1
|
Abstract
1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a potent neurotoxin extensively used to model Parkinson's disease (PD). A cascade of deleterous events, in which mitochondria play a pivotal role, drives MPTP neurotoxicity. How mitochondria are affected by MPTP and how their defect contributes to the demise of dopaminergic neurons in this model of PD are discussed in this review.
Collapse
|
Review |
20 |
212 |
2
|
Wichmann T, DeLong MR. Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci 2003; 991:199-213. [PMID: 12846988 DOI: 10.1111/j.1749-6632.2003.tb07477.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The striatum is viewed as the principal input structure of the basal ganglia, while the internal pallidal segment (GPi) and the substantia nigra pars reticulata (SNr) are output structures. Input and output structures are linked via a monosynaptic "direct" pathway and a polysynaptic "indirect" pathway involving the external pallidal segment (GPe) and the subthalamic nucleus (STN). According to current schemes, striatal dopamine (DA) enhances transmission along the direct pathway (via D1 receptors), and reduces transmission over the indirect pathway (via D2 receptors). DA also acts on receptors in GPe, GPi, SNr, and STN. Electrophysiologic and other studies in primates rendered parkinsonian by treatment with the dopaminergic neurotoxin MPTP have demonstrated a reduction of neuronal activity of GPe and an increase of neuronal discharge in STN, GPi. and SNr. These findings are compatible with the view that striatal DA loss results in increased activity over the indirect pathway. Prominent bursting, oscillatory discharge patterns, and increased synchronization of neighboring neurons are found throughout the basal ganglia. These may result from changes in the activity of local circuits (e.g., the GPe-STN "pacemaker") or from more global abnormalities of the basal ganglia-thalamocortical network. These findings have been replicated in human patients undergoing microelectrode-guided stereotactic procedures targeted at GPi or STN. PET studies in patients with Parkinson's disease have lent further support to the proposed circuit abnormalities. The current models of basal ganglia function have recently been criticized. For instance, the strict separation of direct and indirect pathways and the segregation of D1 and D2 receptors have been questioned, and the almost complete absence of motor side effects of pallidal or thalamic lesions in human patients and animals is inconsistent. These results suggest that changes in discharge patterns and synchronization between basal ganglia neurons, abnormal network interactions, and compensatory mechanisms are at least as important in the pathophysiology of parkinsonism as changes in discharge rates in individual basal ganglia nuclei. Lesions of GPi or STN are effective in treating parkinsonism, because they reduce or abolish abnormal basal ganglia output, enabling remaining circuits to function more normally.
Collapse
|
Review |
22 |
178 |
3
|
Miklossy J, Doudet DD, Schwab C, Yu S, McGeer EG, McGeer PL. Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol 2006; 197:275-83. [PMID: 16336966 DOI: 10.1016/j.expneurol.2005.10.034] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/25/2005] [Accepted: 10/17/2005] [Indexed: 11/22/2022]
Abstract
It has been established that neuroinflammation is present in the substantia nigra (SN) of Parkinson disease (PD) cases but the factors responsible are as yet unknown. One contributing protein may be the intercellular adhesion molecule-1 (ICAM-1, CD54). ICAM-1 with its counter receptor, the lymphocyte function-associated antigen 1 (LFA-1) is known to play a key role in inflammatory processes and in T-cell mediated host defense mechanisms. We detected large numbers of ICAM-1-positive reactive astrocytes in the SN of a series of 14 patients with neuropathologically confirmed PD, including 3 of familial origin, compared with 11 age-matched controls. In PD SN, these ICAM-1-positive reactive astrocytes were particularly concentrated around many residual neurons in areas of heavy neuronal loss and extracellular melanin accumulation. LFA-1-positive reactive microglia gathered in areas of intense ICAM-1 expression, and LFA-1-positive leukocytes were identified infiltrating the tissue. Double immunostaining for ICAM-1 and LFA-1 revealed aggregates of reactive microglia embedded in areas of diffuse ICAM-1. Leukocyte counts were 5 fold higher in PD SN compared to controls (P < 0.001). Similar over-expression of ICAM-1 was found in monkeys that had been exposed to MPTP from 5.5 to 14 years previously compared with control monkeys. The presence of ICAM-1-positive reactive astrocytes in Parkinson disease and MPTP-treated monkeys is indicative of a sustained inflammatory process and suggests that antiinflammatory agents may have a place in PD therapy.
