1
|
Zhao B, Wu J, Li J, Bai Y, Luo Y, Ji B, Xia B, Liu Z, Tan X, Lv J, Liu X. Lycopene Alleviates DSS-Induced Colitis and Behavioral Disorders via Mediating Microbes-Gut-Brain Axis Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3963-3975. [PMID: 32162923 DOI: 10.1021/acs.jafc.0c00196] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gut microbes play significant roles in colitis development. The current study was aimed to uncover the preventive effects of lycopene (LYC), a functional carotenoid component, on colitis and the accompanied behavior disorders. The current study demonstrated that LYC treatment (50 mg/kg body weight/day) for 40 days prevented the dextran sulfate sodium (DSS)-induced gut barrier damages and inflammatory responses in male mice. LYC improved DSS-induced depression and anxiety-like behavioral disorders by suppressing neuroinflammation and prevented synaptic ultrastructure damages by upregulating the expressions of neurotrophic factor and postsynaptic-density protein. Moreover, LYC reshaped the gut microbiome in colitis mice by decreasing the relative abundance of proteobacteria and increasing the relative abundance of Bifidobacterium and Lactobacillus. LYC also elevated the generation of short-chain fatty acids and inhibited the permeability of lipopolysaccharide in colitis mice. In conclusion, LYC ameliorate DSS-induced colitis and behavioral disorders via mediating microbes-gut-brain axis balance.
Collapse
|
|
5 |
102 |
2
|
Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN, Selamoglu Z, Hasan M, Kumar M, Alshehri MM, Sharifi-Rad J. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2713511. [PMID: 34840666 PMCID: PMC8626194 DOI: 10.1155/2021/2713511] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
As an antioxidant, lycopene has acquired importance as it prevents autoxidation of fats and related products. Tomatoes are an important agricultural product that is a great source of lycopene. It contains many vitamins and minerals, fiber, and carbohydrates and is associated with various positive effects on health. The antioxidant potential of tomatoes is substantially explained with lycopene compounds. Diet is a major risk factor for heart diseases which is shown as the most important cause of death in the world. It has been observed that the lycopene taken in the diet has positive effects in many stages of atherosclerosis. The serum lipid levels, endothelial dysfunction, inflammation, blood pressure, and antioxidative potential are mainly affected by lycopene. These natural antioxidants, which can also enhance the nutritional value of foods, may lead to new ways if used in food preservation. In this review study, the antioxidant potential and cardiovascular protection mechanism of lycopene are discussed.
Collapse
|
Review |
4 |
101 |
3
|
Zhao Y, Xin Z, Li N, Chang S, Chen Y, Geng L, Chang H, Shi H, Chang YZ. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic Biol Med 2018; 124:1-11. [PMID: 29807160 DOI: 10.1016/j.freeradbiomed.2018.05.082] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 02/08/2023]
Abstract
In order to discover new drug delivery approaches and to understand the mechanism of iron overload in cerebral ischemia/reperfusion (I/R), we aimed to investigate the effects of lycopene (LYC) in the form of nano-liposomes (L-LYC) on iron-regulating proteins and ischemic brain injury. We found that L-LYC significantly increased the LYC content in serum and the brain. Adult male Sprague-Dawley rats treated with L-LYC for 14 days were subjected to 60 min of ischemia and 7 days of reperfusion. The effects of L-LYC were evaluated by infarction volume, neurological score, neuronal apoptosis, and markers for oxidative stress. Levels of iron-regulating protein such as hepcidin and ferroportin (FPN1) were examined. L-LYC reduced cerebral infarction and improved neurobehavior of the rats more efficiently than "naked" LYC. L-LYC reduced protein levels of oxidases (e.g. nitric oxide synthase and NOX2), increased the level of Bcl-2, lowered caspase-3, and suppressed apoptosis through inhibiting MAPK-JNK. Furthermore, L-LYC suppressed hepcidin-mediated decrease in FPN1, a sole iron exporter, and normalized the levels of iron. We further demonstrated that the effect of L-LYC on hepcidin expression might result from its ability to attenuate the release of the inflammatory factor interleukin 6. The results demonstrated that nano-liposomal encapsulation significantly improved LYC efficacy in providing neuronal protection against I/R injury. The data also revealed a novel mechanism of L-LYC's neuroprotection by regulating iron metabolism in an ischemic brain.
Collapse
|
|
7 |
93 |
4
|
Lin J, Xia J, Zhao HS, Hou R, Talukder M, Yu L, Guo JY, Li JL. Lycopene Triggers Nrf2-AMPK Cross Talk to Alleviate Atrazine-Induced Nephrotoxicity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12385-12394. [PMID: 30360616 DOI: 10.1021/acs.jafc.8b04341] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atrazine (ATR), an environmental persistent and bioaccumulative herbicide, has been associated with environmental nephrosis. Lycopene (LYC) exhibits important properties of nephroprotection, but there are limited data on the specific underlying mechanism. The primary objective of this study was to explore the therapeutic effect of LYC on ATR-induced nephrotoxicity in mice. The mice were divided randomly into 6 groups and treated as follows: control group (C), 5 mg/kg LYC group (L), 50 mg/kg ATR group (A1), 200 mg/kg ATR group (A2), 50 mg/kg ATR plus 5 mg/kg LYC group (A1+L), and 200 mg/kg ATR plus 5 mg/kg LYC group (A2+L) by oral gavage administration for 21 days. We found that pretreatment with LYC significantly suppressed the ATR-induced renal tubular epithelial cell swelling. Furthermore, LYC mitigated ATR-induced dysregulation of oxidative stress markers by reducing MDA, H2O2 levels, and increasing SOD, GPx, CAT concentration, and Nrf2 activation. Moreover, LYC activated the autophagic flux by a detectable change in autophagy-related genes (Beclin-1 and ATGs) and proteins (p62/SQSTM) and by the formation of autophagic vacuole (AV) and LC3 aggregation, in parallel with AMPK activation (pAMPK/AMPK). Herein, ATR-up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes, including quinoneoxidoreductase-1 (NQO1) and heme oxidase-1 (HO1), whereas LYC down-regulated those of the above genes. In addition, LYC suppressed ATR-induced activation of autophagy (increased LC3II/LC3I, ATGs, Beclin1, and p62, in parallel with increased AMPK activation). Collectively, our findings identified a cross talk between AMPK-activated autophagy and the Nrf2 signaling pathway in LYC-mediated nephroprotection against ATR-induced toxicity in mice kidney.
