1
|
Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R, Franklin RJ, Rowitch DH. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 2011; 14:1009-16. [PMID: 21706018 PMCID: PMC3145042 DOI: 10.1038/nn.2855] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/03/2011] [Indexed: 12/12/2022]
Abstract
Permanent damage to white matter tracts, comprising axons and myelinating oligodendrocytes, is an important component of brain injuries of the newborn that cause cerebral palsy and cognitive disabilities, as well as multiple sclerosis in adults. However, regulatory factors relevant in human developmental myelin disorders and in myelin regeneration are unclear. We found that AXIN2 was expressed in immature oligodendrocyte progenitor cells (OLPs) in white matter lesions of human newborns with neonatal hypoxic-ischemic and gliotic brain damage, as well as in active multiple sclerosis lesions in adults. Axin2 is a target of Wnt transcriptional activation that negatively feeds back on the pathway, promoting β-catenin degradation. We found that Axin2 function was essential for normal kinetics of remyelination. The small molecule inhibitor XAV939, which targets the enzymatic activity of tankyrase, acted to stabilize Axin2 levels in OLPs from brain and spinal cord and accelerated their differentiation and myelination after hypoxic and demyelinating injury. Together, these findings indicate that Axin2 is an essential regulator of remyelination and that it might serve as a pharmacological checkpoint in this process.
Collapse
MESH Headings
- Adult
- Animals
- Animals, Newborn
- Axin Protein
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Brain Injuries/etiology
- Brain Injuries/metabolism
- Brain Injuries/therapy
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Cerebellum/drug effects
- Cerebellum/metabolism
- Cerebellum/ultrastructure
- Cerebral Cortex/cytology
- Corpus Callosum/drug effects
- Corpus Callosum/metabolism
- Cytoskeletal Proteins/deficiency
- Cytoskeletal Proteins/metabolism
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Heterocyclic Compounds, 3-Ring/pharmacology
- Heterocyclic Compounds, 3-Ring/therapeutic use
- Humans
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/therapy
- Infant, Newborn
- Ki-67 Antigen/metabolism
- Lysophosphatidylcholines/toxicity
- Male
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Multiple Sclerosis/complications
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Myelin Proteins/therapeutic use
- Myelin Sheath/drug effects
- Myelin Sheath/pathology
- Myelin Sheath/ultrastructure
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Oligodendrocyte Transcription Factor 2
- Oligodendroglia/drug effects
- Oligodendroglia/physiology
- Organ Culture Techniques
- Postmortem Changes
- Spinal Cord/drug effects
- Spinal Cord/physiology
- Stem Cells/drug effects
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
14 |
279 |
2
|
Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D, Dillenburg A, Borger E, Soong D, Richardson JC, Kuhlmann T, Williams A, Pollard JW, des Rieux A, Priller J, Miron VE. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat Neurosci 2019; 22:1046-1052. [PMID: 31182869 PMCID: PMC6597360 DOI: 10.1038/s41593-019-0418-z] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Failed regeneration of CNS myelin contributes to clinical decline in neuroinflammatory and neurodegenerative diseases, for which there is an unmet therapeutic need. Here we reveal that efficient remyelination requires death of proinflammatory microglia followed by repopulation to a pro-regenerative state. We propose that impaired microglia death and/or repopulation may underpin dysregulated microglia activation in neurological diseases, and we reveal therapeutic targets to promote white matter regeneration.
Collapse
|
research-article |
6 |
232 |
3
|
Shields SA, Gilson JM, Blakemore WF, Franklin RJ. Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 1999; 28:77-83. [PMID: 10498825 DOI: 10.1002/(sici)1098-1136(199910)28:1<77::aid-glia9>3.0.co;2-f] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Age is one of the many factors that influence remyelination following CNS demyelination, although it is not clear whether it is the extent or rate of remyelination that is affected. To resolve this issue we have compared remyelination in young and old adult rat CNS following gliotoxin-induced demyelination. Remyelination of areas of ethidium bromide-induced demyelination in the caudal cerebellar peduncle reached completion by 4 weeks in young adult rats (2 months) but was not complete until 9 weeks in old adult rats (9-12 months). We have also shown that remyelination of lysolecithin-induced demyelination in the spinal white matter of old adult rats (18 months) can be extensive, with longer survival times (8 weeks) than have previously been examined. Thus, it is the rate rather than the extent of remyelination that changes in the ageing CNS. These results have important implications for understanding the mechanisms of remyelination, indicating that remyelination need not occur rapidly for it to be extensive. The capacity for the process of remyelination to continue over many weeks must also be borne in mind when assessing remyelination-enhancement strategies either by transplantation or promotion of endogenous mechanisms.
