1
|
Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, et alBowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 2017; 171:287-304.e15. [PMID: 28985561 DOI: 10.1016/j.cell.2017.09.030] [Show More Authors] [Citation(s) in RCA: 800] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/21/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023]
Abstract
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
Collapse
|
|
8 |
800 |
2
|
Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T. Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha. PLoS One 2015; 10:e0138876. [PMID: 26406247 PMCID: PMC4583185 DOI: 10.1371/journal.pone.0138876] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022] Open
Abstract
We previously reported Agrobacterium-mediated transformation methods for the liverwort Marchantia polymorpha using the hygromycin phosphotransferase gene as a marker for selection with hygromycin. In this study, we developed three additional markers for M. polymorpha transformation: the gentamicin 3'-acetyltransferase gene for selection with gentamicin; a mutated acetolactate synthase gene for selection with chlorsulfuron; and the neomycin phosphotransferase II gene for selection with G418. Based on these four marker genes, we have constructed a series of Gateway binary vectors designed for transgenic experiments on M. polymorpha. The 35S promoter from cauliflower mosaic virus and endogenous promoters for constitutive and heat-inducible expression were used to create these vectors. The reporters and tags used were Citrine, 3×Citrine, Citrine-NLS, TagRFP, tdTomato, tdTomato-NLS, GR, SRDX, SRDX-GR, GUS, ELuc(PEST), and 3×FLAG. These vectors, designated as the pMpGWB series, will facilitate molecular genetic analyses of the emerging model plant M. polymorpha.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
198 |
3
|
Ishizaki K, Nishihama R, Yamato KT, Kohchi T. Molecular Genetic Tools and Techniques for Marchantia polymorpha Research. PLANT & CELL PHYSIOLOGY 2016; 57:262-70. [PMID: 26116421 DOI: 10.1093/pcp/pcv097] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/18/2015] [Indexed: 05/18/2023]
Abstract
Liverworts occupy a basal position in the evolution of land plants, and are a key group to address a wide variety of questions in plant biology. Marchantia polymorpha is a common, easily cultivated, dioecious liverwort species, and is emerging as an experimental model organism. The haploid gametophytic generation dominates the diploid sporophytic generation in its life cycle. Genetically homogeneous lines in the gametophyte generation can be established easily and propagated through asexual reproduction, which aids genetic and biochemical experiments. Owing to its dioecy, male and female sexual organs are formed in separate individuals, which enables crossing in a fully controlled manner. Reproductive growth can be induced at the desired times under laboratory conditions, which helps genetic analysis. The developmental process from a single-celled spore to a multicellular body can be observed directly in detail. As a model organism, molecular techniques for M. polymorpha are well developed; for example, simple and efficient protocols of Agrobacterium-mediated transformation have been established. Based on them, various strategies for molecular genetics, such as introduction of reporter constructs, overexpression, gene silencing and targeted gene modification, are available. Herein, we describe the technologies and resources for reverse and forward genetics in M. polymorpha, which offer an excellent experimental platform to study the evolution and diversity of regulatory systems in land plants.
Collapse
|
Review |
9 |
158 |
4
|
Sugano SS, Nishihama R, Shirakawa M, Takagi J, Matsuda Y, Ishida S, Shimada T, Hara-Nishimura I, Osakabe K, Kohchi T. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One 2018; 13:e0205117. [PMID: 30379827 PMCID: PMC6209168 DOI: 10.1371/journal.pone.0205117] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/15/2018] [Indexed: 01/30/2023] Open
Abstract
Marchantia polymorpha is one of the model species of basal land plants. Although CRISPR/Cas9-based genome editing has already been demonstrated for this plant, the efficiency was too low to apply to functional analysis. In this study, we show the establishment of CRISPR/Cas9 genome editing vectors with high efficiency for both construction and genome editing. Codon optimization of Cas9 to Arabidopsis achieved over 70% genome editing efficiency at two loci tested. Systematic assessment revealed that guide sequences of 17 nt or shorter dramatically decreased this efficiency. We also demonstrated that a combinatorial use of this system and a floxed complementation construct enabled conditional analysis of a nearly essential gene. This study reports that simple, rapid, and efficient genome editing is feasible with the series of developed vectors.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
141 |
5
|
Flores-Sandoval E, Eklund DM, Bowman JL. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha. PLoS Genet 2015; 11:e1005207. [PMID: 26020649 PMCID: PMC4447368 DOI: 10.1371/journal.pgen.1005207] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/13/2015] [Indexed: 02/06/2023] Open
Abstract
In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT inhibitor response 1 auxin receptor, single orthologs of each class of auxin response factor (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator auxin/indole-3-acetic acid (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway--chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors.