Collapse
|
|
19 |
171 |
4
|
Bartus RT, Herzog CD, Chu Y, Wilson A, Brown L, Siffert J, Johnson EM, Olanow CW, Mufson EJ, Kordower JH. Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains. Mov Disord 2011; 26:27-36. [PMID: 21322017 PMCID: PMC6333467 DOI: 10.1002/mds.23442] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/11/2010] [Accepted: 08/30/2010] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AAV2-neurturin (CERE-120) is designed to deliver the neurotrophic-factor, neurturin, to the striatum to restore and protect degenerating nigrostriatal neurons in Parkinson's disease (PD). A common hypothesis is that following expression in the striatum, neurotrophic-factors like neurturin (NRTN) will be transported from degenerating terminals to their cell bodies in the substantia nigra pars compacta (SNc). METHODS We tested this concept using immunohistochemistry, comparing the bioactivity of AAV2-neurturin in brains of PD patients versus those of nonhuman primates similarly treated. RESULTS NRTN-immunostaining in the targeted striatum was seen in all PD cases (mean putaminal coverage: ∼15% by volume); comparable expression was observed in young, aged, and parkinsonian monkeys. In the SNc cell bodies, however, only rare evidence of neurturin was seen in PD, while ample evidence of intense nigral-NRTN was observed in all monkeys. NRTN-expression was associated with occasional, sparse TH-induction in the striatum of PD, but nothing apparent in the SNc. In primates, NRTN produced robust TH-induction throughout the nigrostriatal neurons. DISCUSSION These data provide the first evidence that gene therapy can increase expression of a neurotrophic-factor deep in the PD brain and that clear but modest enhancement of degenerating neurons can be induced. They also provide important insight regarding deficiencies in the status of nigrostriatal neurons in advanced PD, suggesting that serious axon-transport deficits reduced the bioactivity of AAV2-NRTN by limiting the protein exposed to the cell body. Thus, future efforts using neurotrophic-factors to treat neurodegenerative diseases will need to target both the terminal fields and the cell bodies of degenerating neurons to assure maximal benefit is achieved.
Collapse
|
Comparative Study |
14 |
133 |
5
|
Shan X, Chi L, Bishop M, Luo C, Lien L, Zhang Z, Liu R. Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease-like mice. Stem Cells 2006; 24:1280-7. [PMID: 16424396 PMCID: PMC1840319 DOI: 10.1634/stemcells.2005-0487] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research reports on de novo neurogenesis, particularly dopaminergic (DA) neurogenesis in the adult mammalian substantia nigra (SN), remain very controversial. For this reason, we used the nestin second intron enhancer-controlled LacZ reporter transgenic mouse model coupled with the 1-methyl-4-phyenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion system to investigate whether there are neurogenesis and DA neurogenesis in the SN of the adult normal and Parkinson's disease (PD)-like mice. First, we demonstrated the presence of neural progenitor cells (NPCs), basal levels of neurogenesis, and DA neurogenesis in the normal adult mouse SN. Second, we showed that there is not only a significant increase in the number of NPCs but also a dramatic increase of neurogenesis from the NPCs in the SN and the midline region adjacent to the SN of the PD-like mice compared with that of normal controls. More importantly, we also demonstrated that there is an increase of DA neurogenesis in the SN of the MPTP-lesioned mice. Third, we showed that the increased DA neurogenesis in the MPTP-lesioned mice was derived from the NPCs and 5-bromodeoxyuridine-positive cells, suggesting that multiple stem cell lineages may contribute to the enhanced neurogenesis in the adult SN. Taken together, these results establish that there are basal levels, albeit low, and increased levels of de novo neurogenesis and DA neurogenesis in the SN of the adult normal and PD-like mice, respectively. The increased NPCs in the MPTP-lesioned mice further suggest that experimental approaches to promote de novo neurogenesis may provide an effective therapy for PD by functional replacement of degenerated DA neurons.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
114 |
6
|
Tillerson JL, Miller GW. Grid performance test to measure behavioral impairment in the MPTP-treated-mouse model of parkinsonism. J Neurosci Methods 2003; 123:189-200. [PMID: 12606067 DOI: 10.1016/s0165-0270(02)00360-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Behavioral impairments in mice following administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) require large depletions in striatal dopamine content and are often transient. In this paper, we describe a simple and inexpensive test that measures long-term behavioral deficits in mice treated with moderate doses of MPTP. These measures are significantly correlated with the loss of striatal dopamine and immunoreactivity of the dopamine transporter, vesicular monoamine transporter and tyrosine hydroxylase. In addition, behavioral impairments on the measures were reversed following L-DOPA administration. Employment of this test will allow for more efficacious use of mice in PD research, as well as provide more sensitive measures of behavioral improvement following potential therapeutic or neuroprotective interventions.