Collapse
|
Comparative Study |
26 |
195 |
4
|
Hinks GL, Franklin RJ. Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-beta1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol Cell Neurosci 1999; 14:153-68. [PMID: 10532806 DOI: 10.1006/mcne.1999.0771] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although remyelination is a well-recognized regenerative process following both experimental and naturally occurring CNS demyelination, remarkably little is known about the molecules involved in its orchestration. In this study we have examined the mRNA expression of seven growth factors that influence oligodendrocyte lineage cells, during the remyelination of lysolecithin-induced demyelination in the rat spinal cord. These lesions involve rapid demyelination of axons, which undergo extensive remyelination between 10 and 28 days. The distribution and levels of expression of PDGF-A, IGF-I, CNTF, FGF-2, TGF-beta1, GGF-2, and NT-3 mRNAs were examined at 2, 5, 7, 10, 14, 21, and 28 days post-lesion induction, both within the lesion and within dorsal root ganglia whose axons transverse the lesion, by quantitative in situ hybridization using 35S-labeled oligonucleotide probes. large increases in IGF-I and TGF-beta1 mRNAs were evident within the spinal cord by 5 days. These levels peaked at 10 days at a time when new myelin sheaths appear and had declined by 28 days. Increases in FGF-2 and PDGF-A mRNAs were less intense and less widely distributed than those of IGF-I and TGF-1, but remained elevated for a longer duration. There were no changes in expression of CNTF, NT-3, or GGF-2 mRNAs within the lesioned cords; neither were ther changes in levels of expression of any growth factor mRNAs in the dorsal root ganglia. This work therefore indicates that some but not all members of the family of growth factors that affect the oligodendrocyte lineage are expressed during remyelination of demyelinated spinal cord axons and provides the data on which future studies on the specific roles of these factors in orchestrating this important regenerative process will be based.
Collapse
|
|
26 |
183 |
5
|
Guo Z, Ran Q, Roberts LJ, Zhou L, Richardson A, Sharan C, Wu D, Yang H. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free Radic Biol Med 2008; 44:343-52. [PMID: 18215741 PMCID: PMC2245803 DOI: 10.1016/j.freeradbiomed.2007.09.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/27/2007] [Accepted: 09/10/2007] [Indexed: 01/18/2023]
Abstract
Accumulation of oxidized lipids in the arterial wall contributes to atherosclerosis. Glutathione peroxidase-4 (GPx4) is a hydroperoxide scavenger that removes oxidative modifications from lipids such as free fatty acids, cholesterols, and phospholipids. Here, we set out to assess the effects of GPx4 overexpression on atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. The results revealed that atherosclerotic lesions in the aortic tree and aortic sinus of ApoE(-/-) mice overexpressing GPx4 (hGPx4Tg/ApoE(-/-)) were significantly smaller than those of ApoE(-/-) control mice. GPx4 overexpression also diminished signs of advanced lesions in the aortic sinus, as seen by a decreased occurrence of fibrous caps and acellular areas among hGPx4Tg/ApoE(-/-) animals. This delay of atherosclerosis in hGPx4Tg/ApoE(-/-) mice correlated with reduced aortic F(2)-isoprostane levels (R(2)=0.75, p<0.01). In addition, overexpression of GPx4 lessened atherogenic events induced by the oxidized lipids lysophosphatidylcholine and 7-ketocholesterol, including upregulated expression of adhesion molecules in endothelial cells and adhesion of monocytes to endothelial cells, as well as endothelial necrosis and apoptosis. These results suggest that overexpression of GPx4 inhibits the development of atherosclerosis by decreasing lipid peroxidation and inhibiting the sensitivity of vascular cells to oxidized lipids.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
140 |
6
|
Zambonin JL, Zhao C, Ohno N, Campbell GR, Engeham S, Ziabreva I, Schwarz N, Lee SE, Frischer JM, Turnbull DM, Trapp BD, Lassmann H, Franklin RJM, Mahad DJ. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain 2011; 134:1901-13. [PMID: 21705418 PMCID: PMC3122369 DOI: 10.1093/brain/awr110] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/26/2011] [Accepted: 03/29/2011] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Axons/metabolism
- Axons/pathology
- Axons/ultrastructure
- Brain/metabolism
- Brain/pathology
- Brain/ultrastructure
- Cells, Cultured
- Coculture Techniques
- Demyelinating Diseases/chemically induced
- Disease Models, Animal
- Ethidium/toxicity
- Female
- Ganglia, Spinal/drug effects
- HLA Antigens/metabolism
- Humans
- Leukocyte Common Antigens/metabolism
- Lysophosphatidylcholines/toxicity
- Male
- Microscopy, Electron, Transmission
- Middle Aged
- Mitochondria/drug effects
- Mitochondria/metabolism
- Multiple Sclerosis/pathology
- Myelin Basic Protein/metabolism
- Neurofilament Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Schwann Cells/drug effects
- Voltage-Dependent Anion Channels/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
14 |
120 |
7
|
Zhao C, Li WW, Franklin RJM. Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiol Aging 2006; 27:1298-307. [PMID: 16051398 DOI: 10.1016/j.neurobiolaging.2005.06.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/28/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
CNS remyelination occurs more rapidly in young adult rats than in old rats. Since the inflammatory response initiated by demyelination is an important trigger for remyelination, we address whether ageing changes in remyelination are associated with changes in the inflammatory response. Using a toxin model of demyelination, where the inflammatory response largely comprises macrophages, we show that there is a delay in both recruitment and activation of OX-42+ and macrophage scavenger receptor B+ macrophages following demyelination in older rats (10-13 months) compared to young rats (8-10 weeks). This difference is associated with a slower onset of increased expression of several chemokine mRNAs. However, many inflammatory cytokines have similar mRNA expression patterns, with the exception of IL-1beta, IL-6 and TNF-alpha, which have prolonged expression in the older animals. Differences in IL-1beta mRNA expression, a cytokine specifically implicated in CNS remyelination, are not reflected in differences in protein expression detected by immunocytochemistry. These data relate the age-associated delay in remyelination efficiency to changes in the macrophage and inflammatory mediator response to demyelination.
