1
|
de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ, Kioussis D. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 2003; 33:314-25. [PMID: 12548562 DOI: 10.1002/immu.200310005] [Citation(s) in RCA: 604] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteriophage P1 Cre/loxP based systems can be used to manipulate the genomes ofmice in vivo and in vitro, allowing the generation of tissue-specific conditional mutants. We have generated mouse lines expressing Cre recombinase in hematopoietic tissues using the vav regulatory elements, or in lymphoid cells using the hCD2 promoter and locus control region (LCR). The R26R-EYFP Cre reporter mouse line was used to determine the pattern of Cre expression in each line and enabled the assessment of Cre activity at a single-cell level. Analysis showed that the vav promoter elements were able to direct Cre-mediated recombination in all cells of the hematopoietic system. The hCD2 promoter and LCR on the other hand were able to drive Cre-mediated recombination only in T cells and B cells, but not in other hematopoietic cell types. Furthermore, in the appropriate tissues, deletion of the floxed target was complete in all cells, thereby excluding the possibility of variegated expression of the Cre transgene. Both of these Cre-transgenic lines will be useful in generating tissue-specific gene deletions within all the cells of hematopoietic or lymphoid tissues.
Collapse
|
Comparative Study |
22 |
604 |
2
|
Abstract
In eukaryotes, transcription of genes by RNA polymerase II yields messenger RNA intermediates from which protein products are synthesized. Transcriptional enhancers are discrete DNA elements that contain specific sequence motifs with which DNA-binding proteins interact and transmit molecular signals to genes. Here, current models regarding the role of enhancers in the regulation of transcription by RNA polymerase II are presented.
Collapse
|
Review |
27 |
557 |
3
|
Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 2001; 293:2453-5. [PMID: 11498546 DOI: 10.1126/science.1064413] [Citation(s) in RCA: 464] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methylation of histones at specific residues plays an important role in transcriptional regulation. Chromatin immunoprecipitation of dimethylated lysine 9 on histone H3 across 53 kilobases of the chicken beta-globin locus during erythropoiesis shows an almost complete anticorrelation between regions of elevated lysine 9 methylation and acetylation. Lysine 9 is methylated most over constitutive condensed chromatin and developmentally inactive globin genes. In contrast, lysine 4 methylation of histone H3 correlates with H3 acetylation. These results lead us to propose a mechanism by which the insulator in the beta-globin locus can protect the globin genes from being silenced by adjacent condensed chromatin.
Collapse
|
|
24 |
464 |
4
|
Cai S, Lee CC, Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 2006; 38:1278-88. [PMID: 17057718 DOI: 10.1038/ng1913] [Citation(s) in RCA: 440] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 09/27/2006] [Indexed: 02/07/2023]
Abstract
SATB1 (special AT-rich sequence binding protein 1) organizes cell type-specific nuclear architecture by anchoring specialized DNA sequences and recruiting chromatin remodeling factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4 and Il13, located in the 200-kb T-helper 2 (T(H)2) cytokine locus on mouse chromosome 11. We show that on T(H)2 cell activation, SATB1 expression is rapidly induced to form a unique transcriptionally active chromatin structure at the cytokine locus. In this structure, chromatin is folded into numerous small loops, all anchored to SATB1 at their base. In addition, histone H3 is acetylated at Lys9 and Lys14, and the T(H)2-specific factors GATA3, STAT6 and c-Maf, the chromatin-remodeling enzyme Brg1 and RNA polymerase II are all bound across the 200-kb region. Before activation, the T(H)2 cytokine locus is already associated with GATA3 and STAT6, showing some looping, but these are insufficient to induce cytokine gene expression. Using RNA interference, we show that on cell activation, SATB1 is required not only for compacting chromatin into dense loops at the 200-kb cytokine locus but also for inducing Il4, Il5, Il13 and c-Maf expression. Thus, SATB1 is a necessary determinant for the hitherto unidentified higher-order, transcriptionally active chromatin structure that forms on T(H)2 cell activation.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
440 |
5
|
Coskun PE, Beal MF, Wallace DC. Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 2004; 101:10726-31. [PMID: 15247418 PMCID: PMC490002 DOI: 10.1073/pnas.0403649101] [Citation(s) in RCA: 433] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects in mitochondrial oxidative phosphorylation have frequently been associated with Alzheimer's disease (AD), and both inherited and somatic mtDNA mutations have been reported in certain AD cases. To determine whether mtDNA mutations contribute more generally to the etiology of AD, we have investigated the sequence of the mtDNA control region (CR) from AD brains for possible disease-causing mutations. Sixty-five percent of the AD brains harbored the T414G mutation, whereas this mutation was absent from all controls. Moreover, cloning and sequencing of the mtDNA CR from patient and control brains revealed that all AD brains had an average 63% increase in heteroplasmic mtDNA CR mutations and that AD brains from patients 80 years and older had a 130% increase in heteroplasmic CR mutations. In addition, these mutations preferentially altered known mtDNA regulatory elements. Certain AD brains harbored the disease-specific CR mutations T414C and T477C, and several AD brains between 74 and 83 years of age harbored the CR mutations T477C, T146C, and T195C, at levels up to 70-80% heteroplasmy. AD patient brains also had an average 50% reduction in the mtDNA L-strand ND6 transcript and in the mtDNA/nuclear DNA ratio. Because reduced ND6 mRNA and mtDNA copy numbers would reduce brain oxidative phosphorylation, these CR mutations could account for some of the mitochondrial defects observed in AD.