Collapse
|
Comparative Study |
22 |
104 |
7
|
Battaglia G, Busceti CL, Molinaro G, Biagioni F, Storto M, Fornai F, Nicoletti F, Bruno V. Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci 2004; 24:828-35. [PMID: 14749427 PMCID: PMC6729818 DOI: 10.1523/jneurosci.3831-03.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We combined the use of knock-out mice and subtype-selective antagonists [2-methyl-6-(phenylethynyl)pyridine (MPEP) and (E)-2-methyl-6-(2-phenylethenyl)-pyridine (SIB1893)] to examine whether endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the pathophysiology of nigro-striatal damage in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. High doses of MPTP (four injections of 20 mg/kg, i.p., every 2 hr) induced a high mortality rate and a nearly total degeneration of the nigro-striatal pathway in wild-type mice. mGlu5 knock-out mice were less sensitive to MPTP toxicity, as shown by a higher survival and a milder nigro-striatal damage. Protection against MPTP (80 mg/kg) toxicity was also observed after MPEP injections (four injections of 5 mg/kg, i.p., 30 min before each MPTP injection). MPEP treatment did not further increase neuroprotection against 80 mg/kg of MPTP in mGlu5 knock-out mice, indicating that the drug acted by inhibiting mGlu5 receptors. In wild-type mice, MPEP was also neuroprotective when challenged against lower doses of MPTP (either 30 mg/kg, single injection, or four of 10 mg/kg injections). The action of MPEP was mimicked by SIB1893 but not by the mGlu1 receptor antagonist 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester. MPEP did not change the kinetics of 1-methyl-4-phenylpyridinium ion formation in the striatum of mice injected with MPTP. We conclude that mGlu5 receptors act as amplifiers of MPTP toxicity and that mGlu5 receptor antagonists may limit the extent of nigro-striatal damage in experimental models of parkinsonism.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenylpyridinium/metabolism
- 1-Methyl-4-phenylpyridinium/pharmacokinetics
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Animals
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Disease Models, Animal
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Antagonists/pharmacology
- Homovanillic Acid/metabolism
- MPTP Poisoning/chemically induced
- MPTP Poisoning/pathology
- MPTP Poisoning/prevention & control
- Mice
- Mice, Knockout
- Neuroprotective Agents/pharmacology
- Pyridines/pharmacology
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Substantia Nigra/pathology
- Survival Rate
- Synaptosomes/metabolism
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
99 |
8
|
Smith LA, Jackson MJ, Al-Barghouthy G, Rose S, Kuoppamaki M, Olanow W, Jenner P. Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naïve primates. Mov Disord 2004; 20:306-14. [PMID: 15490461 DOI: 10.1002/mds.20317] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-acting dopamine agonist drugs induce a lower incidence of dyskinesia in MPTP-treated primates and patients with Parkinson's disease compared to pulsatile treatment with levodopa, supporting the concept of continuous dopaminergic stimulation as a means of dyskinesia avoidance. We examined the effects of L-dopa administered with or without the COMT inhibitor entacapone on dyskinesia induction in previously untreated MPTP-treated common marmosets. Administration of L-dopa (12.5 mg/kg p.o.) plus carbidopa twice daily produced fluctuating improvement in motor behavior coupled with dyskinesia. Coadministration with entacapone produced similar patterns of motor improvement and dyskinesia that were not different from that produced by L-dopa alone. Treatment with L-dopa (6.25 mg/kg p.o.) plus carbidopa four times daily reversed motor disability and induced dyskinesia in a manner that was not different from the twice-daily treatment regimens. However, coadministration with entacapone produced more continuous improvement in locomotor activity with less dyskinesia than animals treated with L-dopa four times daily alone. These data support the notion that pulsatile stimulation contributes to the development of dyskinesia and suggests that more frequent dosing of L-dopa plus entacapone may be a useful treatment strategy for patients in the early stages of Parkinson's disease.
