenesis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1958; 193:55-64. [PMID: 13520982 DOI: 10.1152/ajplegacy.1958.193.1.55] [Citation(s) in RCA: 237] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver slices of ATG obese mice, of rats trained to eat their 24-hour ration in 1 hour and of rats fed a high carbohydrate diet after a 48-hour period of fasting were incubated with acetate-1-C14 and with glucose-U-C14 and the extent of incorporation of the precursor label in the fat fraction was measured. Comparatively high rates of lipogenesis were observed in all three circumstances, the highest in the ‘refed’ group. A high positive correlation was found between initial glycogen content and lipogenic performance of the slices. A high rate of glucose absorption from the g.i. tract was noted in the ‘trained’ animals. A three to fourfold increase in TPN-linked hexose monophosphate shunt dehydrogenase activity was found in preparations from the livers of ‘refed’ rats. The problem of ‘supernormal’ lipogenesis is discussed in the light of recent studies on the ‘failure’ of lipogenesis associated with diabetes and carbohydrate deprivation and the possible significance of a fluctuating supply of TPNH as a central mechanism in the adaptation and de-adaptation of the lipogenic apparatus is reemphasized.
Collapse
|
|
67 |
237 |
24
|
Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2009; 19:291-302. [PMID: 19359149 DOI: 10.1016/j.numecd.2008.12.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly recognized pathology with a high prevalence and a possible evolution to its inflammatory counterpart (non-alcoholic steatohepatitis, or NASH). The pathophysiology of NAFLD and NASH has many links with the metabolic syndrome, sharing a causative factor in insulin resistance. According to a two-hit hypothesis, increased intrahepatic triglyceride accumulation (due to increased synthesis, decreased export, or both) is followed by a second step (or "hit"), which may lead to NASH. The latter likely involves oxidative stress, cytochrome P450 activation, lipid peroxidation, increased inflammatory cytokine production, activation of hepatic stellate cells and apoptosis. However, both "hits" may be caused by the same factors. The aim of this article is to overview the biochemical steps of fat regulation in the liver and the alterations occurring in the pathogenesis of NAFLD and NASH.
Collapse
|
Review |
16 |
236 |
25
|
Vacanti NM, Divakaruni AS, Green CR, Parker SJ, Henry RR, Ciaraldi TP, Murphy AN, Metallo CM. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol Cell 2014; 56:425-435. [PMID: 25458843 PMCID: PMC4267523 DOI: 10.1016/j.molcel.2014.09.024] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/26/2014] [Accepted: 09/25/2014] [Indexed: 01/09/2023]
Abstract
Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied (13)C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched-chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with the use of lipids and amino acids as catabolic and anabolic fuels.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
235 |