Collapse
|
|
7 |
76 |
5
|
Dai XY, Li XW, Zhu SY, Li MZ, Zhao Y, Talukder M, Li YH, Li JL. Lycopene Ameliorates Di(2-ethylhexyl) Phthalate-Induced Pyroptosis in Spleen via Suppression of Classic Caspase-1/NLRP3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1291-1299. [PMID: 33475360 DOI: 10.1021/acs.jafc.0c06534] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lycopene (Lyc) as a natural antioxidant has attracted widespread attention. Di(2-ethylhexyl) phthalate (DEHP) can cause serious spleen injury in animals via the environment and food chain. For investigation of whether Lyc could alleviate DEHP-exerted pyroptosis in spleen through inhibiting the Caspase-1/NLRP3 pathway activation, 140 male mice were randomly divided into 7 groups: control group, vehicle control group, Lyc group (5 mg/kg BW/day), DEHP-exposed group (500 or 1000 mg/kg BW/day, respectively), and DEHP + Lyc groups by daily administration for 28 days. Pathological results showed that the supplementation of Lyc alleviated DEHP-induced inflammatory infiltration. Moreover, the addition of Lyc inhibited DEHP-induced Caspase-1, NLRP3, ASC, NF-κB, IL-1β, and IL-18 overexpression and GSDMD down-expression. These results indicate that Lyc could inhibit DEHP-induced Caspase-1-dependent pyroptosis and the inflammatory response. Taken together, the study provided new evidence that Lyc may be a strategy to mitigate spleen injury induced by DEHP.
Collapse
|
|
4 |
69 |
6
|
Zhao Y, Lin J, Talukder M, Zhu SY, Li MZ, Wang HR, Li JL. Aryl Hydrocarbon Receptor as a Target for Lycopene Preventing DEHP-Induced Spermatogenic Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4355-4366. [PMID: 31971381 DOI: 10.1021/acs.jafc.9b07795] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is widely used as a plasticizer to improve product flexibility and workability. Lycopene (LYC) is a natural compound and has promising preventive potentials, especially antireproductive toxicity, but the specific underlying mechanism is yet to be fully defined. Our study investigated the effect of LYC on DEHP-induced spermatogenesis disorders. Male ICR mice were treated with DEHP (500 or 1000 mg/kg BW/day) and/or LYC (5 mg/kg BW/day) for 28 days. Our results indicated that LYC could relieve the DEHP-induced injury of seminiferous tubules and spermatogenic cells, swelling of endoplasmic reticulum (ER), and an increase of mitochondria. LYC prevented increased levels of nuclear damage to DNA and the deformity rate and decreased values of sperm motility, number, and density. Moreover, LYC treatment decreased DEHP-induced nuclear accumulation of aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT), and the expressions of their downstream target genes such as cytochrome P450-dependent monooxygenases (CYP) 1A1, 1A2, and 1B1 were markedly reduced to normal in the LYC treatment group. Our study showed that LYC can prevent DEHP-induced spermatogenic disorders via an AHR/ARNT signaling system. This study provided new evidence of AHR as a target for LYC, which can prevent DEHP-induced toxicity.
Collapse
|
|
5 |
62 |
7
|
Zhao Y, Ma DX, Wang HG, Li MZ, Talukder M, Wang HR, Li JL. Lycopene Prevents DEHP-Induced Liver Lipid Metabolism Disorder by Inhibiting the HIF-1α-Induced PPARα/PPARγ/FXR/LXR System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11468-11479. [PMID: 32962341 DOI: 10.1021/acs.jafc.0c05077] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widespread pollutant that badly affects animals and human health. Lycopene (LYC) has been used as a dietary supplement that has effective antioxidant and antiobesity functions. The present goal was to understand the molecular mechanisms of LYC preventing DEHP-induced lipid metabolism of the liver. The mice were intragastrically administered with LYC (5 mg/kg) and/or DEHP (500 mg/kg or 1000 mg/kg). Here, we found that LYC attenuated DEHP-caused hepatic histopathological lesions including steatosis. Hematological and biochemical analyses revealed that LYC ameliorated DEHP-caused liver function and lipid metabolism disorders. DEHP caused lipid metabolism disorders via activating the peroxisome proliferator activated receptor α/γ (PPARα/γ) signal transducer and Farnesoid X receptor (FXR)/liver X receptor (LXR) signaling pathway. As a major regulator of lipid metabolism, hypoxia-inducible factor-1α (HIF-1α) system was elevated with increased fatty degeneration under DEHP exposure. However, LYC could decrease the levels of HIF-1α/PPARα/PPARγ/FXR/LXR signaling pathway-related factors. Our research indicated that LYC could prevent DEHP-induced lipid metabolism disorders via inhibiting the HIF-1α-mediated PPARα/PPARγ/FXR/LXR system. This study may provide a possible molecular mechanism for fatty liver induced by DEHP.