Collapse
|
|
21 |
98 |
9
|
Wang H, Shimoji M, Yu SW, Dawson TM, Dawson VL. Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. Ann N Y Acad Sci 2003; 991:132-9. [PMID: 12846982 DOI: 10.1111/j.1749-6632.2003.tb07471.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental intoxication models are used to study the more common sporadic form of Parkinson's disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) animal models of PD provide a valuable and predictive tool to probe the molecular mechanisms of dopamine neuronal cell death in PD. MPTP is a powerful neurotoxin that induces neuronal degeneration in the substantia nigra pars compacta and produces PD-like symptoms in several mammalian species tested, a feat not yet accomplished in genetically engineered mice expressing human genetic mutations. The mechanisms of MPTP-induced neurotoxicity are not yet fully understood but involve activation of N-methyl-D-aspartate (NMDA) receptors by glutamate, production of NO by nNOS and iNOS, oxidative injury to DNA, and activation of the DNA damage-sensing enzyme poly (ADP-ribose) polymerase (PARP). Recent experiments indicate that translocation of a mitochondrial protein apoptosis inducing factor (AIF) from mitochondria to the nucleus depends on PARP activation and plays an important role in excitotoxicity-induced cell death. This article briefly reviews the experimental findings regarding excitotoxicity, PARP activation, and AIF translocation in MPTP toxicity and dopaminergic neuronal cell death.
Collapse
|
Review |
22 |
94 |
10
|
Samadi P, Grégoire L, Rouillard C, Bédard PJ, Di Paolo T, Lévesque D. Docosahexaenoic acid reduces levodopa‐induced dyskinesias in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine monkeys. Ann Neurol 2006; 59:282-8. [PMID: 16437566 DOI: 10.1002/ana.20738] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The objective of the present study was to investigate the effect of docosahexaenoic acid (DHA), a polyunsaturated fatty acid (omega-3), on levodopa-induced dyskinesias (LIDs) in parkinsonian 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. METHODS We explored the effect of DHA in two paradigms. First, a group of MPTP monkeys was primed with levodopa for several months before introducing DHA. A second group of MPTP monkeys (de novo) was exposed to DHA before levodopa therapy. RESULTS DHA administration reduced LIDs in both paradigms without alteration of the anti-parkinsonian effect of levodopa indicating that DHA can reduce the severity or delay the development of LIDs in a nonhuman primate model of Parkinson's disease. INTERPRETATION These results suggest that DHA can reduce the severity or delay the development of LIDs in a nonhuman primate model of Parkinson's disease. DHA may represent a new approach to improve the quality of life of Parkinson's disease patients.
Collapse
|
|
19 |
82 |
11
|
Zeng XS, Jia JJ, Kwon Y, Wang SD, Bai J. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radic Biol Med 2014; 67:10-8. [PMID: 24140863 DOI: 10.1016/j.freeradbiomed.2013.10.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported that thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed that 1-methyl-4-phenylpyridinium ion (MPP(+)) induced ER stress by activating glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in PC12 cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of the above molecules induced by MPP(+). In contrast, overexpression of Trx-1 attenuated the ER stress and repressed the expression of the above molecules induced by MPP(+). More importantly, the overexpression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of these molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of endoplasmic reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation of GRP78, IRE1α, TRAF2, JNK, caspase-12, and CHOP.
Collapse
|
|
11 |
81 |
12
|
Richardson JR, Caudle WM, Guillot TS, Watson JL, Nakamaru-Ogiso E, Seo BB, Sherer TB, Greenamyre JT, Yagi T, Matsuno-Yagi A, Miller GW. Obligatory Role for Complex I Inhibition in the Dopaminergic Neurotoxicity of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci 2006; 95:196-204. [PMID: 17038483 DOI: 10.1093/toxsci/kfl133] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice and nonhuman primates causes a parkinsonian disorder characterized by a loss of dopamine-producing neurons in the substantia nigra and corresponding motor deficits. MPTP has been proposed to exert its neurotoxic effects through a variety of mechanisms, including inhibition of complex I of the mitochondrial respiratory chain, displacement of dopamine from vesicular stores, and formation of reactive oxygen species from mitochondrial or cytosolic sources. However, the mechanism of MPTP-induced neurotoxicity is still a matter of debate. Recently, we reported that the yeast single-subunit nicotinamide adenine dinucleotide (reduced) dehydrogenase (NDI1) is resistant to rotenone, a complex I inhibitor that produces a parkinsonian syndrome in rats, and that overexpression of NDI1 in SK-N-MC cells prevents the toxicity of rotenone. In