Collapse
|
research-article |
10 |
127 |
6
|
Era A, Tominaga M, Ebine K, Awai C, Saito C, Ishizaki K, Yamato KT, Kohchi T, Nakano A, Ueda T. Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2009; 50:1041-8. [PMID: 19369273 PMCID: PMC2694730 DOI: 10.1093/pcp/pcp055] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/10/2009] [Indexed: 05/18/2023]
Abstract
Actin plays fundamental roles in a wide array of plant functions, including cell division, cytoplasmic streaming, cell morphogenesis and organelle motility. Imaging the actin cytoskeleton in living cells is a powerful methodology for studying these important phenomena. Several useful probes for live imaging of filamentous actin (F-actin) have been developed, but new versatile probes are still needed. Here, we report the application of a new probe called Lifeact for visualizing F-actin in plant cells. Lifeact is a short peptide comprising 17 amino acids that was derived from yeast Abp140p. We used a Lifeact-Venus fusion protein for staining F-actin in Arabidopsis thaliana and were able to observe dynamic rearrangements of the actin meshwork in root hair cells. We also used Lifeact-Venus to visualize the actin cytoskeleton in the liverwort Marchantia polymorpha; this revealed unique and dynamic F-actin motility in liverwort cells. Our results suggest that Lifeact could be a useful tool for studying the actin cytoskeleton in a wide range of plant lineages.
Collapse
|
research-article |
16 |
113 |
7
|
Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL, Nishihama R, Kohchi T. Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha. PLoS Genet 2015; 11:e1005084. [PMID: 26020919 PMCID: PMC4447296 DOI: 10.1371/journal.pgen.1005084] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/20/2015] [Indexed: 01/06/2023] Open
Abstract
The plant hormone auxin regulates many aspects of plant growth and development. Recent progress in Arabidopsis provided a scheme that auxin receptors, TIR1/AFBs, target transcriptional co-repressors, AUX/IAAs, for degradation, allowing ARFs to regulate transcription of auxin responsive genes. The mechanism of auxin-mediated transcriptional regulation is considered to have evolved around the time plants adapted to land. However, little is known about the role of auxin-mediated transcription in basal land plant lineages. We focused on the liverwort Marchantia polymorpha, which belongs to the earliest diverging lineage of land plants. M. polymorpha has only a single TIR1/AFB (MpTIR1), a single AUX/IAA (MpIAA), and three ARFs (MpARF1, MpARF2, and MpARF3) in the genome. Expression of a dominant allele of MpIAA with mutations in its putative degron sequence conferred an auxin resistant phenotype and repressed auxin-dependent expression of the auxin response reporter proGH3:GUS. We next established a system for DEX-inducible auxin-response repression by expressing the putatively stabilized MpIAA protein fused with the glucocorticoid receptor domain (MpIAA(mDII)-GR). Repression of auxin responses in (pro)MpIAA:MpIAA(mDII)-GR plants caused severe defects in various developmental processes, including gemmaling development, dorsiventrality, organogenesis, and tropic responses. Transient transactivation assays showed that the three MpARFs had different transcriptional activities, each corresponding to their phylogenetic classifications. Moreover, MpIAA and MpARF proteins interacted with each other with different affinities. This study provides evidence that pleiotropic auxin responses can be achieved by a minimal set of auxin signaling factors and suggests that the transcriptional regulation mediated by TIR1/AFB, AUX/IAA, and three types of ARFs might have been a key invention to establish body plans of land plants. We propose that M. polymorpha is a good model to investigate the principles and the evolution of auxin-mediated transcriptional regulation and its roles in land plant morphogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
111 |
8
|
Monte I, Franco-Zorrilla JM, García-Casado G, Zamarreño AM, García-Mina JM, Nishihama R, Kohchi T, Solano R. A Single JAZ Repressor Controls the Jasmonate Pathway in Marchantia polymorpha. MOLECULAR PLANT 2019; 12:185-198. [PMID: 30594656 DOI: 10.1016/j.molp.2018.12.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 05/26/2023]
Abstract
JAZ proteins are negative regulators of jasmonate responses, acting both as repressors of transcription factors and as co-receptors of JA-Ile. The high redundancy of JAZ genes in angiosperms has hindered the characterization of a complete depletion of JAZ function. Moreover, the recent discovery that dn-OPDA is the jasmonate ligand in Marchantia polymorpha demonstrates that JA-Ile is not the sole COI1/JAZ ligand in land plants and highlights the importance of studying JAZ co-receptors in bryophytes. Here, we have exploited the low gene redundancy of the liverwort M. polymorpha to characterize the single MpJAZ in this early diverging plant lineage. We clarify the phylogenetic history of the TIFY family, demonstrate that MpJAZ is the ortholog of AtJAZ with a conserved function, and characterize its repressor activity of dn-OPDA responses. Our results show that, consistent with previous findings in Arabidopsis, MpJAZ represses jasmonates biosynthesis, senescence, and plant defenses, and promotes cell growth and reproductive fitness, highlighting the power of studies in Marchantia.