Collapse
|
research-article |
21 |
433 |
6
|
Jordan IK, Rogozin IB, Glazko GV, Koonin EV. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 2003; 19:68-72. [PMID: 12547512 DOI: 10.1016/s0168-9525(02)00006-9] [Citation(s) in RCA: 416] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transposable elements (TEs) are abundant in mammalian genomes and have potentially contributed to their hosts' evolution by providing novel regulatory or coding sequences. We surveyed different classes of regulatory region in the human genome to assess systematically the potential contribution of TEs to gene regulation. Almost 25% of the analyzed promoter regions contain TE-derived sequences, including many experimentally characterized cis-regulatory elements. Scaffold/matrix attachment regions (S/MARs) and locus control regions (LCRs) that are involved in the simultaneous regulation of multiple genes also contain numerous TE-derived sequences. Thus, TEs have probably contributed substantially to the evolution of both gene-specific and global patterns of human gene regulation.
Collapse
|
Review |
22 |
416 |
7
|
Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001; 294:2368-71. [PMID: 11743206 DOI: 10.1126/science.1065806] [Citation(s) in RCA: 415] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the human betaA globin gene that results in the formation of an abnormal hemoglobin [HbS (alpha2betaS2)]. We designed a betaA globin gene variant that prevents HbS polymerization and introduced it into a lentiviral vector we optimized for transfer to hematopoietic stem cells and gene expression in the adult red blood cell lineage. Long-term expression (up to 10 months) was achieved, without preselection, in all transplanted mice with erythroid-specific accumulation of the antisickling protein in up to 52% of total hemoglobin and 99% of circulating red blood cells. In two mouse SCD models, Berkeley and SAD, inhibition of red blood cell dehydration and sickling was achieved with correction of hematological parameters, splenomegaly, and prevention of the characteristic urine concentration defect.
Collapse
|
|
24 |
415 |
8
|
Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 2005; 17:453-62. [PMID: 15694345 DOI: 10.1016/j.molcel.2004.12.028] [Citation(s) in RCA: 403] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 11/30/2004] [Accepted: 12/20/2004] [Indexed: 11/19/2022]
Abstract
Recent evidence suggests that long-range enhancers and gene promoters are in close proximity, which might reflect the formation of chromatin loops. Here, we examined the mechanism for DNA looping at the beta-globin locus. By using chromosome conformation capture (3C), we show that the hematopoietic transcription factor GATA-1 and its cofactor FOG-1 are required for the physical interaction between the beta-globin locus control region (LCR) and the beta-major globin promoter. Kinetic studies reveal that GATA-1-induced loop formation correlates with the onset of beta-globin transcription and occurs independently of new protein synthesis. GATA-1 occupies the beta-major globin promoter normally in fetal liver erythroblasts from mice lacking the LCR, suggesting that GATA-1 binding to the promoter and LCR are independent events that occur prior to loop formation. Together, these data demonstrate that GATA-1 and FOG-1 are essential anchors for a tissue-specific chromatin loop, providing general insights into long-range enhancer function.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
403 |
9
|
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 2003; 302:2088-94. [PMID: 14593185 DOI: 10.1126/science.1089122] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the mouse olfactory system, each olfactory sensory neuron (OSN) expresses only one odorant receptor (OR) gene in a monoallelic and mutually exclusive manner. Such expression forms the genetic basis for OR-instructed axonal projection of OSNs to the olfactory bulb of the brain during development. Here, we identify an upstream cis-acting DNA region that activates the OR gene cluster in mouse and allows the expression of only one OR gene within the cluster. Deletion of the coding region of the expressed OR gene or a naturally occurring frame-shift mutation allows a second OR gene to be expressed. We propose that stochastic activation of only one OR gene within the cluster and negative feedback regulation by that OR gene product are necessary to ensure the one receptor-one neuron rule.