Collapse
|
|
5 |
56 |
8
|
Senkus KE, Tan L, Crowe-White KM. Lycopene and Metabolic Syndrome: A Systematic Review of the Literature. Adv Nutr 2019; 10:19-29. [PMID: 30475939 PMCID: PMC6370260 DOI: 10.1093/advances/nmy069] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiometabolic risk factors increase the likelihood of cardiovascular disease development by 2-fold. Lycopene, a potent lipophilic antioxidant, may be able to mediate oxidative stress, a mechanism underpinning metabolic syndrome (MetS) and its risk factors. This is, to our knowledge, the first systematic review of the literature with the purpose of investigating the relation between circulating lycopene or dietary intake of lycopene and MetS as well as its risk factors. The review was conducted using PubMed and EBSCOhost databases with the search terms "lycopene" and "metabolic syndrome." Inclusion criteria included human studies published in English in a scholarly, peer-reviewed journal and evaluation of lycopene in relation to ≥3 of the 5 MetS risk factors as defined by the National Cholesterol Education Program's Adult Treatment Panel III (ATP III) report. The process identified 11 studies, including 8 cross-sectional and 3 intervention studies. Cross-sectional studies were grouped into 3 categories, with several studies falling into >1 category, based on results reporting associations of lycopene with the prevalence and outcomes of MetS (5 studies), presence of ATP III risk factors (4 studies), and variables mediating lycopene's influence on MetS risk (3 studies). All studies in each category reported significant protective associations. Of the 3 intervention studies, all reported significant protective effects from a lycopene-rich beverage, despite varying doses and durations of intake. Although a protective relation between lycopene and MetS was generally supported, different MetS components appeared to be influenced by lycopene rather than demonstrating consistent improvement in a single component. Thus, additional research is needed to elucidate the mechanistic effects of lycopene on MetS, as well as to determine evidence-based recommendations concerning dose-durational effects of lycopene and MetS risk reduction. In conclusion, the evidence of lycopene's benefit exists such that lycopene status or lycopene consumption may be associated with favorable alterations to the components of MetS.
Collapse
|
research-article |
6 |
33 |
9
|
Fraser GE, Jacobsen BK, Knutsen SF, Mashchak A, Lloren JI. Tomato consumption and intake of lycopene as predictors of the incidence of prostate cancer: the Adventist Health Study-2. Cancer Causes Control 2020; 31:341-351. [PMID: 32100191 DOI: 10.1007/s10552-020-01279-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/10/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Studies have controversially suggested that prostate cancer, the most common cancer among Western men, is less common among those with a high intake of tomato products and lycopene. We examine multivariable associations between the intake of tomatoes and lycopene, and risk of prostate cancer. METHODS In a prospective study of 27,934 Adventist men without prevalent cancer, Cox proportional hazard regression analyses were used to address the objectives. Dietary measurement error was partially corrected with regression calibration. RESULTS 1226 incident cases of prostate cancer, 355 of them aggressive, were identified during 7.9 years of follow-up. Consumption of canned and cooked tomatoes more than four times a week was associated with a HR = 0.72 (95% CI 0.55, 0.94, P = 0.02) comparing to risk in those never consuming this food. Treating this as a continuous variable, adjusting for confounders, produces a similar result, HR = 0.86 (95% CI 0.75, 0.99), comparing 64 g/day with zero intakes (questionnaire data). Regression calibration, although less precise, suggests a yet stronger and statistically significant inverse relationship, comparing a 24-h dietary recall intake of 71 g/day canned and cooked tomato product, with zero intake. Uncalibrated multivariable-adjusted competing risk analyses do not find differences in tomato associations between aggressive and non-aggressive prostate cancers although power for aggressive cancers is limited. CONCLUSION Consumption of canned and cooked tomatoes may reduce the risk of prostate cancer. These products contain more available lycopene. However, an observational study cannot exclude confounding by some unidentified, prostate cancer preventive factor. Clinical Trial Registry: ClinicalTrials.gov Identifier: NCT03615599.
Collapse
|
Journal Article |
5 |
17 |
10
|
Guo Y, Mao X, Zhang J, Sun P, Wang H, Zhang Y, Ma Y, Xu S, Lv R, Liu X. Oral delivery of lycopene-loaded microemulsion for brain-targeting: preparation, characterization, pharmacokinetic evaluation and tissue distribution. Drug Deliv 2019; 26:1191-1205. [PMID: 31738085 PMCID: PMC6882477 DOI: 10.1080/10717544.2019.1689312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Lycopene is considered as a promising neuroprotector with multiple bioactivities, while its therapeutic use in neurological disorders is restricted due to low solubility, instability and limited bioavailability. Our work aimed to develop lycopene-loaded microemulsion (LME) and investigate its potentials in improving bioavailability and brain-targeting efficiency following oral administration. The blank microemulsion (ME) excipients were selected based on orthogonal design and pseudo-ternary phase diagrams, and LME was prepared using the water titration method and characterized in terms of stability, droplet size distribution, zeta potential, shape and lycopene content. The optimized LME encompassed lycopene, (R)-(+)-limonene, Tween 80, Transcutol HP and water and lycopene content was 463.03 ± 8.96 µg/mL. This novel formulation displayed transparent appearance and satisfactory physical and chemical stabilities. It was spherical and uniform in morphology with an average droplet size of 12.61 ± 0.46 nm and a polydispersity index (PDI) of 0.086 ± 0.028. The pharmacokinetics and tissue distributions of optimized LME were evaluated in rats and mice, respectively. The pharmacokinetic study revealed a dramatic 2.10-fold enhancement of relative bioavailability with LME against the control lycopene dissolved in olive oil (LOO) dosage form in rats. Moreover, LME showed a preferential targeting distribution of lycopene toward brain in mice, with the value of drug targeting index (DTI) up to 3.45. In conclusion, the optimized LME system demonstrated excellent physicochemical properties, enhanced oral bioavailability and superior brain-targeting capability. These findings provide a basis for the applications of ME-based strategy in brain-targeted delivery via oral route, especially for poorly water-soluble drugs.