Collapse
|
|
6 |
93 |
9
|
Albert NW, Thrimawithana AH, McGhie TK, Clayton WA, Deroles SC, Schwinn KE, Bowman JL, Jordan BR, Davies KM. Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants. THE NEW PHYTOLOGIST 2018; 218:554-566. [PMID: 29363139 DOI: 10.1111/nph.15002] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
The flavonoid pathway is hypothesized to have evolved during land colonization by plants c. 450 Myr ago for protection against abiotic stresses. In angiosperms, R2R3MYB transcription factors are key for environmental regulation of flavonoid production. However, angiosperm R2R3MYB gene families are larger than those of basal plants, and it is not known whether the regulatory system is conserved across land plants. We examined whether R2R3MYBs regulate the flavonoid pathway in liverworts, one of the earliest diverging land plant lineages. We characterized MpMyb14 from the liverwort Marchantia polymorpha using genetic mutagenesis, transgenic overexpression, gene promoter analysis, and transcriptomic and chemical analysis. MpMyb14 is phylogenetically basal to characterized angiosperm R2R3MYB flavonoid regulators. Mpmyb14 knockout lines lost all red pigmentation from the flavonoid riccionidin A, whereas overexpression conferred production of large amounts of flavones and riccionidin A, activation of associated biosynthetic genes, and constitutive red pigmentation. MpMyb14 expression and flavonoid pigmentation were induced by light- and nutrient-deprivation stress in M. polymorpha as for anthocyanins in angiosperms. MpMyb14 regulates stress-induced flavonoid production in M. polymorpha, and is essential for red pigmentation. This suggests that R2R3MYB regulated flavonoid production is a conserved character across land plants which arose early during land colonization.
Collapse
|
|
7 |
87 |
10
|
Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. PLANT CELL REPORTS 2008; 27:1467-73. [PMID: 18553085 DOI: 10.1007/s00299-008-0570-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 05/15/2023]
Abstract
The liverwort, Marchantia polymorpha L., belongs to a group of basal land plants and is an emerging model for plant biology. We established a procedure to prepare sporangia of M. polymorpha under laboratory conditions by promoting its transition to reproductive development by far-red light irradiation. Here we report an improved direct transformation system of M. polymorpha using immature thalli developing from spores. Hygromycin-resistant transformants were obtained on selective media by transformation with a plasmid carrying the hygromycin-phosphotransferase gene (hpt) conferring hygromycin resistance in 4 weeks. The aminoglycoside-3''-adenyltransferase gene (aadA) conferring spectinomycin resistance was also successfully used as an additional selectable marker for nuclear transformation of M. polymorpha. The availability of the aadA gene in addition to the hpt gene should make M. polymorpha a versatile host for genetic manipulation. DNA gel-blot analyses indicated that transformed thalli carried a variable number of copies of the transgene integrated into the genome. Although the previous system using thalli grown from gemmae required a two-step selection in liquid and solid media for 8 weeks, the system reported here using thalli developing from spores allows generation of transformants in half the time by direct selection on solid media, facilitating genetic analyses in this model plant.
Collapse
|
|
17 |
79 |
11
|
Tougane K, Komatsu K, Bhyan SB, Sakata Y, Ishizaki K, Yamato KT, Kohchi T, Takezawa D. Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha. PLANT PHYSIOLOGY 2010; 152:1529-43. [PMID: 20097789 PMCID: PMC2832234 DOI: 10.1104/pp.110.153387] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is postulated to be a ubiquitous hormone that plays a central role in seed development and responses to environmental stresses of vascular plants. However, in liverworts (Marchantiophyta), which represent the oldest extant lineage of land plants, the role of ABA has been least emphasized; thus, very little information is available on the molecular mechanisms underlying ABA responses. In this study, we isolated and characterized MpABI1, an ortholog of ABSCISIC ACID INSENSITIVE1 (ABI1), from the liverwort Marchantia polymorpha. The MpABI1 cDNA encoded a 568-amino acid protein consisting of the carboxy-terminal protein phosphatase 2C (PP2C) domain and a novel amino-terminal regulatory domain. The MpABI1 transcript was detected in the gametophyte, and its expression level was increased by exogenous ABA treatment in the gemma, whose growth was strongly inhibited by ABA. Experiments using green fluorescent protein fusion constructs indicated that MpABI1 was mainly localized in the nucleus and that its nuclear localization was directed by the amino-terminal domain. Transient overexpression of MpABI1 in M. polymorpha and Physcomitrella patens cells resulted in suppression of ABA-induced expression of the wheat Em promoter fused to the beta -glucuronidase gene. Transgenic P. patens expressing MpABI1 and its mutant construct, MpABI1-d2, lacking the amino-terminal domain, had reduced freezing and osmotic stress tolerance, and associated with reduced accumulation of ABA-induced late embryogenesis abundant-like boiling-soluble proteins. Furthermore, ABA-induced morphological changes leading to brood cells were not prominent in these transgenic plants. These results suggest that MpABI1 is a negative regulator of ABA signaling, providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in liverworts.