this study, we used viral-mediated overexpression of NDI1 in SK-N-MC cells and animals to determine the relative contribution of complex I inhibition in the toxicity of MPTP. In cell culture, NDI1 overexpression abolished the toxicity of 1-methyl-4-phenylpyridinium, the active metabolite of MPTP. Overexpression of NDI1 through stereotactic administration of a viral vector harboring the NDI1 gene into the substantia nigra protected mice from both the neurochemical and behavioral deficits elicited by MPTP. These data identify inhibition of complex I as a requirement for dopaminergic neurodegeneration and subsequent behavioral deficits produced by MPTP. Furthermore, combined with reports of a complex I defect in Parkinson's disease (PD) patients, the present study affirms the utility of MPTP in understanding the molecular mechanisms underlying dopaminergic neurodegeneration in PD.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- Animals
- Behavior, Animal
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cell Death/drug effects
- Cell Line, Tumor
- Dependovirus/genetics
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Electron Transport Complex I/antagonists & inhibitors
- Electron Transport Complex I/metabolism
- Genetic Therapy
- Genetic Vectors
- Humans
- MPTP Poisoning/chemically induced
- MPTP Poisoning/metabolism
- MPTP Poisoning/pathology
- MPTP Poisoning/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Motor Activity/drug effects
- Motor Skills Disorders/chemically induced
- Motor Skills Disorders/metabolism
- Motor Skills Disorders/pathology
- Motor Skills Disorders/prevention & control
- NADH Dehydrogenase/biosynthesis
- NADH Dehydrogenase/genetics
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Transfection
Collapse
|
|
19 |
76 |
13
|
McCormack AL, Mak SK, Shenasa M, Langston WJ, Forno LS, Di Monte DA. Pathologic modifications of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated squirrel monkeys. J Neuropathol Exp Neurol 2008; 67:793-802. [PMID: 18648323 PMCID: PMC2745435 DOI: 10.1097/nen.0b013e318180f0bd] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
alpha-Synuclein expression is increased in dopaminergic neurons challenged by toxic insults. Here, we assessed whether this upregulation is accompanied by pathologic accumulation of alpha-synuclein and protein modifications (i.e. nitration, phosphorylation, and aggregation) that are typically observed in Parkinson disease and in other synucleinopathies. A single injection of the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to squirrel monkeys caused a buildup of alpha-synuclein but not of beta-synuclein or synaptophysin within nigral dopaminergic cell bodies. Immunohistochemistry and immunoelectron microscopy also revealed large numbers of dystrophic axons labeled with alpha-synuclein. Antibodies that recognize nitrated and phosphorylated (at serine 129) alpha-synuclein stained neuronal cell bodies and dystrophic axons in the midbrain of MPTP-treated animals. After toxicant exposure, alpha-synuclein deposition occurred at the level of neuronal axons in which amorphous protein aggregates were observed by immunoelectron microscopy. In a subset of these axons, immunoreactivity for alpha-synuclein was still evident after tissue digestion with proteinase K, further indicating the accumulation of insoluble protein. These data indicate that toxic injury can induce alpha-synuclein modifications that have been implicated in the pathogenesis of human synucleinopathies. The findings are also consistent with a pattern of evolution of alpha-synuclein pathology that may begin with the accumulation and aggregation of the protein within damaged axons.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
63 |
14
|
Iravani MM, Haddon CO, Cooper JM, Jenner P, Schapira AH. Pramipexole protects against MPTP toxicity in non-human primates. J Neurochem 2006; 96:1315-21. [PMID: 16464239 DOI: 10.1111/j.1471-4159.2005.03625.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neurotoxin MPTP induces nigral dopaminergic cell death in primates and produces a partial model of Parkinson's disease (PD). Pramipexole is a D2/D3 dopamine receptor agonist used in the symptomatic treatment of PD, and which also protects neuronal cells against dopaminergic toxins in vitro. We now demonstrate that pramipexole partially prevents MPTP toxicity in vivo in a primate species. Common marmosets were repeatedly treated with pramipexole either before, coincidentally with, or after low-dose MPTP treatment designed to induce a partial lesion of the substantia nigra. Animals pretreated with pramipexole had a significantly greater number of surviving tyrosine hydroxylase (TH) positive neurones in the pars compacta of the substantia nigra. Pramipexole pretreatment also prevented degeneration of striatal dopamine terminals. Treatment with pramipexole concurrently with MPTP or following MPTP did not prevent TH-positive cell loss. Pramipexole pretreatment appears to induce adaptive changes that protect against dopaminergic cell loss in primates.