Collapse
|
research-article |
6 |
15 |
11
|
Williams EA, Parker M, Robinson A, Pitt S, Pacey AA. A randomized placebo-controlled trial to investigate the effect of lactolycopene on semen quality in healthy males. Eur J Nutr 2019; 59:825-833. [PMID: 31591650 PMCID: PMC7058571 DOI: 10.1007/s00394-019-02091-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
Abstract
Purpose Poor sperm quality is a major contributor to infertility in heterosexual couples, but at present there are few empirical therapies. Several studies have examined the role of dietary factors and data from randomized controlled trials suggest that oral antioxidant therapy can improve some sperm parameters. Health benefits of lycopene supplementation have been proposed for a variety of health conditions and here we examine whether it can help improve sperm quality. This study aimed to investigate the effect of 14 mg daily lactolycopene for 12 weeks on semen quality in healthy men. Methods Sixty healthy male participants were recruited and randomized to this double-blind, placebo-controlled parallel study and received either 14 mg/d lactolycopene or a placebo for 12 weeks. The primary endpoint was a change in motile sperm concentration. Secondary endpoints were all other aspects of sperm quality, including the level of sperm DNA damage. Results Fifty-six men completed the intervention and the level of plasma lycopene was significantly increased in the men randomized to receive lycopene supplementation. There was no significant change in the primary endpoint (motile sperm concentration) post-intervention (p = 0.058). However, the proportion of fast progressive sperm (p = 0.006) and sperm with normal morphology (p < 0.001) did improve significantly in response to lactolycopene intervention. Conclusions Supplementation with 14 mg/d lactolycopene improves sperm motility and morphology in young healthy men. Clinical Trial Registry number and website ISRCTN33248724 http://www.isrctn.com/ISRCTN33248724
Collapse
|
Randomized Controlled Trial |
6 |
14 |
12
|
Wang W, Yang W, Shen Z, Wen S, Hu M. The Dose-Response Effect of Lycopene on Cerebral Vessel and Neuron Impairment Induced by Hyperlipidemia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13173-13182. [PMID: 30474364 DOI: 10.1021/acs.jafc.8b05232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To study the dose-response effect of lycopene on vessel and neuron damage in the brain against hyperlipidemia, rats were fed with hypercholesterolemic feed and treated with lycopene orally by gavage at the dose of 5, 25, 45, 65, 85, and 105, 125 mg/kg/bw-1/d-1. At the end of the fourth week, lycopene doses and serum lycopene concentration showed an inverse U-shape curve. Serum lycopene concentration was negatively correlated with the levels of serum TC, TG, LDL-C, as well as the cerebral LDL-C, VEGF, and VCAM-1. Serum lycopene concentration was positively correlated with the expression of Claudin-5 and the number of neurons in hippocampal CA1 and CA3. Lycopene could also reduce the pathologic change of these areas. These results suggested an inverse U-shape relation between dose and serum concentration of lycopene, and intermediate doses were most effective to protect cerebral vessels and neurons from being damaged by hyperlipidemia.
Collapse
|
|
7 |
13 |
13
|
Shejawal KP, Randive DS, Bhinge SD, Bhutkar MA, Todkar SS, Mulla AS, Jadhav NR. Green synthesis of silver, iron and gold nanoparticles of lycopene extracted from tomato: their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:19. [PMID: 33576907 PMCID: PMC7880933 DOI: 10.1007/s10856-021-06489-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/18/2021] [Indexed: 05/04/2023]
Abstract
Our study aimed at development of Silver, Iron and Gold nanoparticles of Lycopene isolated from tomato by using green synthesis technique and to evaluate its anticancer potential against colorectal and cervical cancer. Lycopene was extracted by benzene extraction method and the silver, iron and gold nanoparticles were developed by green synthesis method. 1% aqueous extract of isolated Lycopene was mixed with 1% solutions of AgNO3, FeCl3 and HAuCl4 solutions and incubated at ambient temperature for 3-4 h separately and observed for the color change which is an indicative of formation of the nanoparticles. The prepared nanoparticles were characterized by FTIR, SEM, XRD analysis and evaluated for their antimicrobial potential. The cytotoxicity studies were carried out by in vitro assay like MTT, SRB and Tryphan blue method against Colo 320 DM, HT 29, and Hella. SEM showed nanosized particles of 50-100 nm range, whereas no antimicrobial activity was exhibited by the prepared nanoparticles. In MTT assay the LyAgNP showed maximum 41.41 ± 0.4124% inhibition against COLO320DM, whereas LyGNP exhibited 41.47 ± 0.4469% inhibition against HT 29 and LyAgNP showed 40.9 ± 0.6908% inhibition against Hella cells. In SRB assay LyAgNP showed maximum 82.68 ± 1.1798% inhibition against COLO320DM, whereas LyGNP exhibited maximum 91.21 ± 0.2372% inhibition against HT29 and 87.98 ± 0.5878% inhibition against Hella cells. In tryphan blue assay against COLO320DM, HT29 and Hella cells, the maximum inhibition exhibited by the prepared nanoparticles were observed as LyGNP 83.45 ± 0.4694%, LyAgNP 88.05 ± 0.1870% and LyAgNP65.47 ± 0.4766%. We conclude that the developed nanoparticles of Lycopene exhibited potential anticancer activity against Colorectal and cervical cancer cell as compared with pure Lycopene.