Collapse
|
|
19 |
115 |
8
|
Zhang H, Jarjour AA, Boyd A, Williams A. Central nervous system remyelination in culture--a tool for multiple sclerosis research. Exp Neurol 2011; 230:138-48. [PMID: 21515259 PMCID: PMC3117145 DOI: 10.1016/j.expneurol.2011.04.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/28/2011] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis is a demyelinating disease of the central nervous system which only affects humans. This makes it difficult to study at a molecular level, and to develop and test potential therapies that may change the course of the disease. The development of therapies to promote remyelination in multiple sclerosis is a key research aim, to both aid restoration of electrical impulse conduction in nerves and provide neuroprotection, reducing disability in patients. Testing a remyelination therapy in the many and various in vivo models of multiple sclerosis is expensive in terms of time, animals and money. We report the development and characterisation of an ex vivo slice culture system using mouse brain and spinal cord, allowing investigation of myelination, demyelination and remyelination, which can be used as an initial reliable screen to select the most promising remyelination strategies. We have automated the quantification of myelin to provide a high content and moderately-high-throughput screen for testing therapies for remyelination both by endogenous and exogenous means and as an invaluable way of studying the biology of remyelination.
Collapse
Key Words
- caspr, contactin-associated protein
- cns, central nervous system
- div, days in vitro
- eae, experimental allergic encephalitis
- lpc, lysophosphatidylcholine
- mr, magnetic resonance
- ms, multiple sclerosis
- mbp, myelin basic protein
- nfh, neurofilament
- opcs, oligodendrocyte precursor cells
- remyelination
- multiple sclerosis
- oligodendrocyte
- myelination
- demyelination
Collapse
|
research-article |
14 |
96 |
9
|
Hung ND, Sok DE, Kim MR. Prevention of 1-palmitoyl lysophosphatidylcholine-induced inflammation by polyunsaturated acyl lysophosphatidylcholine. Inflamm Res 2012; 61:473-83. [PMID: 22252240 DOI: 10.1007/s00011-012-0434-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine the inflammation induced by saturated acyl lysophosphatidylcholine (LPC) in vivo and to investigate whether it could be attenuated by the action of polyunsaturated acyl lysophosphatidylcholines (LPCs), which are known as anti-inflammatory lipid mediators. METHODS First, saturated acyl LPC was administered intraperitoneally (i.p.) to mice and the inflammatory profile was extensively characterized. Subsequently, the preventive effect of polyunsaturated acyl LPCs, i.p. administered 30 min after saturated acyl LPC, was evaluated by measuring indices of inflammation such as leukocyte migration, plasma leakage, and eicosanoid or cytokine formation by light microscopy, Evans blue dye as indicator, and enzyme-linked immunosorbent assay, respectively. RESULTS Saturated acyl LPCs as LPC16:0 (100 mg/kg, i.p.) proved to be an effective inflammation inducer which causes a significant increase in plasma leakage, leukocyte migration into peritoneum and elevation of pro-inflammatory mediators. Interestingly, LPC20:4 and LPC22:6 (50 and 150 μg/kg) significantly nullified LPC16:0-induced inflammation. The anti-inflammatory effects of LPC20:4 and LPC22:6 were related to down-regulation of leukocyte extravasation, plasma leakage, and formation of pro-inflammatory mediators (IL-5, IL-6, NO, 12-HETE and PGE(2)) stimulated by LPC16:0, and up-regulation of anti-inflammatory mediators (IL-4 and IL-10). CONCLUSION These results indicated that the pro-inflammatory activity of saturated acyl LPCs could be antagonized by the actions of polyunsaturated acyl LPCs, anti-inflammatory lipid mediators.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
95 |
10
|
Sherafat A, Pfeiffer F, Reiss AM, Wood WM, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun 2021; 12:2265. [PMID: 33859199 PMCID: PMC8050320 DOI: 10.1038/s41467-021-22532-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Nerve-glia (NG2) glia or oligodendrocyte precursor cells (OPCs) are distributed throughout the gray and white matter and generate myelinating cells. OPCs in white matter proliferate more than those in gray matter in response to platelet-derived growth factor AA (PDGF AA), despite similar levels of its alpha receptor (PDGFRα) on their surface. Here we show that the type 1 integral membrane protein neuropilin-1 (Nrp1) is expressed not on OPCs but on amoeboid and activated microglia in white but not gray matter in an age- and activity-dependent manner. Microglia-specific deletion of Nrp1 compromised developmental OPC proliferation in white matter as well as OPC expansion and subsequent myelin repair after acute demyelination. Exogenous Nrp1 increased PDGF AA-induced OPC proliferation and PDGFRα phosphorylation on dissociated OPCs, most prominently in the presence of suboptimum concentrations of PDGF AA. These findings uncover a mechanism of regulating oligodendrocyte lineage cell density that involves trans-activation of PDGFRα on OPCs via Nrp1 expressed by adjacent microglia.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
74 |
11
|
Smith KJ, McDonald WI. Spontaneous and evoked electrical discharges from a central demyelinating lesion. J Neurol Sci 1982; 55:39-47. [PMID: 6286890 DOI: 10.1016/0022-510x(82)90168-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recordings have been made from afferent fibres shown to traverse a focal demyelinating lesion induced in the dorsal columns of the cat by the direct micro-injection of lysophosphatidyl choline. Many fibres were spontaneously active, discharging with steady frequencies between 15 and 45 impulses per second or discharging in bursts, for many hours. Small deformations (less than 1 mm) of the spinal cord at the site of the lesion both increased the level of sustained activity, and transiently induced activity in fibres previously electrically silent. The spontaneous and mechanically-induced discharges were shown to proceed both rostrally and caudally from the lesion. The relationship between the experimental observations and the spontaneous and movement-induced sensations experienced by patients with demyelinating lesions of the central nervous system is discussed.