Collapse
|
|
22 |
392 |
10
|
Spilianakis CG, Flavell RA. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 2004; 5:1017-27. [PMID: 15378057 DOI: 10.1038/ni1115] [Citation(s) in RCA: 356] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/18/2004] [Indexed: 11/08/2022]
Abstract
The T helper type 2 (T(H)2) locus control region is important in the regulation of the genes encoding the cytokines interleukins 4, 5 and 13. Using the chromosome conformation capture technique, we found that in T cells, natural killer cells, B cells and fibroblasts, the promoters for the genes encoding T(H)2 cytokines are located in close spatial proximity, forming an initial chromatin core configuration. In CD4(+) T cells and natural killer cells, but not B cells and fibroblasts, the T(H)2 locus control region participates in this configuration. The transcription factors GATA3 and STAT6 are essential for the establishment and/or maintenance of these interactions. Intrachromosomal interactions in the T(H)2 cytokine locus may form the basis for the coordinated transcriptional regulation of cytokine-encoding genes by the T(H)2 locus control region.
Collapse
|
|
21 |
356 |
11
|
Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 2008; 4:e1000216. [PMID: 18989395 PMCID: PMC2570626 DOI: 10.1371/journal.pcbi.1000216] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022] Open
Abstract
The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of approximately 380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT) tracts are an important component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered) chromatin organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively open (nucleosome-depleted) organizations over other factor sites, where factors bind without competition.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
344 |
12
|
Abstract
Locus control regions (LCRs) are operationally defined by their ability to enhance the expression of linked genes to physiological levels in a tissue-specific and copy number-dependent manner at ectopic chromatin sites. Although their composition and locations relative to their cognate genes are different, LCRs have been described in a broad spectrum of mammalian gene systems, suggesting that they play an important role in the control of eukaryotic gene expression. The discovery of the LCR in the beta-globin locus and the characterization of LCRs in other loci reinforces the concept that developmental and cell lineage-specific regulation of gene expression relies not on gene-proximal elements such as promoters, enhancers, and silencers exclusively, but also on long-range interactions of various cis regulatory elements and dynamic chromatin alterations.
Collapse
|
research-article |
23 |
334 |
13
|
|
Review |
26 |
332 |
14
|
Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 2000; 5:377-86. [PMID: 10882078 DOI: 10.1016/s1097-2765(00)80432-3] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene activation requires chromatin remodeling complexes, which hyperacetylate histones and enable factor access; however, the targeting mechanisms leading to the establishment and maintenance of large, hyperacetylated DNase-sensitive chromatin domains are unknown. Recent work has shown that histone acetyltransferases are associated with RNA-pol II complexes, suggesting that transcription of chromatin plays a role in chromatin modification. Here we show the human beta-globin locus is divided into three differentially activated chromatin subdomains. Large transcripts precisely delineate the active domains at key cell cycle points associated with chromatin transitions and remodeling. We identify an element that initiates these transcripts, located in a region required for chromatin activation. The results suggest that intergenic transcription is required for chromatin remodeling of chromosomal domains.