Collapse
|
research-article |
4 |
13 |
14
|
Kirmizi DA, Baser E, Okan A, Kara M, Yalvac ES, Doganyigit Z. The effect of a natural molecule in ovary ischemia reperfusion damage: does lycopene protect ovary? Exp Anim 2021; 70:37-44. [PMID: 32921696 PMCID: PMC7887625 DOI: 10.1538/expanim.20-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian ischemia is a gynecological emergency case that occurs as a result of ovarian torsion. Oxidative stress plays a central role in the development of ischemia/reperfusion (IR) injuries. Lycopene (LYC) is a lipophilic, natural carotenoid well known for its antioxidant properties. This study provides information on the potential applications of lycopene. The Wistar Albino rats were distributed into six groups: Sham group (only a laparotomy was performed), Control group [laparotomy and intraperitoneal dissolvent (olive oil)], IR group, IR+olive oil group, IR+LYC 2.5 mg/kg/dose, intraperitoneal group, IR+LYC 5 mg/kg/dose intraperitoneal group. Evaluated in terms of histopathological changes, tissue malondialdehyde levels (MDA), ovarian expressions of phosphorylated nuclear factor-kappa B (p-NF-κB) and the TUNEL method was utilized to show apoptosis of ovarian tissue. There was a significant decrease in MDA, p-NF-κB values and the proportion of apoptotic cells assessed by TUNEL compared to the group that did not receive intraperitoneal LYC in rat injury with IR damage (P<0.05). In histopathological damage scoring, it was observed that the cell damage was significantly reduced in LYC-administered groups. LYC showed significant ameliorative effects on ovary injury caused by IR through acting as an antioxidant, antiinflammatory, and antiapoptotic agent.
Collapse
|
research-article |
4 |
10 |
15
|
Biernacka KM, Holly JM, Martin RM, Frankow A, Bull CJ, Hamdy FC, Donovan JL, Neal DE, Metcalfe C, Lane A. Effect of green tea and lycopene on the insulin-like growth factor system: the ProDiet randomized controlled trial. Eur J Cancer Prev 2019; 28:569-575. [PMID: 30921005 PMCID: PMC6784856 DOI: 10.1097/cej.0000000000000502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/18/2019] [Indexed: 01/01/2023]
Abstract
Whether prostate cancer (PCa) may be preventable by dietary interventions can be assessed in randomized trials using intermediate biomarkers of cancer risk or progression. We investigated whether lycopene or green tea modify circulating insulin-like growth factor (IGF) peptides in men at increased risk of PCa. Participants (aged 50-69 years) in one centre in the UK wide PCa testing and treatment trial (ProtecT) with prostate specific antigen between 2.0 and 2.95 ng/ml or negative biopsies, were randomized to daily lycopene (n = 44 assigned 15 mg capsules/day; 44 assigned a lycopene-rich diet; 45 assigned placebo) and green tea (n = 45 assigned 600 mg/day epigallocatechin gallate; 45 assigned green tea drink; 43 assigned placebo) for 6 months. The interventions significantly elevated the primary outcomes, serum epigallocatechin gallate and lycopene at 6 months of follow-up. We report here an exploratory analysis in which serum IGF-I, IGF-II, IGF binding protein (BP)-2 and IGFBP-3 were measured at baseline and 6 months of postintervention. A total of 133 men were randomized (34% of eligible men approached) and 130 had follow-up IGF peptides (98%). In intention-to-treat analyses, there was only weak evidence that lycopene or green tea influenced some aspects of serum IGF-I, IGF-II, IGFBP-2 or IGFBP-3. In men randomized to lycopene supplements, IGFBP-2 was nonsignificantly (50.9 ng/ml; 95% confidence interval: -51.2-152.9, P = 0.3) higher in comparison to placebo, whereas in men randomized to green tea supplements, IGFBP-3 was nonsignificantly (205.2 ng/ml; 95% confidence interval: -583.3-172.9, P = 0.3) lower than with placebo. In this small, pilot randomized controlled trial, there was little evidence that lycopene or green tea interventions influenced serum levels of IGF-I, IGF-II, IGFBBP-3 and IGFBP-2. However, the effects were imprecisely estimates and some observed trends may justify larger trials.
Collapse
|
Randomized Controlled Trial |
6 |
6 |
16
|
Yin Q, Wang JF, Xu XH, Xie H. Effect of lycopene on pain facilitation and the SIRT1/mTOR pathway in the dorsal horn of burn injury rats. Eur J Pharmacol 2020; 889:173365. [PMID: 32712090 DOI: 10.1016/j.ejphar.2020.173365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
To explore the effect of intrathecal injection of lycopene on pain facilitation, glial activation, and the SIRT1/mTOR pathway in the dorsal horn of rats with burn injury pain (BIP). Here we found that the mechanical pain threshold increased in the lycopene group compared with that of the control group, (P < 0.05). Compared with expression in the sham group, mTOR, pS6, p4EBP, GFAP, and Iba-1 decreased and SIRT1 increased in the lycopene group (P < 0.01). Glial activation in the spinal dorsal horn of BIP rats was alleviated by lycopene (P < 0.01). The SIRT1 and mTOR were mainly distributed in neurons in the spinal dorsal horn in the BIP model. Intrathecal injection of 3-MA (a mTOR agonist) or EX-527 (an inhibitor of Sirt1) partially antagonized lycopene-induced analgesia. Intrathecal injection of rapamycin (an mTOR inhibitor) or SRT1720 (an agonist of Sirt1) induced analgesia in BIP rats. 3-MA abrogated the SRT1720-induced analgesic effects. The present data indicated that the SIRT1/mTOR pathway changed in the spinal dorsal horn of BIP rats; Lycopene alleviated the pain sensitization of BIP rats by regulating the SIRT1/mTOR pathway and glial activation in the spinal dorsal horn.