Collapse
|
research-article |
15 |
76 |
12
|
Kato H, Mutte SK, Suzuki H, Crespo I, Das S, Radoeva T, Fontana M, Yoshitake Y, Hainiwa E, van den Berg W, Lindhoud S, Ishizaki K, Hohlbein J, Borst JW, Boer DR, Nishihama R, Kohchi T, Weijers D. Design principles of a minimal auxin response system. NATURE PLANTS 2020; 6:473-482. [PMID: 32415296 DOI: 10.1038/s41477-020-0662-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Auxin controls numerous growth processes in land plants through a gene expression system that modulates ARF transcription factor activity1-3. Gene duplications in families encoding auxin response components have generated tremendous complexity in most land plants, and neofunctionalization enabled various unique response outputs during development1,3,4. However, it is unclear what fundamental biochemical principles underlie this complex response system. By studying the minimal system in Marchantia polymorpha, we derive an intuitive and simple model where a single auxin-dependent A-ARF activates gene expression. It is antagonized by an auxin-independent B-ARF that represses common target genes. The expression patterns of both ARF proteins define developmental zones where auxin response is permitted, quantitatively tuned or prevented. This fundamental design probably represents the ancestral system and formed the basis for inflated, complex systems.
Collapse
|
|
5 |
74 |
13
|
Peñuelas M, Monte I, Schweizer F, Vallat A, Reymond P, García-Casado G, Franco-Zorrilla JM, Solano R. Jasmonate-Related MYC Transcription Factors Are Functionally Conserved in Marchantia polymorpha. THE PLANT CELL 2019; 31:2491-2509. [PMID: 31391256 PMCID: PMC6790078 DOI: 10.1105/tpc.18.00974] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 05/20/2023]
Abstract
The lipid-derived phytohormone jasmonoyl-isoleucine regulates plant immunity, growth and development in vascular plants by activating genome-wide transcriptional reprogramming. In Arabidopsis (Arabidopsis thaliana), this process is largely orchestrated by the master regulator MYC2 and related transcription factors (TFs). However, the TFs activating this pathway in basal plant lineages are currently unknown. We report the functional conservation of MYC-related TFs between the eudicot Arabidopsis and the liverwort Marchantia polymorpha, a plant belonging to an early diverging lineage of land plants. Phylogenetic analysis suggests that MYC function first appeared in charophycean algae and therefore predates the evolutionary appearance of any other jasmonate pathway component. M. polymorpha possesses two functionally interchangeable MYC genes, one in females and one in males. Similar to AtMYC2, MpMYCs showed nuclear localization, interaction with JASMONATE-ZIM-DOMAIN PROTEIN repressors, and regulation by light. Phenotypic and molecular characterization of loss- and gain-of-function mutants demonstrated that MpMYCs are necessary and sufficient for activating the jasmonate pathway in M. polymorpha, but unlike their Arabidopsis orthologs, do not regulate fertility. Therefore, despite 450 million years of independent evolution, MYCs are functionally conserved between bryophytes and eudicots. Genetic conservation in an early diverging lineage suggests that MYC function existed in the common ancestor of land plants and evolved from a preexisting MYC function in charophycean algae.