Collapse
|
|
25 |
284 |
15
|
Ragoczy T, Bender MA, Telling A, Byron R, Groudine M. The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 2006; 20:1447-57. [PMID: 16705039 PMCID: PMC1475758 DOI: 10.1101/gad.1419506] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have examined the relationship between nuclear localization and transcriptional activity of the endogenous murine beta-globin locus during erythroid differentiation. Murine fetal liver cells were separated into distinct erythroid maturation stages by fluorescence-activated cell sorting, and the nuclear position of the locus was determined at each stage. We find that the beta-globin locus progressively moves away from the nuclear periphery with increasing maturation. Contrary to the prevailing notion that the nuclear periphery is a repressive compartment in mammalian cells, beta(major)-globin expression begins at the nuclear periphery prior to relocalization. However, relocation of the locus to the nuclear interior with maturation is accompanied by an increase in beta(major)-globin transcription. The distribution of nuclear polymerase II (Pol II) foci also changes with erythroid differentiation: Transcription factories decrease in number and contract toward the nuclear interior. Moreover, both efficient relocalization of the beta-globin locus from the periphery and its association with hyperphosphorylated Pol II transcription factories require the locus control region (LCR). These results suggest that the LCR-dependent association of the beta-globin locus with transcriptionally engaged Pol II foci provides the driving force for relocalization of the locus toward the nuclear interior during erythroid maturation.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
263 |
16
|
Miao CH, Ohashi K, Patijn GA, Meuse L, Ye X, Thompson AR, Kay MA. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1:522-32. [PMID: 10933977 DOI: 10.1006/mthe.2000.0075] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We systematically compared human factor IX gene expression from a variety of plasmids containing different cis-regulatory sequences after transfection into different hepatocyte cell lines, or in vivo, after their injection into the livers of mice. Although there was a 1.5- to 2.0-fold variation in gene expression from cultured cells, a 65-fold variation was observed in the in vivo studies. We found that a plasmid containing the apolipoprotein E locus control region (HCR), human alpha1-antitrypsin (hAAT) promoter, hFIX minigene (hFIXmg) sequence including a portion of the first intron (intron A), 3'-untranslated region (3'-UTR), and a bovine growth hormone polyadenylation signal (bpA) produced the highest serum level of human factor IX, reaching 18 microg/ml (normal = 5 microg/ml) 1 day after injection. Although most of the plasmid DNAs resulted in transient gene expression, inclusion of an intron, a polyadenylation signal from either the 1.7-kb 3'-UTR or the 0.3-kb bpA, and the HCR resulted in persistent and therapeutic levels of hFIX gene expression, ranging from 0.5 to 2 microg/ml (10 to 40% of normal) for 225 days (length of experiment). These data underscore the importance of cis sequences for enhancing in vivo hepatic gene expression and reemphasize the lack of correlation of gene expression in tissue culture and in vivo studies.
Collapse
|
Comparative Study |
25 |
205 |
17
|
Bellizzi D, D'Aquila P, Scafone T, Giordano M, Riso V, Riccio A, Passarino G. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 2013; 20:537-47. [PMID: 23804556 PMCID: PMC3859322 DOI: 10.1093/dnares/dst029] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/30/2013] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by bisulphite sequencing and methylated/hydroxymethylated DNA immunoprecipitation assays. We found methylated and hydroxymethylated cytosines in the L-strand of all samples analysed. MtDNA methylation particularly occurs within non-C-phosphate-G (non-CpG) nucleotides, mainly in the promoter region of the heavy strand and in conserved sequence blocks, suggesting its involvement in regulating mtDNA replication and/or transcription. We observed DNA methyltransferases within the mitochondria, but the inactivation of Dnmt1, Dnmt3a, and Dnmt3b in mouse embryonic stem (ES) cells results in a reduction of the CpG methylation, while the non-CpG methylation shows to be not affected. This suggests that D-loop epigenetic modification is only partially established by these enzymes. Our data show that DNA methylation occurs in the mtDNA control region of mammals, not only at symmetrical CpG dinucleotides, typical of nuclear genome, but in a peculiar non-CpG pattern previously reported for plants and fungi. The molecular mechanisms responsible for this pattern remain an open question.
Collapse
|
research-article |
12 |
202 |
18
|
Kusaba M, Dwyer K, Hendershot J, Vrebalov J, Nasrallah JB, Nasrallah ME. Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. THE PLANT CELL 2001; 13:627-643. [PMID: 11251101 DOI: 10.1105/tpc.13.3.627] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximately 5 million years ago and from Brassica spp 15 to 20 million years ago. Analysis of two S (sterility) locus haplotypes demonstrates that the A. lyrata S locus contains tightly linked orthologs of the S locus receptor kinase (SRK) gene and the S locus cysteine-rich protein (SCR) gene, which are the determinants of SI specificity in stigma and pollen, respectively, but lacks an S locus glycoprotein gene. As described previously in Brassica, the S haplotypes of A. lyrata differ by the rearranged order of their genes and by their variable physical sizes. Comparative mapping of the A. lyrata and Brassica S loci indicates that the S locus of crucifers is a dynamic locus that has undergone several duplication events since the Arabidopsis--Brassica split and was translocated as a unit between two distant chromosomal locations during diversification of the two taxa. Furthermore, comparative analysis of the S locus region of A. lyrata and its homeolog in self-fertile A. thaliana identified orthologs of the SRK and SCR genes and demonstrated that self-compatibility in this species is associated with inactivation of SI specificity genes.