Collapse
|
Journal Article |
5 |
5 |
17
|
Nosková K, Dovrtělová G, Zendulka O, Strakošová M, Peš O, Juřica J. Lycopene increases metabolic activity of rat liver CYP2B, CYP2D and CYP3A. Pharmacol Rep 2020; 72:156-165. [PMID: 32016858 DOI: 10.1007/s43440-019-00007-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lycopene as a naturally occurring carotenoid is a common part of the human diet. Several beneficial properties of lycopene have been identified, with the most studied being anti-cancer and antioxidant activity. However, no evidence of possible drug-drug or drug-food supplement interactions has been found. METHODS We studied the in vivo effect of lycopene on the selected rat liver cytochromes P450 (CYPs): CYP1A2, CYP2B, CYP2C11, CYP2C6, CYP2D, and CYP3A. Lycopene was administered to rats intragastrically at doses of 4, 20, and 100 mg/kg/day for 10 consecutive days. Total protein content, P450 Content, and metabolic activity of selected CYPs were evaluated in the rat liver microsomal fraction. RESULTS Increased CYP2B, CYP2D, and CYP3A metabolic activities were observed in animals treated with the lycopene dose of 100 mg/kg/day. The content of CYP3A1 protein was increased by the dose of 100 mg/kg/day and CYP3A2 protein was increased by all administered doses of lycopene. CONCLUSION The results of our study indicate that lycopene increased the metabolic activity of enzymes that are orthologues to the most clinically important human enzymes involved in xenobiotic metabolism. The risk of pharmacokinetic interactions between lycopene dietary supplements and co-administered drugs should be evaluated.
Collapse
|
Journal Article |
5 |
4 |
18
|
Ardawi MSM, Badawoud MH, Hassan SM, Ardawi AMS, Rouzi AA, Qari MH, Mousa SA. Lycopene nanoparticles promotes osteoblastogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cells. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2021; 25:6894-6907. [PMID: 34859851 DOI: 10.26355/eurrev_202111_27238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Lycopene is a carotenoid and antioxidant with potent singlet oxygen quenching ability that reduces oxidative stress and promotes bone health. However, the cellular mechanisms by which lycopene influences bone metabolism are not known. MATERIALS AND METHODS The present study investigated the effects of lycopene nanoparticles on the differentiation of rat bone marrow-derived mesenchymal stem cells into osteoblasts or adipocytes. RESULTS In osteogenic medium, lycopene supplementation dose-dependently enhanced osteoblast differentiation, as evidenced by the transcription of Alpl, Runx2, Col1a1, Sp7, and Bglap, higher alkaline phosphatase activity, osteocalcin secretion and extracellular matrix mineralisation seen with Alizarin red S staining, and increased haem oxygenase levels. By contrast, lycopene in adipogenic medium inhibited adipocyte differentiation evidenced by decreases in the transcription of Tnfsf11, Tnfrsf11b, Pparg, Lpl, and Fabp4 and reduced fat accumulation observed by Oil Red O staining. CONCLUSIONS Lycopene nanoparticles may promote bone health and are considered as a potential candidate for the prevention and/or treatment of bone loss conditions.
Collapse
|
|
4 |
1 |
19
|
Harikrishnan R, Devi G, Van Doan H, Vijay S, Balasundaram C, Ringø E, Hoseinifar SH, Jaturasithaf S. Dietary plant pigment on blood-digestive physiology, antioxidant-immune response, and inflammatory gene transcriptional regulation in spotted snakehead (Channa punctata) infected with Pseudomonas aeruginosa. FISH & SHELLFISH IMMUNOLOGY 2022; 120:716-736. [PMID: 34968713 DOI: 10.1016/j.fsi.2021.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The current study addressed to investigate the effect of lycopene (LYC) on blood physiology, digestive-antioxidant enzyme activity, specific-nonspecific immune response, and inflammatory gene transcriptional regulation (cytokines, heat shock proteins, vitellogenins) in spotted snakehead (Channa punctata) against Pseudomonas aeruginosa. In unchallenged and challenged fish treated with 200 mg LYC enriched diet the growth performance and digestive-antioxidant enzymes increased after 30 days, whereas with inclusion of 100 or 400 mg LYC in the diets, the increase manifested on or after 45 days. No mortality in fish treated with any LYC diet against P. aeruginosa was revealed. In the unchallenged and challenged fish the phagocytic (PC) activity in head kidney (HK) and spleen were significantly enhanced when fed the control diet or other LYC diets, whereas the respiratory burst (RB) activity and nitric oxide (NO) production significantly increased when fed the 200 mg diet for 45 and 60 days. Similarly, the lysozyme (Lyz) activity in the HK and spleen, and total Ig content in serum were significantly higher in both groups fed the 200 mg LYC diet for 15, 45, and 60 days. Heat shock protein (Hsp 70) was significantly improved in the uninfected group fed the 200 mg LYC diet for 45 and 60 days, but Hsp27 did not significantly change among the experimental groups at any time points. TNF-α and IL-6 mRNA pro-inflammatory cytokine expression significantly increased in both groups fed the 200 mg LYC diet after 45 and 60 days, while the IL-12 mRNA expression was moderate in both groups fed the same diet for 60 days. The IL-10 did not significant mRNA expression between groups at any sampling. The iNOS and NF-κB mRNA expression was pointedly high in both groups fed the 200 mg LYC diet on day 45 and 60. Vitellogenin A (VgA) mRNA was significantly higher in the uninfected fish fed the 100 and 200 mg LYC diets for 45 and 60 days, but VgB did not reveal significant difference between the treatment groups at any time points. The present results suggest that supplementation of LYC at 200 mg significantly modulate the blood physiology, digestive-antioxidant enzymes, specific-nonspecific immune parameters, and cytokines, Hsp, and vitellogenins in spotted snakehead against P. aeruginosa.