Collapse
|
|
43 |
64 |
12
|
Rong JX, Berman JW, Taubman MB, Fisher EA. Lysophosphatidylcholine stimulates monocyte chemoattractant protein-1 gene expression in rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2002; 22:1617-23. [PMID: 12377739 DOI: 10.1161/01.atv.0000035408.93749.71] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Monocyte chemoattractant protein (MCP)-1 is a proatherogenic factor that is responsible for approximately 60% of plaque macrophages in mouse models of atherosclerosis. We investigated whether lysophosphatidylcholine (LPC), enriched in oxidized low density lipoprotein, can modulate the expression of MCP-1 in arterial wall cells. METHODS AND RESULTS LPC induced a 3-fold increase in MCP-1 mRNA in rat vascular smooth muscle cells (VSMCs) in a time- and dose-dependent manner. Nuclear runon analysis showed that this increase was attributable to increased MCP-1 gene transcription. There was a 2-fold increase in MCP-1 protein in the conditioned media of cells treated with LPC. LPC-associated increases of MCP-1 mRNA and protein were similar to those produced by platelet-derived growth factor-BB, a known inducer of MCP-1. Analyses of the MCP-1 promoter in transiently transfected VSMCs indicated an LPC-responsive element(s) between base pairs -146 and -261 (relative to transcription initiation). Further studies suggested that LPC-induced MCP-1 expression partially involves mitogen-activated protein kinase/extracellular signal-regulated kinase, a tyrosine kinase(s), and (to a lesser extent) protein kinase C but not the activation of the platelet-derived growth factor receptor. CONCLUSIONS LPC stimulates MCP-1 expression at the transcriptional level in VSMCs, suggesting a molecular mechanism by which LPC contributes to the atherogenicity of oxidized low density lipoprotein.
Collapse
MESH Headings
- Animals
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Culture Media, Conditioned/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Lysophosphatidylcholines/pharmacology
- Lysophosphatidylcholines/toxicity
- Mitochondria/drug effects
- Mitogen-Activated Protein Kinases/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Protein-Tyrosine Kinases/physiology
- RNA, Messenger/biosynthesis
- Rats
- Receptors, Platelet-Derived Growth Factor/physiology
- Response Elements/drug effects
- Response Elements/genetics
- Response Elements/physiology
- Time Factors
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
|
|
23 |
61 |
13
|
Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB. Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Circ Res 1986; 59:416-26. [PMID: 3791582 DOI: 10.1161/01.res.59.4.416] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lysophosphoglycerides accumulate in ischemic myocardium and induce electrophysiologic alterations in normoxic tissue in vitro closely resembling those seen with ischemia in vivo. Delayed afterdepolarizations and triggered activity may be particularly important in the pathogenesis of arrhythmias in the ischemic heart. The present study was performed to determine whether lysophosphatidylcholine (LPC), at concentrations comparable to those present in ischemic myocardium, can induce delayed afterdepolarizations and/or triggered activity in normoxic canine Purkinje fibers. In the present study, as little as 75 microM LPC was found to induce delayed afterdepolarizations and as little as 100 microM LPC was found to induce delayed afterdepolarizations and triggered activity even at low cycle lengths. The amplitude of the induced delayed afterdepolarizations was enhanced by augmentation of the extracellular concentration of calcium (7 mM) or by exogenous epinephrine (10(-9) to 10(-6) M). The amplitude was decreased by verapamil (1 mg/l) or Mn++ (2.5 mM). Epinephrine at a concentration of 10(-6) M also initiated triggered activity in Purkinje fibers exposed to LPC (75 microM), a response blocked by l-propranolol (2 X 10(-7) M and 10(-6) M) but not by the alpha 1-adrenergic blocking agent BE-2254 (10(-6) M). Delayed afterdepolarizations induced by LPC (75 microM) and epinephrine (10(-6) M) persisted even in the presence of acidosis (pH 6.7) and hyperkalemia ([K+]o = 7 mM). Thus, delayed afterdepolarizations and triggered activity induced by LPC may contribute to the induction and/or maintenance of arrhythmias early after the onset of myocardial ischemia. However, because of the reversal of these effects after superfusion with media devoid of LPC, they may occur with ischemia in vivo but not be seen in tissue isolated from ischemic regions and evaluated in vitro.