Collapse
|
|
19 |
62 |
15
|
Kreisler A, Gelé P, Wiart JF, Lhermitte M, Destée A, Bordet R. Lipid-lowering drugs in the MPTP mouse model of Parkinson's disease: fenofibrate has a neuroprotective effect, whereas bezafibrate and HMG-CoA reductase inhibitors do not. Brain Res 2007; 1135:77-84. [PMID: 17196944 DOI: 10.1016/j.brainres.2006.12.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 11/20/2022]
Abstract
We tested the ability of simvastatin, atorvastatin, fenofibrate and bezafibrate (two synthetic peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonists) to prevent dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Tyrosine hydroxylase (TH) immunochemistry was performed 8 days after acute MPTP intoxication. When orally administered for the week prior to intoxication and a week thereafter, fenofibrate prevented the MPTP-induced dopaminergic cell loss in the substantia nigra pars compacta (SNpc) and attenuated the loss of tyrosine hydroxylase immunoreactivity in the striatum. The dosage of 1-methyl-4-phenyl pyridinium (MPP+) in the striatum by high-performance liquid chromatography indicated that fenofibrate did not affect MPTP metabolism. Bezafibrate had no effect and, strikingly, simvastatin and atorvastatin had a negative effect. We also demonstrated the presence of PPAR-alpha in the dopaminergic neurons of the murine substantia nigra. Our data suggest that PPAR-alpha activation by fenofibrate could have a neuroprotective effect in PD through inhibition of inflammation, oxidative stress and/or apoptosis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
61 |
16
|
Matarredona ER, Santiago M, Venero JL, Cano J, Machado A. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem 2001; 76:351-60. [PMID: 11208898 DOI: 10.1046/j.1471-4159.2001.00056.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have studied the in vivo effect of the selective agonist for group II metabotropic glutamate receptors (2S, 2'R, 3'R)-2-(2'3'-dicarboxycyclopropyl)glycine (DCG-IV) against MPP+-induced toxicity on rat striatal dopaminergic nerve terminals by using both microdialysis and immunohistochemical techniques. Perfusion of 1 mM DCG-IV during 1 h protected dopaminergic nerve terminals against the degeneration induced by a 15-minute perfusion of 1 mM MPP+. In addition, the microglial cell population was markedly activated 24 h after DCG-IV perfusion. The astroglial cell population was only markedly activated around the microdialysis probe. This protective effect seems to be dependent on protein synthesis since 1 mM cycloheximide, an inhibitor of protein synthesis, abolished the neuroprotective effect of 1 mM DCG-IV against MPP+ toxicity. Perfusion of DCG-IV induced an upregulation of striatal brain-derived neurotrophic factor (BDNF) mRNA expressing cells which were confined precisely around the microdialysis probe. Taken together, our results suggest that the induction and release of brain-derived neurotrophic factor (BDNF) by activated glial cells induced by DCG-IV perfusion may account for its protective action against MPP+-induced dopaminergic terminal degeneration.
Collapse
|
|
24 |
60 |
17
|
Martin HL, Santoro M, Mustafa S, Riedel G, Forrester JV, Teismann P. Evidence for a role of adaptive immune response in the disease pathogenesis of the MPTP mouse model of Parkinson's disease. Glia 2016; 64:386-95. [PMID: 26511587 PMCID: PMC4855685 DOI: 10.1002/glia.22935] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and results from the loss of dopaminergic neurons of the nigrostriatal pathway. The pathogenesis of PD is poorly understood, but inflammatory processes have been implicated. Indeed increases in the number of major histocompatibility complex II (MHC II) reactive cells have long been recognised in the brains of PD patients at post-mortem. However whether cells expressing MHC II play an active role in PD pathogenesis has not been delineated. This was addressed utilising a transgenic mouse null for MHC II and the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In wild-type mice MHC II levels in the ventral midbrain were upregulated 1-2 days after MPTP treatment and MHC II was localized in both astrocytes and microglia. MHC II null mice showed significant reductions in MPTP-induced dopaminergic neuron loss and a significantly reduced invasion of astrocytes and microglia in MHC II null mice receiving MPTP compared with controls. In addition, MHC II null mice failed to show increases in interferon-γ or tumour necrosis factor-α in the brain after MPTP treatment, as was found in wild-type mice. However, interleukin-1β was significantly increased in both wild-type and MHC II null mice. These data indicate that in addition to microglial cell/myeloid cell activation MHC Class II-mediated T cell activation is required for the full expression of pathology in this model of PD.
Collapse
|
research-article |
9 |
54 |
18
|
Klivenyi P, Andreassen OA, Ferrante RJ, Lancelot E, Reif D, Beal MF. Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity. Neuroreport 2000; 11:1265-8. [PMID: 10817604 DOI: 10.1097/00001756-200004270-00024] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous work showed that several relatively specific inhibitors of neuronal nitric oxide synthase (nNOS) produce protection against MPTP induced dopaminergic toxicity. We examined whether a highly specific novel inhibitor of nNOS, ARRI 7338, could also protect against MPTP toxicity. ARR17338 produced dose-dependent significant protection against MPTP induced depletion of dopamine and protected against MPTP induced depletions of tyrosine hydroxylase immunostained neurons in the substantia nigra. These results provide further evidence that inhibitors of nNOS may be useful for the treatment of Parkinson's disease.