Collapse
|
|
3 |
1 |
20
|
Idih FM, Atanu FO, Ndu CK, Michael RE, Kadiri B, Jimoh LO, Usman BO, Ogugua VN. Lycopene possess an antimalarial effect on chloroquine-resistant malaria and its hematological aberrations in murine model. Parasitol Int 2024; 101:102873. [PMID: 38428566 DOI: 10.1016/j.parint.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Malaria remains a major public health issue worldwide, with high rates of morbidity and mortality. The resistance of Plasmodium parasites to commonly used antimalarial drugs has necessitated the development of novel drugs and targets for malaria treatment. Lycopene is a natural compound present in tomatoes and other red fruits and vegetables. This study aimed to evaluate the antimalarial activity of lycopene and its co-administration with chloroquine against chloroquine-resistant malaria, as well as to assess its impact on hematological abnormalities associated with malaria infection. The experimental animals for this study were infected with 10 7 NK65 Plasmodium berghei-infected red blood cells via intraperitoneal injection. The animals were then treated with artemether-lumefantrine, chloroquine, and varying doses of lycopene. The study evaluated percentage parasitemia, mean survival time, and various hematological parameters, including red blood cell count, hematocrit, hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin, red blood cell distribution width - coefficient of variation, red blood cell distribution width - standard deviation, white blood cell count, granulocyte count, lymphocyte count, monocyte count, and procalcitonin level. The study revealed that lycopene demonstrated significant (p < 0.05) antimalarial activity and the ability to ameliorate hematological abnormalities associated with acute malaria infection. The findings of this study highlight the potential of lycopene as a novel antimalarial agent. The results of this study may contribute to the development of new drugs for malaria treatment, particularly in low- and middle-income countries.
Collapse
|
|
1 |
|
21
|
Ma CY, Yu AC, Sheng XH, Wang XG, Xing K, Xiao LF, Lv XZ, Guo Y, Long C, Qi XL. Supplementing ageing male laying breeders with lycopene alleviates oxidative stress in testis and improves testosterone secretion. Theriogenology 2024; 230:220-232. [PMID: 39341034 DOI: 10.1016/j.theriogenology.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Reproductive performance is a crucial aspect of poultry production and is carefully controlled by endocrine, paracrine, and autocrine factors. This study aimed to investigate the effect of lycopene on testosterone synthesis in Leydig cells of laying breeder roosters, clarify the mechanism of lycopene improving Leydig cells function and promoting testosterone production, and explore the role of related signal transduction pathways in testosterone synthesis. RESULTS A total of 96 healthy 55-week-old breeding roosters were randomly assigned to one of five dietary treatments. They were provided with a corn-soybean meal-based diet containing different levels of lycopene: 0 mg/kg (control), 50 mg/kg, 100 mg/kg, or 200 mg/kg. The experiment lasted for 6 weeks. With the increase in lycopene levels, the testosterone content in the plasma was significantly higher than in the control group. Testicular Leydig cells were isolated and cultured from fresh testicular tissue of 45-wk-old to 60-wk-old breeding roosters. Various doses of lycopene were administered to Leydig cells, and subsequently, cells were collected for the detection of cell viability and testosterone content. The optimal concentration of lycopene to be added was determined, and changes in mRNA expression and protein levels of key proteins involved in testosterone synthesis were investigated. The results showed that lycopene treatment significantly increased testosterone secretion, mRNA expression, and protein levels of steroid-producing enzymes. Cells were collected to measure the activity of antioxidant enzymes, the mRNA transcription level of apoptotic factors, and the protein expression of apoptotic factors after treatment with lycopene. The results showed that lycopene significantly increased the activities of antioxidant enzymes, and the ability to inhibit oxygen radicals, and decreased the content of malondialdehyde. Apoptosis was inhibited by regulating the expression of apoptosis-inducing and anti-apoptosis factors. After that, the MAPK signaling pathway and downstream SF-1, Nrf2 gene, and protein expression levels were detected. The results showed that lycopene treatment significantly increased the gene and protein expression of JNK, SF-1, and Nrf2, and significantly decreased the gene and protein expression of p38. CONCLUSIONS Lycopene treatment could promote testosterone synthesis of testicular Leydig cells by activating MAPK-SF-1 (increasing steroid-producing enzyme level) and MAPK-Nrf2 pathways (resisting oxidative damage).
Collapse
|
|
1 |
|
22
|
Zhou X, Burke KE, Wang Y, Wei H. Dietary Lycopene Protects SKH-1 Mice Against Ultraviolet B-Induced Photocarcinogenesis. J Drugs Dermatol 2019; 18:1244-1254. [PMID: 31860213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lycopene, an acyclic hydrocarbon, non-provitamin A carotenoid, is a potent antioxidant with well-documented anticancer properties. In this study, we investigated the effects of dietary lycopene on sub-acute and chronic ultraviolet B (UVB)-induced skin carcinogenesis in SKH-1 mice. Groups of three mice were fed with a nonsupplemented or 1% lycopene diet for two weeks before and throughout two weeks of UVB irradiation (30 mJ/cm2 UVB, thrice weekly). The lycopene diet significantly reduced the formation of pyrimidine dimers (PDs) and the expression of proliferative cellular nuclear antigen (PCNA) in UVB-irradiated skin. Then groups of eighteen mice were each fed with control diet or with a 0.25% or 1% (w/w) lycopene-supplemented diet for 40 weeks, beginning one week before UVB irradiation (30 mJ/cm2 UVB, thrice weekly for 23 weeks) and continuing after termination of UVB. Lycopene significantly inhibited the onset and decreased the incidence, multiplicity, and tumor weights of UVB-induced skin tumors. UVB-induced epidermal hyperplasia and PCNA expression were still remarkably inhibited by dietary lycopene, even up to 40 weeks. No significant difference in protection was detected between the low and high concentrations of lycopene. These results demonstrate that dietary lycopene does protect against UVB-induced epidermal hyperplasia and carcinogenesis. J Drugs Dermatol. 2019;18(12):1244-1254.