Collapse
|
|
39 |
61 |
14
|
Jean I, Lavialle C, Barthelaix-Pouplard A, Fressinaud C. Neurotrophin-3 specifically increases mature oligodendrocyte population and enhances remyelination after chemical demyelination of adult rat CNS. Brain Res 2003; 972:110-8. [PMID: 12711083 DOI: 10.1016/s0006-8993(03)02510-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In human central nervous system (CNS) demyelinating diseases, spontaneous remyelination is often incomplete. Therefore, we have tested whether neutrotrophin-3 (NT-3) accelerates CNS myelin repair after a chemically-induced demyelination. One group of adult rats was injected in the corpus callosum (CC) with 1 microl of 1% lysophosphatidylcholine (LPC) and 1 microl of NT-3 (1 microg/microl), and 15 days after injury (D15) remyelination was compared to control rats (receiving 1 microl of LPC+1 microl of vehicle buffer of NT-3). The demyelinated volume decreased by 56% in NT-3-treated rats at D15, and immunohistochemistry showed an increase in mature MBP(+) oligodendrocytes (OL) (+66%) in treated animals (whereas less mature (CNP(+)) OL were unchanged). Since less than 3% axons degenerate in this model, and as astrocytic gliosis was not modified, these data suggest that NT-3 acts directly on cells of the OL lineage to enhance remyelination in vivo.
Collapse
|
Comparative Study |
22 |
53 |
15
|
Li F, Hui DY. Synthesis and secretion of the pancreatic-type carboxyl ester lipase by human endothelial cells. Biochem J 1998; 329 ( Pt 3):675-9. [PMID: 9445398 PMCID: PMC1219092 DOI: 10.1042/bj3290675] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human aortic extracts contain significant cholesteryl ester hydrolytic activity. The enzymic activity was shown to be activated by trihydroxylated bile salt, but not by dihydroxylated bile salt. Monospecific antibodies prepared against rat pancreatic carboxyl ester lipase (CEL, cholesterol esterase) immunoprecipitated cholesteryl ester hydrolytic activity from human aorta, demonstrating that the neutral CEL in aorta is highly similar to and probably identical with the pancreatic enzyme. Reverse transcriptase PCR amplification of mRNA from human aortic endothelial cells revealed de novo synthesis of the pancreatic-type CEL by these cells. Preincubating human aortic endothelial cells with oxidized or native low-density lipoprotein resulted in an 8- and 3-fold increase in CEL activity secreted into the culture medium respectively. A potential physiological role for the endothelial CEL was demonstrated by studies showing its ability to confer partial protection against the cytotoxic effects of lysophosphatidylcholine. The protective effect of CEL is related to its bile-salt-independent lysophospholipase activity. However, CEL hydrolysis of lysophosphatidylcholine can be inhibited by excess cholesterol. Taken together, these results indicate that pancreatic-type CEL is synthesized by cells lining the vessel wall. Moreover, vascular CEL may interact with cholesterol and oxidized lipoproteins to modulate the progression of atherosclerosis.
Collapse
|
research-article |
27 |
47 |
16
|
Tomita K, Kabashima A, Freeman BL, Bronk SF, Hirsova P, Ibrahim SH. Mixed Lineage Kinase 3 Mediates the Induction of CXCL10 by a STAT1-Dependent Mechanism During Hepatocyte Lipotoxicity. J Cell Biochem 2017; 118:3249-3259. [PMID: 28262979 PMCID: PMC5550329 DOI: 10.1002/jcb.25973] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/10/2023]
Abstract
Saturated fatty acids (SFA) and their toxic metabolites contribute to hepatocyte lipotoxicity in nonalcoholic steatohepatitis (NASH). We previously reported that hepatocytes, under lipotoxic stress, express the potent macrophage chemotactic ligand C-X-C motif chemokine 10 (CXCL10), and release CXCL10-enriched extracellular vesicles (EV) by a mixed lineage kinase (MLK) 3-dependent mechanism. In the current study, we sought to examine the signaling pathway responsible for CXCL10 induction during hepatocyte lipotoxicity. Here, we demonstrate a role for signal transducer and activator of transcription (STAT) 1 in regulating CXCL10 expression. Huh7 and HepG2 cells were treated with lysophosphatidylcholine (LPC), the toxic metabolite of the SFA palmitate. In LPC-treated hepatocytes, CXCL10 induction is mediated by a mitogen activated protein kinase (MAPK) signaling cascade consisting of a relay kinase module of MLK3, MKK3/6, and p38. P38 in turn induces STAT1 Ser727 phosphorylation and CXCL10 upregulation in hepatocytes, which is reduced by genetic or pharmacological inhibition of this MAPK signaling cascade. The binding and activity of STAT1 at the CXCL10 gene promoter were identified by chromatin immunoprecipitation and luciferase gene expression assays. Promoter activation was attenuated by MLK3/STAT1 inhibition or by deletion of the consensus STAT1 binding sites within the CXCL10 promoter. In lipotoxic hepatocytes, MLK3 activates a MAPK signaling cascade, resulting in the activating phosphorylation of STAT1, and CXCL10 transcriptional upregulation. Hence, this kinase relay module and/or STAT1 inhibition may serve as a therapeutic target to reduce CXCL10 release, thereby attenuating NASH pathogenesis. J. Cell. Biochem. 118: 3249-3259, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
39 |
17
|
Abstract
The direct toxicity of sodium deoxycholate (SDC) and lysophosphatidylcholine (LPC) to biological membranes was assessed by measurement of goldfish overturn time. When phosphatidylcholine (PC) was incorporated into the aqueous media, the toxicity of both SDC and LPC was reduced, as indicated by increased overturn time. Fish were also pretreated for various times in media containing (a) 1 mM SDC and (b) 1 mM SDC with 1 mM PC. Subsequent transfer to solution, 100 mg litre-1 quinalbarbitone sodium showed that reciprocal overturn times for fish treated using method (a) increased linearly with duration of pretreatment up to a limiting value, obtained after 20 min exposure; 40 min exposure to 1 mM SDC was directly toxic. Fish pretreated using regimen (b) survived longer when challenged with barbiturate, and the reciprocal overturn times were a linear function of time of pretreatment up to at least 40 min. PC also provided protection against membrane damage caused by the synthetic surfactant sodium dodecyl sulphate. Mixed micelle formation between PC and surfactant is thought to account for the protective effects. The results are of significance in the consideration of reflux hypothesis for the aetiology of gastric ulceration and also the possible formulation of drug delivery systems intended to enhance absorption whilst minimizing gastrointestinal damage.