Collapse
|
|
25 |
45 |
19
|
Ghribi O, Herman MM, Pramoonjago P, Savory J. MPP+Induces the Endoplasmic Reticulum Stress Response in Rabbit Brain Involving Activation of the ATF-6 and NF-κB Signaling Pathways. J Neuropathol Exp Neurol 2003; 62:1144-53. [PMID: 14656072 DOI: 10.1093/jnen/62.11.1144] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inhibition of mitochondrial function and the subsequent generation of oxidative stress are strongly suggested to underlie MPTP/MPP+-induced neurotoxicity, which has been used extensively as a model for Parkinson disease. In the present study we have examined the hypothesis that MPP+ targets the endoplasmic reticulum. Because rabbits possess more genetic similarities to primates than to rodents we have selected this animal model system for our MPP+ neurotoxicity studies. MPP+ was administered directly into the brain of New Zealand white rabbits via the intracisternal route, and the effects on tissue from the substantia nigra were examined. Here we demonstrate that MPP+ in a dose-dependent manner induces the loss of tyrosine hydroxylase activity, oxidative DNA damage, and activation of the endoplasmic reticulum stress response. The endoplasmic reticulum response, mediated by activation of ATF-6 and NF-kappaB, leads to activation of gadd 153. These effects correlate with the activation of caspase-3 and of c-Jun N-terminal kinase (JNK) kinase. We propose that pharmacological agents that inhibit the perturbation of endoplasmic reticulum function or the activation of JNK may represent a potential therapeutic approach for the prevention of neurotoxin-induced Parkinson disease.
Collapse
|
|
22 |
44 |
20
|
Nagarajan S, Chellappan DR, Chinnaswamy P, Thulasingam S. Ferulic acid pretreatment mitigates MPTP-induced motor impairment and histopathological alterations in C57BL/6 mice. PHARMACEUTICAL BIOLOGY 2015; 53:1591-1601. [PMID: 25857436 DOI: 10.3109/13880209.2014.993041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Ferulic acid (FA) is a potent ubiquitous plant antioxidant found in cereals such as brown rice, whole wheat, and oats. Phytochemical-based antioxidants are shown to be effective in neurodegenerative diseases. This study hypothesizes that supplementation of FA might combat oxidative stress-induced Parkinson's disease (PD). OBJECTIVE To explore the effect of FA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced neurotoxicity. MATERIALS AND METHODS Mice were randomized into five groups: Group I mice served as control. Group II mice received 5 × MPTP [25 mg/kg body weight (i.p.)] in saline 24 h apart starting from the 3rd day and continued till the last day of the experimental period of 7 d. In addition to MPTP injections, mice in Groups III, IV, and V were given FA at a dose of 20, 40, and 80 mg, respectively, for 7 d. Mice were subjected to a battery of behavioral tests along with histological investigations. RESULTS Our histological findings revealed that MPTP administration enhanced Bax/Bcl2 ratio and microglial cells activation reflecting induction of apoptosis and inflammation, respectively. This dopaminergic neuronal loss caused impairment in motor balance and coordination in MPTP mice as assessed by various behavioral tests. FA at a dose of 40 mg/kg/d body weight effectively attenuated MPTP-induced neurotoxicity. DISCUSSION Antioxidant, free-radical quenching, and anti-inflammatory activities of FA could contribute to its neuroprotective effect. CONCLUSION This study provides elementary evidence for the neuroprotective action of FA against MPTP-induced PD in mice and warrants further studies.
Collapse
|
|
10 |
43 |
21
|
Ayala A, Venero JL, Cano J, Machado A. Mitochondrial toxins and neurodegenerative diseases. FRONT BIOSCI-LANDMRK 2007; 12:986-1007. [PMID: 17127354 DOI: 10.2741/2119] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The selective loss of a particular subset of neurons is a common feature of neurodegenerative disorders. A failure in respiratory chain complex activities in mitochondria seems to be a causative factor. The aim of this review is to describe the most important toxins affecting the mitochondrial function, which could be involved in the incidence of some of these diseases: MPTP, rotenone and 3-nitropropionic (3-NPA).