Collapse
|
|
6 |
|
23
|
Long C, Shi YP, Wang QY, Sheng XH, Wang XG, Xiao LF, Lin ZL, Qi XL. Dietary supplementation with lycopene improves semen quality and antioxidant status in breeder roosters. Poult Sci 2025; 104:104658. [PMID: 39709824 PMCID: PMC11733037 DOI: 10.1016/j.psj.2024.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
This study investigated the effects of dietary lycopene supplementation on semen quality, testicular histology, antioxidant capacity, and reproductive hormone levels in aging breeder roosters. A total of 96 roosters were randomly divided into four groups and supplemented with 0, 50, 100, and 200 mg/kg of lycopene for six weeks. Lycopene significantly improved semen volume, sperm concentration, motility, viability, and morphological parameters at all doses (P < 0.05). The 200 mg/kg group exhibited the highest semen volume by week 6 (0.44 mL, P < 0.05). Sperm concentration increased significantly in the 100 mg/kg group (P < 0.05), and motility was highest in the 200 mg/kg group by week 4 (92.08 %, P < 0.05). Testicular histology also showed significant improvement, with a notable increase in seminiferous tubule area at 200 mg/kg (0.11 mm², P < 0.01), while Leydig cell density followed a quadratic response, peaking at 100 mg/kg (44.60 cells/mm², P < 0.01). Plasma LH and testosterone levels peaked at 100 mg/kg, with significant increases of 12.81 % and 43.37 %, respectively (P < 0.01). Lycopene enhanced antioxidant capacity across seminal plasma, plasma, and testicular tissues, with significant increases in T-SOD, GSH-Px, and CAT activities (P < 0.05). MDA levels were significantly reduced, especially at 100 mg/kg (P < 0.01). Lycopene supplementation also improved mitochondrial function in sperm, as indicated by enhanced mitochondrial membrane potential at 100 mg/kg (P < 0.01) and reduced reactive oxygen species levels and sperm apoptosis (P < 0.05). In conclusion, lycopene supplementation, particularly at 100 mg/kg, significantly improves semen quality, testicular health, antioxidant capacity, and reproductive hormone levels in aging breeder roosters, with potential applications in enhancing reproductive performance.
Collapse
|
research-article |
1 |
|
24
|
Atuk Kahraman T, Yılmaz M, Aslan K, Canatan H, Kara A, Nalbantoglu OU, Gundogdu A, Eken A. Lycopene Supplemented Mediterranean Diet Ameliorates Experimental Autoimmune Encephalomyelitis (EAE) in Mice and Changes Intestinal Microbiome. J Neuroimmune Pharmacol 2025; 20:50. [PMID: 40323426 PMCID: PMC12052919 DOI: 10.1007/s11481-025-10212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
This study aimed to determine the effects of the Mediterranean diet (MD) and lycopene on the development of EAE and on inflammatory markers. In the 43-day study, 72 female C57BL/6 mice were randomly divided into eight groups according to whether they were EAE or naive (control) mice, fed a Western diet or a MD, and whether they received lycopene. During the study, mice were fed ad libitum, and lycopene groups were given 10 mg/kg/day lycopene per mouse every other day for 28 days in oral gavage. The mice were scored for EAE, sacrificed and their spleen, lymph nodes, and spinal cords were removed. We observed slightly delayed EAE onset in the MD-Lyc group compared to the others, and the EAE clinical scores were also lower than in the other groups. T-cell counts in the spleen and lymph nodes of the MD-Lyc group were significantly lower than in other groups. The production of IFN-γ and IL-22 was higher than in the other groups. IL-17 A cytokine produced in the spleen was lower in the MD-Lyc group than in the other groups. In addition, the highest myelination score was seen in the MD-Lyc group. MD-Lyc group also had a unique microbiome profile compared with the remaining groups. In summary, MD and lycopene administration positively impacted EAE scores and myelination. However, more comprehensive studies at the in vitro and in vivo levels are needed to reveal the effect of this intervention on cell numbers in the CNS.
Collapse
|
research-article |
1 |
|
25
|
Maldonado-Cárceles AB, Souter I, Li MC, Mitsunami M, Dimitriadis I, Ford JB, Mínguez-Alarcón L, Chavarro JE. Antioxidant Intake and Ovarian Reserve in Women Attending a Fertility Center. Nutrients 2025; 17:554. [PMID: 39940413 PMCID: PMC11820690 DOI: 10.3390/nu17030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study was to investigate the association between antioxidant intake and antral follicle count (AFC), a marker of ovarian reserve, in women attending a fertility clinic. METHODS We conducted an observational study with 567 women undergoing infertility evaluation at the Massachusetts General Hospital Fertility Center, who were enrolled in the Environment and Reproductive Health (EARTH) study. Participants filled out the lifestyle and health questionnaires and a validated food frequency questionnaire (FFQ) for assessing habitual dietary intake and underwent a transvaginal ultrasound to measure AFC. Intake of nutrients with direct antioxidant capacity (vitamin A, C, and E and carotenoids) and intake of antioxidant food sources were estimated from the FFQ. Adjusted Poisson regression models were fitted to assess the relationships between antioxidants and AFC while adjusting for potential confounders. Non-linearity was assessed with restricted cubic splines. RESULTS The median (interquartile range) age and AFC of participants were 35.0 (32.0-38.0) years and 13 (9-18), respectively. Our findings revealed a non-linear association between lycopene intake and AFC. There was a positive linear association with the highest AFC among women consuming approximately 6000 mcg/day of lycopene (p for non-linearity = 0.003). An inverse association was observed between retinol intake, predominantly from dairy foods, and AFC among women aged under 35 years (p-trend < 0.001 and 0.01, respectively). CONCLUSIONS Our findings suggest that lycopene intake might influence the ovarian reserve in fertility patients. The observed inverse association with retinol, if confirmed, may reflect biological mechanisms different from oxidative stress. The underlying mechanisms of these associations remain to be elucidated and warrant further investigation.
Collapse
|
Observational Study |
1 |
|