Collapse
|
|
24 |
194 |
19
|
Forsberg EC, Downs KM, Christensen HM, Im H, Nuzzi PA, Bresnick EH. Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc Natl Acad Sci U S A 2000; 97:14494-9. [PMID: 11121052 PMCID: PMC18947 DOI: 10.1073/pnas.97.26.14494] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have defined the histone acetylation pattern of the endogenous murine beta-globin domain, which contains the erythroidspecific beta-globin genes. The beta-globin locus control region (LCR) and transcriptionally active promoters were enriched in acetylated histones in fetal liver relative to fetal brain, whereas the inactive promoters were hypoacetylated. In contrast, the LCR and both active and inactive promoters were hyperacetylated in yolk sac. Hypersensitive site two of the LCR was also hyperacetylated in murine embryonic stem cells, whereas beta-globin promoters were hypoacetylated. Thus, the acetylation pattern varied at different developmental stages. Histone deacetylase inhibition selectively increased acetylation at a hypoacetylated promoter in fetal liver, suggesting that active deacetylation contributes to silencing of promoters. We propose that dynamic histone acetylation and deacetylation play an important role in the developmental control of beta-globin gene expression.
Collapse
|
research-article |
25 |
193 |
20
|
Song SH, Hou C, Dean A. A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell 2007; 28:810-22. [PMID: 18082606 PMCID: PMC2195932 DOI: 10.1016/j.molcel.2007.09.025] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/24/2007] [Accepted: 09/26/2007] [Indexed: 12/19/2022]
Abstract
Long-range interactions between distant regulatory elements, such as enhancers, and their target genes underlie the specificity of gene expression in many developmentally regulated gene families. NLI/Ldb1, a widely expressed nuclear factor, is a potential mediator of long-range interactions. Here, we show that NLI/Ldb1 and erythroid-binding partners GATA-1/SCL/LMO2 bind in vivo to the beta-globin locus control region (LCR). The C-terminal LIM interaction domain of NLI is required for formation of the complex on chromatin. Loss of the LIM domain converts NLI into a dominant-negative inhibitor of globin gene expression, and knockdown of NLI by using shRNA results in failure to activate beta-globin expression. Kinetic studies reveal that the NLI/GATA-1/SCL/LMO2 complex is detected at the beta-globin promoter coincident with RNA Pol II recruitment, beta-globin transcription, and chromatin loop formation during erythroid differentiation, providing evidence that NLI facilitates long-range gene activation.
Collapse
|
Research Support, N.I.H., Intramural |
18 |
192 |
21
|
Bender MA, Bulger M, Close J, Groudine M. Beta-globin gene switching and DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region. Mol Cell 2000; 5:387-93. [PMID: 10882079 DOI: 10.1016/s1097-2765(00)80433-5] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have generated mice with a targeted deletion of the beta-globin locus control region (LCR). Mice homozygous for the deletion die early in embryogenesis but can be rescued with a YAC containing the human beta-globin locus. After germline passage, deletion of the LCR leads to a severe reduction in expression of all mouse beta-like globin genes, but no alteration in the developmental specificity of expression. Furthermore, a DNase I-sensitive "open" chromatin conformation of the locus is established and maintained. Thus, the dominant role of the LCR in the native locus is to confer high-level transcription, and elements elsewhere in the locus are sufficient to establish and maintain an open conformation and to confer developmentally regulated globin gene expression.