Collapse
|
research-article |
6 |
72 |
14
|
Yamaoka S, Nishihama R, Yoshitake Y, Ishida S, Inoue K, Saito M, Okahashi K, Bao H, Nishida H, Yamaguchi K, Shigenobu S, Ishizaki K, Yamato KT, Kohchi T. Generative Cell Specification Requires Transcription Factors Evolutionarily Conserved in Land Plants. Curr Biol 2018; 28:479-486.e5. [PMID: 29395928 DOI: 10.1016/j.cub.2017.12.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/11/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Land plants differentiate germ cells in the haploid gametophyte. In flowering plants, a generative cell is specified as a precursor that subsequently divides into two sperm cells in the developing male gametophyte, pollen. Generative cell specification requires cell-cycle control and microtubule-dependent nuclear relocation (reviewed in [1-3]). However, the generative cell fate determinant and its evolutionary origin are still unknown. In bryophytes, gametophytes produce eggs and sperm in multicellular reproductive organs called archegonia and antheridia, respectively, or collectively called gametangia. Given the monophyletic origin of land plants [4-6], evolutionarily conserved mechanisms may play key roles in these diverse reproductive processes. Here, we showed that a single member of the subfamily VIIIa of basic helix-loop-helix (bHLH) transcription factors in the liverwort Marchantia polymorpha primarily accumulated in the initial cells and controlled their development into gametangia. We then demonstrated that an Arabidopsis thaliana VIIIa bHLH transiently accumulated in the smaller daughter cell after an asymmetric division of the meiosis-derived microspore and was required for generative cell specification redundantly with its paralog. Furthermore, these A. thaliana VIIIa bHLHs were functionally replaceable by the M. polymorpha VIIIa bHLH. These findings suggest the VIIIa bHLH proteins as core regulators for reproductive development, including germ cell differentiation, since an early stage of land plant evolution.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
66 |
15
|
Ueda M, Kuniyoshi T, Yamamoto H, Sugimoto K, Ishizaki K, Kohchi T, Nishimura Y, Shikanai T. Composition and physiological function of the chloroplast NADH dehydrogenase-like complex in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:683-93. [PMID: 22862786 DOI: 10.1111/j.1365-313x.2012.05115.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex mediates cyclic electron transport and chloro-respiration and consists of five sub-omplexes, which in angiosperms further associate with photosystem I (PSI) to form a super-complex. In Marchantia polymorpha, 11 plastid-encoded subunits and all the nuclear-encoded subunits of the A, B, membrane and ferredoxin-binding sub-complexes are conserved. However, it is unlikely that the genome of this liverwort encodes Lhca5 and Lhca6, both of which mediate NDH-PSI super-complex formation. It is also unlikely that the subunits of the lumen sub-complex, PnsL1-L4, are encoded by the genome. Consistent with this in silico prediction, the results of blue-native gel electrophoresis showed that NDH subunits were detected in a protein complex with lower molecular mass in Marchantia than the NDH-PSI super-complex in Arabidopsis. Using the plastid transformation technique, we knocked out the ndhB gene in Marchantia. Although the wild-type genome copies were completely segregated out, the ΔndhB lines grew like the wild-type photoautotrophically. A post-illumination transient increase in chlorophyll fluorescence, which reflects NDH activity in vivo in angiosperms, was absent in the thalli of the ΔndhB lines. In ruptured chloroplasts, antimycin A-insensitive, and ferredoxin-dependent plastoquinone reduction was impaired, suggesting that chloroplast NDH mediates similar electron transport in Marchantia and Arabidopsis, despite its possible difference in structure. As in angiosperms, linear electron transport was not strongly affected in the ΔndhB lines. However, the plastoquinone pool was slightly more reduced at low light intensity, suggesting that chloroplast NDH functions in redox balancing of the inter system, especially under low light conditions.
Collapse
|
|
13 |
66 |
16
|
Pollak B, Cerda A, Delmans M, Álamos S, Moyano T, West A, Gutiérrez RA, Patron NJ, Federici F, Haseloff J. Loop assembly: a simple and open system for recursive fabrication of DNA circuits. THE NEW PHYTOLOGIST 2019; 222:628-640. [PMID: 30521109 DOI: 10.1111/nph.15625] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023]
Abstract
High-efficiency methods for DNA assembly have enabled the routine assembly of synthetic DNAs of increased size and complexity. However, these techniques require customization, elaborate vector sets or serial manipulations for the different stages of assembly. We have developed Loop assembly based on a recursive approach to DNA fabrication. The system makes use of two Type IIS restriction endonucleases and corresponding vector sets for efficient and parallel assembly of large DNA circuits. Standardized level 0 parts can be assembled into circuits containing 1, 4, 16 or more genes by looping between the two vector sets. The vectors also contain modular sites for hybrid assembly using sequence overlap methods. Loop assembly enables efficient and versatile DNA fabrication for plant transformation. We show the construction of plasmids up to 16 genes and 38 kb with high efficiency (> 80%). We have characterized Loop assembly on over 200 different DNA constructs and validated the fidelity of the method by high-throughput Illumina plasmid sequencing. Our method provides a simple generalized solution for DNA construction with standardized parts. The cloning system is provided under an OpenMTA license for unrestricted sharing and open access.