Collapse
|
|
44 |
39 |
18
|
Song J, Liu K, Yi J, Zhu D, Liu G, Liu B. Luteolin inhibits lysophosphatidylcholine-induced apoptosis in endothelial cells by a calcium/mitocondrion/caspases-dependent pathway. PLANTA MEDICA 2010; 76:433-438. [PMID: 19830654 DOI: 10.1055/s-0029-1186197] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Luteolin, a naturally occurring polyphenol flavonoid, has demonstrated some beneficial modulation toward the endothelium. This study aims to investigate the effects of luteolin on lysophosphatidylcholine (LPC)-induced apoptosis, a key event in the pathogenesis of atherosclerosis, in endothelial cells. Luteolin reduced not only LPC-induced cell death but also lactate dehydrogenase (LDH) leakage. Luteolin inhibition of LPC-induced apoptosis in endothelial cells demonstrated its protection against the cytotoxicity of LPC. LPC-induced apoptosis is characterized by a calcium-dependent mitochondrial pathway, involving calcium influx, activation of calpains, cytochrome C release and caspases activation. Luteolin reduced calcium influx. It also inhibited calpains activation and prevented the release of cytochrome C from mitochondrion. The inhibition of cytochrome C release by luteolin blocked the activation of caspase-3 and thus prevented subsequent endothelial cell apoptosis. These results suggested that luteolin inhibits LPC-induced apoptosis in endothelial cells through the blockage of the calcium-dependent mitochondrial pathway.
Collapse
|
|
15 |
39 |
19
|
Waxman SG, Kocsis JD, Nitta KC. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum. Light-microscopic observations. J Neurol Sci 1979; 44:45-53. [PMID: 512691 DOI: 10.1016/0022-510x(79)90221-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The local application of lysophosphatidyl choline (LPC) by microinjection into the region of the corpus callosum of the rabbit produced demyelinating lesions. The lesions were assessed histologically using the Luxol fast blue myelin stain and the Holmes silver nitrate stain for the axis cylinders. Survival times for the animals ranged from 7 to 14 days. The center of the lesion was marked by infiltration of macrophages and necrosis, but the major area of the lesion was characterized by demyelination. By consideration of anatomical factors influencing LPC diffusion and of the appropriate placement of the injection, the entire vertical extent (about 0.5 mm) of the corpus callosum could be demyelinated with minimal amounts of necrosis. Since focal demyelination was possible in the fine caliber axons of the corpus callosum which are anatomically representative of many forebrain fiber systems, and since this fiber system is amenable to chronic physiological investigation, the corpus callosum may serve as an experimental model for morpho-physiological studies of mammalian central demyelinating pathways.
Collapse
|
|
46 |
38 |
20
|
Martin GP, el-Hariri LM, Marriott C. Bile Salt- and Lysophosphatidylcholine-induced Membrane Damage in Human Erythrocytes. J Pharm Pharmacol 2011; 44:646-50. [PMID: 1359087 DOI: 10.1111/j.2042-7158.1992.tb05486.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
The interaction of bile salts and lysophosphatidylcholine (LPC) with membranes has implications both in understanding the aetiology of a number of gastrointestinal disorders, including gastritis, gastric ulcers and colonic cancer, and in enhancing drug absorption by various epithelia. The membrane toxicity of nine bile salts (the sodium (S) salts of chenodeoxycholate (CDC), deoxycholate (DC) and cholate (C) and their glycine (G) and taurine (T) conjugates) and LPC was determined using erythrocyte haemolysis as a model parameter. Washed human erythrocytes were incubated for 15–60 min at 20°C with media buffered at pH 8, 7 and 6. Bile salt toxicity was shown to be a function of type, concentration, pH and contact time with the membrane. At pH 7 toxicity decreased in the order LPC > unconjugated dihydroxy salts (SDC and SCDC) > conjugated deoxycholates (SGDC and STDC) > conjugated chenodeoxycholates (SGCDC and STCDC) > unconjugated trihydroxy salt (SC) > conjugated trihydroxy salts (SGC and STC). Incubation with equimolar combinations of bile salts (SDC + SCDC; STCDC + SGDC; SDC + STDC) indicated that the resultant damage was an additive function of the damage induced by the individual bile salts.