Collapse
|
|
25 |
184 |
22
|
Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol 2006; 24:269-80. [PMID: 17062634 DOI: 10.1093/molbev/msl158] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We improve the taxon sampling for avian phylogeny by analyzing 7 new mitochondrial genomes (a toucan, woodpecker, osprey, forest falcon, American kestrel, heron, and a pelican). This improves inference of the avian tree, and it supports 3 major conclusions. The first is that some birds (including a parrot, a toucan, and an osprey) exhibit a complete duplication of the control region (CR) meaning that there are at least 4 distinct gene orders within birds. However, it appears that there are regions of continued gene conversion between the duplicate CRs, resulting in duplications that can be stable for long evolutionary periods. Because of this stable duplicated state, gene order can eventually either revert to the original order or change to the new gene order. The existence of this stable duplicate state explains how an apparently unlikely event (finding the same novel gene order) can arise multiple times. Although rare genomic changes have theoretical advantages for tree reconstruction, they can be compromised if these apparently rare events have a stable intermediate state. Secondly, the toucan and woodpecker improve the resolution of the 6-way split within Neoaves that has been called an "explosive radiation." An explosive radiation implies that normal microevolutionary events are insufficient to explain the observed macroevolution. By showing the avian tree is, in principle, resolvable, we demonstrate that the radiation of birds is amenable to standard evolutionary analysis. Thirdly, and as expected from theory, additional taxa breaking up long branches stabilize the position of some problematic taxa (like the falcon). In addition, we report that within the birds of prey and allies, we did not find evidence pairing New World vultures with storks or accipitrids (hawks, eagles, and osprey) with Falconids.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
163 |
23
|
Kumazawa Y, Ota H, Nishida M, Ozawa T. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics 1998; 150:313-29. [PMID: 9725849 PMCID: PMC1460336 DOI: 10.1093/genetics/150.1.313] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 17,191-bp mitochondrial DNA (mtDNA) of a Japanese colubrid snake, akamata (Dinodon semicarinatus), was cloned and sequenced. The snake mtDNA has some peculiar features that were found in our previous study using polymerase chain reaction: duplicate control regions that have completely identical sequences over 1 kbp, translocation of tRNALeu(UUR) gene, shortened TpsiC arm for most tRNA genes, and a pseudogene for tRNAPro. Phylogenetic analysis of amino acid sequences of protein genes suggested an unusually high rate of molecular evolution in the snake compared to other vertebrates. Southern hybridization experiments using mtDNAs purified from multiple akamata individuals showed that the duplicate state of the control region is not a transient or unstable feature found in a particular individual, but that it stably occurs in mitochondrial genomes of the species. This may, therefore, be regarded as an unprecedented example of stable functional redundancy in animal mtDNA. However, some of the examined individuals contain a rather scanty proportion of heteroplasmic mtDNAs with an organization of genes distinct from that of the major mtDNA. The gene organization of the minor mtDNA is in agreement with one of models that we present to account for the concerted evolution of duplicate control regions.
Collapse
|
research-article |
27 |
163 |
24
|
Abstract
Transgenic experiments in vertebrates often involve the insertion of tandem multiple-copy arrays at single sites. For many transgenes, expression is unpredictable from site to site, a phenomenon usually attributed to a repressive environment caused by nearby sequences. However, an alternative explanation comes from evidence that transgene repeat arrays in flies condense into heterochromatin, suggesting that low levels of expression in vertebrate transgene arrays might result from interactions between repeats within the array. A recent experiment using transgenic mouse lines demonstrates that reduction in copy number of silenced transgenes within an array leads to a striking increase in expression, demonstrating that silencing is intrinsic to the array, and is not attributable to position effects of nearby sequences. This work calls into question functions that have been attributed to vertebrate locus control regions and boundaries, and draws attention to the notion that repeat-induced gene silencing is a system for protection of eukaryotic genomes against threatening sequence elements.
Collapse
|
Review |
27 |
161 |
25
|
Abstract
The beta-globin locus control region (LCR) is the founding member of a novel class of cis-acting regulatory elements that confer high level, tissue-specific, site-of-integration-independent, copy number-dependent expression on linked transgenes located in ectopic chromatin sites. Knowledge from beta-globin and other LCR studies has shed light on our understanding of the long-range interaction between enhancers and promoters, the relationship between chromatin conformation and transcriptional regulation, and the developmental regulation of multiple gene loci. After over a decade of investigation and discovery, we take a retrospective look at the beta-globin LCR and other LCRs, summarize their properties and review models of LCR function.
Collapse
|
Review |
26 |
159 |