Collapse
|
|
6 |
64 |
17
|
Clayton WA, Albert NW, Thrimawithana AH, McGhie TK, Deroles SC, Schwinn KE, Warren BA, McLachlan ARG, Bowman JL, Jordan BR, Davies KM. UVR8-mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:503-517. [PMID: 30044520 DOI: 10.1111/tpj.14044] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 05/21/2023]
Abstract
Damaging UVB radiation is a major abiotic stress facing land plants. In angiosperms the UV RESISTANCE LOCUS8 (UVR8) photoreceptor coordinates UVB responses, including inducing biosynthesis of protective flavonoids. We characterised the UVB responses of Marchantia polymorpha (marchantia), the model species for the liverwort group of basal plants. Physiological, chemical and transcriptomic analyses were conducted on wild-type marchantia exposed to three different UVB regimes. CRISPR/Cas9 was used to obtain plant lines with mutations for components of the UVB signal pathway or the flavonoid biosynthetic pathway, and transgenics overexpressing the marchantia UVR8 sequence were generated. The mutant and transgenic lines were analysed for changes in flavonoid content, their response to UVB exposure, and transcript abundance of a set of 48 genes that included components of the UVB response pathway characterised for angiosperms. The marchantia UVB response included many components in common with Arabidopsis, including production of UVB-absorbing flavonoids, the central activator role of ELONGATED HYPOCOTYL5 (HY5), and negative feedback regulation by REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1). Notable differences included the greater importance of CHALCONE ISOMERASE-LIKE (CHIL). Mutants disrupted in the response pathway (hy5) or flavonoid production (chalcone isomerase, chil) were more easily damaged by UVB. Mutants (rup1) or transgenics (35S:MpMYB14) with increased flavonoid content had increased UVB tolerance. The results suggest that UVR8-mediated flavonoid induction is a UVB tolerance character conserved across land plants and may have been an early adaptation to life on land.
Collapse
|
|
7 |
64 |
18
|
Flores-Sandoval E, Eklund DM, Hong SF, Alvarez JP, Fisher TJ, Lampugnani ER, Golz JF, Vázquez-Lobo A, Dierschke T, Lin SS, Bowman JL. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. THE NEW PHYTOLOGIST 2018; 218:1612-1630. [PMID: 29574879 DOI: 10.1111/nph.15090] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 05/08/2023]
Abstract
A plethora of developmental and physiological processes in land plants is influenced by auxin, to a large extent via alterations in gene expression by AUXIN RESPONSE FACTORs (ARFs). The canonical auxin transcriptional response system is a land plant innovation, however, charophycean algae possess orthologues of at least some classes of ARF and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, suggesting that elements of the canonical land plant system existed in an ancestral alga. We reconstructed the phylogenetic relationships between streptophyte ARF and AUX/IAA genes and functionally characterized the solitary class C ARF, MpARF3, in Marchantia polymorpha. Phylogenetic analyses indicate that multiple ARF classes, including class C ARFs, existed in an ancestral alga. Loss- and gain-of-function MpARF3 alleles result in pleiotropic effects in the gametophyte, with MpARF3 inhibiting differentiation and developmental transitions in multiple stages of the life cycle. Although loss-of-function Mparf3 and Mpmir160 alleles respond to exogenous auxin treatments, strong miR-resistant MpARF3 alleles are auxin-insensitive, suggesting that class C ARFs act in a context-dependent fashion. We conclude that two modules independently evolved to regulate a pre-existing ARF transcriptional network. Whereas the auxin-TIR1-AUX/IAA pathway evolved to repress class A/B ARF activity, miR160 evolved to repress class C ARFs in a dynamic fashion.
Collapse
|
|
7 |
61 |
19
|
Komatsu A, Terai M, Ishizaki K, Suetsugu N, Tsuboi H, Nishihama R, Yamato KT, Wada M, Kohchi T. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha. PLANT PHYSIOLOGY 2014; 166:411-27. [PMID: 25096976 PMCID: PMC4149725 DOI: 10.1104/pp.114.245100] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/02/2014] [Indexed: 05/18/2023]
Abstract
Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.