Collapse
|
|
14 |
36 |
21
|
Fuly AL, Calil-Elias S, Martinez AMB, Melo PA, Guimarães JA. Myotoxicity induced by an acidic Asp-49 phospholipase A(2) isolated from Lachesis muta snake venom. Comparison with lysophosphatidylcholine. Int J Biochem Cell Biol 2003; 35:1470-81. [PMID: 12818242 DOI: 10.1016/s1357-2725(03)00129-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In a previous report we showed that Lachesis muta crude venom displays potent indirect hemolytic activity and myotoxicity when injected into mice. Then, a phospholipase A(2) (PLA(2)) (LM-PLA(2)-I) responsible for these activities was isolated. More recently, a catalytically active isoenzyme (LM-PLA(2)-II) with molecular mass of 18 kDa and isoeletric point at pH 5.4 was isolated from the same snake venom. LM-PLA(2)-II inhibited ADP- and collagen-induced platelet aggregation as well as induced a potent paw edema reaction in rats. Here we show that LM-PLA(2)-II induced myotoxic effects both in vitro characterized by an increase on the rate of creatine kinase (CK) release from isolated mice extensor digitorum longus (EDL) muscles and in vivo by increasing plasma CK activity of injected mice. Histological analysis showed an intense damage in muscle cells injected with LM-PLA(2)-II. It was also shown that exogenous lysophosphatidylcholine (lyso-pc) behaved as a typical myotoxin damaging muscle cells, producing myonecrosis characterized by local infiltration of inflammatory cells similarly to that observed for LM-PLA(2)-II. Hemorrhage and lethal effects were not observed neither with LM-PLA(2)-II nor lyso-pc. As previously observed for other biological activities, pretreatment of LM-PLA(2)-II with p-bromophenacyl bromide (p-BPB) or acetic anhydride abolished all the enzyme's actions. The data confirms that biological activities displayed by LM-PLA(2)-II, including the myotoxic effects reported here, are all dependent on its enzymatic activity where the product formed (lyso-pc) may play an important function on such myotoxicity.
Collapse
|
Comparative Study |
22 |
36 |
22
|
Furusho M, Roulois AJ, Franklin RJM, Bansal R. Fibroblast growth factor signaling in oligodendrocyte-lineage cells facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions. Glia 2015; 63:1714-28. [PMID: 25913734 PMCID: PMC4534313 DOI: 10.1002/glia.22838] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/29/2015] [Indexed: 11/10/2022]
Abstract
Remyelination is a potent regenerative process in demyelinating diseases, such as multiple sclerosis, the effective therapeutic promotion of which will fill an unmet clinical need. The development of proregenerative therapies requires the identification of key regulatory targets that are likely to be involved in the integration of multiple signaling mechanisms. Fibroblast growth factor (FGF) signaling system, which comprises multiple ligands and receptors, potentially provides one such target. Since the FGF/FGF receptor (FGFR) interactions are complex and regulate multiple diverse functions of oligodendrocyte lineage cells, it is difficult to predict their overall therapeutic potential in the regeneration of oligodendrocytes and myelin. Therefore, to assess the integrated effects of FGFR signaling on this process, we simultaneously inactivated both FGFR1 and FGFR2 in oligodendrocytes and their precursors using two Cre-driver mouse lines. Acute and chronic cuprizone-induced or lysolecithin-induced demyelination was established in Fgfr1/Fgfr2 double knockout mice (dKO). We found that in the acute cuprizone model, there was normal differentiation of oligodendrocytes and recovery of myelin in the corpus callosum of both control and dKO mice. Similarly, in the spinal cord, lysolecithin-induced demyelinated lesions regenerated similarly in the dKO and control mice. In contrast, in the chronic cuprizone model, fewer differentiated oligodendrocytes and less efficient myelin recovery were observed in the dKO compared to control mice. These data suggest that while cell-autonomous FGF signaling is redundant during recovery of acute demyelinated lesions, it facilitates regenerative processes in chronic demyelination. Thus, FGF-based therapies have potential value in stimulating oligodendrocyte and myelin regeneration in late-stage disease.