Collapse
|
|
18 |
43 |
22
|
Sagi Y, Weinstock M, Youdim MBH. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J Neurochem 2003; 86:290-7. [PMID: 12871570 DOI: 10.1046/j.1471-4159.2003.01801.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
(R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.
Collapse
|
|
22 |
41 |
23
|
Klein C, Rasińska J, Empl L, Sparenberg M, Poshtiban A, Hain EG, Iggena D, Rivalan M, Winter Y, Steiner B. Physical exercise counteracts MPTP-induced changes in neural precursor cell proliferation in the hippocampus and restores spatial learning but not memory performance in the water maze. Behav Brain Res 2016; 307:227-38. [PMID: 27012392 DOI: 10.1016/j.bbr.2016.02.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD) is characterized by a continuous loss of dopaminergic neurons in the substantia nigra, which not only leads to characteristic motor symptoms but also to cognitive impairments. Physical exercise has been shown to improve hippocampus-dependent cognitive functions in PD patients. Animal studies have demonstrated the involvement of adult hippocampal neurogenesis in exercise-induced improvements of visuo-spatial learning and memory. Here, we investigated the direct impact of voluntary wheel running on hippocampal neurogenesis and spatial learning and memory in the Morris water maze (MWM) using the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We also analyzed striatal and hippocampal dopamine transmission and mRNA expression levels of dopamine receptors. We show that MPTP-induced spatial learning deficits were alleviated by short-term physical exercise but not MPTP-induced spatial memory impairments in either exercise intervention group. Neural precursor proliferation was transiently altered in MPTP-treated mice, while the cell survival was increased by exercise. Dopamine was progressively depleted by MPTP and its turnover altered by exercise. In addition, gene expression of dopamine receptor D1/D5 was transiently upregulated following MPTP treatment but not affected by physical exercise. Our findings suggest that physical exercise benefits spatial learning but not memory performance in the MWM after MPTP-induced dopamine depletion by restoring precursor cell proliferation in the hippocampus and influencing dopamine transmission. This adds to the understanding of cognitive decline and mechanisms for potential improvements by physical exercise in PD patients.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
34 |
24
|
Wakeman DR, Redmond DE, Dodiya HB, Sladek JR, Leranth C, Teng YD, Samulski RJ, Snyder EY. Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target. Stem Cells Transl Med 2014; 3:692-701. [PMID: 24744393 DOI: 10.5966/sctm.2013-0208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
33 |
25
|
Goldstein DS, Li ST, Holmes C, Bankiewicz K. Sympathetic innervation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease. J Pharmacol Exp Ther 2003; 306:855-60. [PMID: 12805479 DOI: 10.1124/jpet.103.051714] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cardiac sympathetic denervation occurs commonly in Parkinson's disease. This study explored whether analogous denervation occurs in primates with Parkinsonism from systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 6-[18F]Fluorodopamine positron emission tomographic scanning and plasma levels of catecholamines and their deaminated metabolites were used to assess sympathetic and adrenomedullary function in rhesus monkeys, in the untreated state (n = 3), 2 weeks after a series of four MPTP injections, before establishment of Parkinsonism (acute phase, n = 1); a month later, after four more MPTP doses, associated with severe Parkinsonism (subacute phase, n = 1); or more than 2 years from the last dose (remote phase, n = 3), with persistent severe Parkinsonism. A positive control received i.v. 6-hydroxydopamine 1 week before 6-[18F]fluorodopamine scanning. Acute MPTP treatment increased cardiac 6-[18F]fluorodopamine-derived radioactivity, whereas 6-hydroxydopamine markedly decreased cardiac radioactivity, despite similarly low plasma levels of catecholamines and metabolites after either treatment. Subacutely, plasma catecholamines remained decreased, but now with myocardial 6-[18F]fluorodopamine-derived radioactivity also decreased. Remotely, MPTP-treated monkeys had lower plasma catecholamines and higher myocardial 6-[18F]fluorodopamine-derived radioactivity than did untreated animals. The results indicate that in nonhuman primates, systemic MPTP administration produces multiphasic effects on peripheral catecholamine systems, with nearly complete recovery by 2 years. MPTP- and 6-hydroxydopamine-induced changes differ markedly, probably from ganglionic or preganglionic neurotoxicity with the former and more severe cardiac sympathetic neurotoxicity with the latter. Because of multiphasic sympathetic and adrenomedullary effects, without cardioselective sympathetic denervation at any time, the primate MPTP model does not mimic the changes in peripheral catecholamine systems that characterize the human disease.
Collapse
|
|
22 |
32 |