Collapse
|
research-article |
11 |
60 |
20
|
Saint-Marcoux D, Proust H, Dolan L, Langdale JA. Identification of reference genes for real-time quantitative PCR experiments in the liverwort Marchantia polymorpha. PLoS One 2015; 10:e0118678. [PMID: 25798897 PMCID: PMC4370483 DOI: 10.1371/journal.pone.0118678] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Real-time quantitative polymerase chain reaction (qPCR) has become widely used as a method to compare gene transcript levels across different conditions. However, selection of suitable reference genes to normalize qPCR data is required for accurate transcript level analysis. Recently, Marchantia polymorpha has been adopted as a model for the study of liverwort development and land plant evolution. Identification of appropriate reference genes has therefore become a necessity for gene expression studies. In this study, transcript levels of eleven candidate reference genes have been analyzed across a range of biological contexts that encompass abiotic stress, hormone treatment and different developmental stages. The consistency of transcript levels was assessed using both geNorm and NormFinder algorithms, and a consensus ranking of the different candidate genes was then obtained. MpAPT and MpACT showed relatively constant transcript levels across all conditions tested whereas the transcript levels of other candidate genes were clearly influenced by experimental conditions. By analyzing transcript levels of phosphate and nitrate starvation reporter genes, we confirmed that MpAPT and MpACT are suitable reference genes in M. polymorpha and also demonstrated that normalization with an inappropriate gene can lead to erroneous analysis of qPCR data.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
59 |
21
|
Flores-Sandoval E, Dierschke T, Fisher TJ, Bowman JL. Efficient and Inducible Use of Artificial MicroRNAs in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2016; 57:281-90. [PMID: 25971256 DOI: 10.1093/pcp/pcv068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/07/2015] [Indexed: 05/07/2023]
Abstract
We describe the efficient use of artificial microRNAs (amiRs) in Marchantia polymorpha using both endogenous and heterologous primary microRNA (pri-miR) hairpin backbones. Targeting of two transcription factor genes, MpARF1 and MpRR-B, mediating different hormonal responses, demonstrated that amiRs can create specific and reproducible physiological and morphological defects, facilitating interpretation of gene function. A third amiR was designed to target a gene encoding a component of the Polycomb recessive complex 2, MpE(z), and constitutive expression of this amiR results in sporeling lethality. Adaptation of an estrogen-inducible system allowed analysis of the phenotypic effects of induction of this amiR during other stages of the life cycle. We discuss the advantages and challenges of the use of amiRs as a tool for reverse genetic analysis in M. polymorpha.
Collapse
|
|
9 |
59 |
22
|
Karaaslan ES, Wang N, Faiß N, Liang Y, Montgomery SA, Laubinger S, Berendzen KW, Berger F, Breuninger H, Liu C. Marchantia TCP transcription factor activity correlates with three-dimensional chromatin structure. NATURE PLANTS 2020; 6:1250-1261. [PMID: 32895530 DOI: 10.1038/s41477-020-00766-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/07/2020] [Indexed: 05/04/2023]
Abstract
Information in the genome is not only encoded within sequence or epigenetic modifications, but is also found in how it folds in three-dimensional space. The formation of self-interacting genomic regions, named topologically associated domains (TADs), is known as a key feature of genome organization beyond the nucleosomal level. However, our understanding of the formation and function of TADs in plants is extremely limited. Here we show that the genome of Marchantia polymorpha, a member of a basal land plant lineage, exhibits TADs with epigenetic features similar to those of higher plants. By analysing various epigenetic marks across Marchantia TADs, we find that these regions generally represent interstitial heterochromatin and their borders are enriched with Marchantia transcription factor TCP1. We also identify a type of TAD that we name 'TCP1-rich TAD', in which genomic regions are highly accessible and are densely bound by TCP1 proteins. Transcription of TCP1 target genes differs on the basis gene location, and those in TCP1-rich TADs clearly show a lower expression level. In tcp1 mutant lines, neither TCP1-bound TAD borders nor TCP1-rich TADs display drastically altered chromatin organization patterns, suggesting that, in Marchantia, TCP1 is dispensable for TAD formation. However, we find that in tcp1 mutants, genes residing in TCP1-rich TADs have a greater extent of expression fold change as opposed to genes that do not belong to these TADs. Our results suggest that, besides standing as spatial chromatin-packing modules, plant TADs function as nuclear microcompartments associated with transcription factor activities.