Collapse
MESH Headings
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism
- Animals
- Animals, Newborn
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Lineage/drug effects
- Cell Lineage/genetics
- Cells, Cultured
- Chelating Agents/toxicity
- Cuprizone/toxicity
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/genetics
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/physiology
- Lysophosphatidylcholines/toxicity
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Spinal Cord/pathology
Collapse
|
Research Support, N.I.H., Extramural |
10 |
36 |
23
|
Kucharova K, Stallcup WB. NG2-proteoglycan-dependent contributions of oligodendrocyte progenitors and myeloid cells to myelin damage and repair. J Neuroinflammation 2015; 12:161. [PMID: 26338007 PMCID: PMC4559177 DOI: 10.1186/s12974-015-0385-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The NG2 proteoglycan is expressed by several cell types in demyelinated lesions and has important effects on the biology of these cells. Here we determine the cell-type-specific roles of NG2 in the oligodendrocyte progenitor cell (OPC) and myeloid cell contributions to demyelination and remyelination. METHODS We have used Cre-Lox technology to dissect the cell-type-specific contributions of NG2 to myelin damage and repair. Demyelination is induced by microinjection of 1 % lysolecithin into the spinal cord white matter of control, OPC-specific NG2-null (OPC-NG2ko), and myeloid-specific NG2-null (My-NG2ko) mice. The status of OPCs, myeloid cells, axons, and myelin is assessed by light, immunofluorescence, confocal, and electron microscopy. RESULTS In OPC-NG2ko mice 1 week after lysolecithin injection, the OPC mitotic index is reduced by 40 %, resulting in 25 % fewer OPCs at 1 week and a 28 % decrease in mature oligodendrocytes at 6 weeks post-injury. The initial demyelinated lesion size is not affected in OPC-NG2ko mice, but lesion repair is delayed by reduced production of oligodendrocytes. In contrast, both the initial extent of demyelination and the kinetics of lesion repair are decreased in My-NG2ko mice. Surprisingly, the OPC mitotic index at 1 week post-injury is also reduced (by 48 %) in My-NG2ko mice, leading to a 35 % decrease in OPCs at 1 week and a subsequent 34 % reduction in mature oligodendrocytes at 6 weeks post-injury. Clearance of myelin debris is also reduced by 40 % in My-NG2ko mice. Deficits in myelination detected by immunostaining for myelin basic protein are confirmed by toluidine blue staining and by electron microscopy. In addition to reduced myelin repair, fewer axons are found in 6-week lesions in both OPC-NG2ko and My-NG2ko mice, emphasizing the importance of myelination for neuron survival. CONCLUSIONS Reduced generation of OPCs and oligodendrocytes in OPC-NG2ko mice correlates with reduced myelin repair. Diminished demyelination in My-NG2ko mice may stem from a reduction (approximately 70 %) in myeloid cell recruitment to lesions. Reduced macrophage/microglia numbers may then result in decreased myelin repair via diminished clearance of myelin debris and reduced stimulatory effects on OPCs.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
36 |
24
|
Jiang DJ, Jiang JL, Tan GS, Du YH, Xu KP, Li YJ. Protective effects of daviditin A against endothelial damage induced by lysophosphatidylcholine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:600-6. [PMID: 12750878 DOI: 10.1007/s00210-003-0756-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Accepted: 03/31/2003] [Indexed: 10/25/2022]
Abstract
Previous investigations have indicated that endogenous inhibitors of nitric oxide synthase (NOS) such as asymmetric dimethylarginine (ADMA) may play an important role in endothelium dysfunction, and some antioxidant drugs improve endothelium function via reduction of ADMA level. The present study examined the antioxidation and endothelial protection of daviditin A, a xanthone compound. Daviditin A significantly inhibited Cu(2+)-induced low-density lipoprotein (LDL) oxidation (EC50: 38.7 microM) and scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (EC50: 57.5 microM). Vasodilator responses to acetylcholine in rings of the isolated thoracic aorta were impaired in the presence of lysophosphatidylcholine (LPC)(5 mg/l). Daviditin A (10 or 30 microM) significantly attenuated inhibition by LPC of endothelium-dependent relaxation. Incubation of ECV304 cells with LPC (5 mg/l) for 24 h markedly elevated lactate dehydrogenase (LDH) activity and the levels of malondialdehyde (MDA) and ADMA, and decreased the content of nitric oxide (NO) and the activity of dimethylarginine dimethylaminohydrolase (DDAH). Daviditin A (1, 3 or 10 microM) significantly attenuated the increased release of LDH, increased content of MDA, and decreased level of NO induced by LPC. Daviditin A (3 or 10 microM) significantly inhibited the increased concentration of ADMA. Daviditin A (10 microM) significantly attenuated the decreased activity of DDAH. The present results suggest that daviditin A preserves endothelial dysfunction elicited by LPC, and the protective effect of daviditin A on the endothelium is related to reduction of ADMA concentration.
Collapse
|
|
22 |
34 |
25
|
Kalakh S, Mouihate A. Enhanced remyelination during late pregnancy: involvement of the GABAergic system. Sci Rep 2019; 9:7728. [PMID: 31118452 PMCID: PMC6531481 DOI: 10.1038/s41598-019-44050-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
Pregnant women with MS experience fewer relapses, especially during the third trimester. In this study, we explore the cellular and molecular events that bring about the protective effect of late pregnancy on the course of de/remyelination in rats. Using cellular, molecular, and ultrastructural methods, we explored remyelination in response to a focal demyelination in the corpus callosum of late pregnant, virgin, and postpartum rats. We further explored the role of GABAA receptor (GABAAR) in the promyelinating effect observed during late pregnancy. Remyelination in response to a gliotoxin-induced demyelination in the corpus callosum was enhanced in late pregnant rats when compared to that seen in virgin and postpartum rats. This pregnancy-associated promyelinating effect was lost when either the GABAAR was blocked or when 5α-reductase, the rate limiting enzyme for the endogenous GABAAR activator allopregnanolone, was inhibited. Taken together, these data suggest that the pregnancy-associated pro-myelination operates, at least in part, through a GABAergic activated system.
Collapse
|
Comparative Study |
6 |
33 |