Collapse
|
|
5 |
58 |
23
|
Higo A, Niwa M, Yamato KT, Yamada L, Sawada H, Sakamoto T, Kurata T, Shirakawa M, Endo M, Shigenobu S, Yamaguchi K, Ishizaki K, Nishihama R, Kohchi T, Araki T. Transcriptional Framework of Male Gametogenesis in the Liverwort Marchantia polymorpha L. PLANT & CELL PHYSIOLOGY 2016; 57:325-38. [PMID: 26858289 DOI: 10.1093/pcp/pcw005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/31/2015] [Indexed: 05/19/2023]
Abstract
In land plants, there are two types of male gametes: one is a non-motile sperm cell which is delivered to the egg cell by a pollen tube, and the other is a motile sperm cell with flagella. The molecular mechanism underlying the sexual reproduction with the egg and pollen-delivered sperm cell is well understood from studies using model plants such as Arabidopsis and rice. On the other hand, the sexual reproduction with motile sperm has remained poorly characterized, due to the lack of suitable models. Marchantia polymorpha L. is a model basal land plant with sexual reproduction involving an egg cell and bi-flagellated motile sperm. To understand the differentiation process of plant motile sperm, we analyzed the gene expression profile of developing antheridia of M. polymorpha. We performed RNA-sequencing experiments and compared transcript profiles of the male sexual organ (antheridiophore and antheridium contained therein), female sexual organ (archegoniophore) and a vegetative organ (thallus). Transcriptome analysis showed that the antheridium expresses nearly half of the protein-coding genes predicted in the genome, but it also has unique features. The antheridium transcriptome shares some common features with male gamete transcriptomes of angiosperms and animals, and homologs of genes involved in male gamete formation and function in angiosperms and animals were identified. In addition, we showed that some of them had distinct expression patterns in the spermatogenous tissue of developing antheridia. This study provides a transcriptional framework on which to study the molecular mechanism of plant motile sperm development in M. polymorpha as a model.
Collapse
|
|
9 |
57 |
24
|
Kanazawa T, Era A, Minamino N, Shikano Y, Fujimoto M, Uemura T, Nishihama R, Yamato KT, Ishizaki K, Nishiyama T, Kohchi T, Nakano A, Ueda T. SNARE Molecules in Marchantia polymorpha: Unique and Conserved Features of the Membrane Fusion Machinery. PLANT & CELL PHYSIOLOGY 2016; 57:307-24. [PMID: 26019268 DOI: 10.1093/pcp/pcv076] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 05/18/2023]
Abstract
The membrane trafficking pathway has been diversified in a specific way for each eukaryotic lineage, probably to fulfill specific functions in the organisms. In green plants, comparative genomics has supported the possibility that terrestrialization and/or multicellularization could be associated with the elaboration and diversification of membrane trafficking pathways, which have been accomplished by an expansion of the numbers of genes required for machinery components of membrane trafficking, including soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, information regarding membrane trafficking pathways in basal land plant lineages remains limited. In the present study, we conducted extensive analyses of SNARE molecules, which mediate membrane fusion between target membranes and transport vesicles or donor organelles, in the liverwort, Marchantia polymorpha. The M. polymorpha genome contained at least 34 genes for 36 SNARE proteins, comprising fundamental sets of SNARE proteins that are shared among land plant lineages with low degrees of redundancy. We examined the subcellular distribution of a major portion of these SNARE proteins by expressing Citrine-tagged SNARE proteins in M. polymorpha, and the results showed that some of the SNARE proteins were targeted to different compartments from their orthologous products in Arabidopsis thaliana. For example, MpSYP12B was localized to the surface of the oil body, which is a unique organelle in liverworts. Furthermore, we identified three VAMP72 members with distinctive structural characteristics, whose N-terminal extensions contain consensus sequences for N-myristoylation. These results suggest that M. polymorpha has acquired unique membrane trafficking pathways associated with newly acquired machinery components during evolution.
Collapse
|
|
9 |
55 |
25
|
Bowman JL. A Brief History of Marchantia from Greece to Genomics. PLANT & CELL PHYSIOLOGY 2016; 57:210-29. [PMID: 25766905 DOI: 10.1093/pcp/pcv044] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/05/2015] [Indexed: 05/08/2023]
Abstract
While written accounts of plants date back thousands of years, due to the degradation of scientific literature during the dark ages descriptions descended from Greek writings are sometimes equivocal as to species identity. Such is the case with Marchantia in the pre-Renaissance literature; however, indisputable illustrations of Marchantia polymorpha were made as early as the mid-15th century, beginning a rich historical literature on its taxonomy, development and physiology. In this review, I present three vignettes, each of which are themselves abbreviated due to space constraints. The first presents the role of Marchantia and related liverwort species in the discovery of sex in cryptogams, from the elucidation of liverwort life cycles the 18th century to the sequence of the Y chromosome in the 21st. A second vignette describes the use of M. polymorpha as a model organism in the early 19th century debate concerning the cellular nature of organisms and the origin of new cells-an endeavor that provided us with Charles-François Brisseau de Mirbel's mémoire containing beautiful, if slightly fanciful, illustrations of the Marchantia life cycle. The final vignette chronicles the use of M. polymorpha gemmae over the past two centuries to elucidate the mechanism by which a dorsiventral body plan is established from an initially apolar gemma. While only covering a fraction of the literature available, these vignettes provide a glimpse of historical and recent discoveries available upon which to build a molecular genetic and genomic understanding of Marchantia.
Collapse
|
Historical Article |
9 |
53 |