1
|
Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y. Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 2001; 75:4399-401. [PMID: 11287589 PMCID: PMC114185 DOI: 10.1128/jvi.75.9.4399-4401.2001] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both CD46 and signaling lymphocytic activation molecule (SLAM) have been shown to act as cellular receptors for measles virus (MV). The viruses on throat swabs from nine patients with measles in Japan were titrated on Vero cells stably expressing human SLAM. Samples from all but two patients produced numerous plaques on SLAM-expressing Vero cells, whereas none produced any plaques on Vero cells endogenously expressing CD46. The Edmonston strain of MV, which can use either CD46 or SLAM as a receptor, produced comparable titers on these two types of cells. The results strongly suggest that the viruses in the bodies of measles patients use SLAM but probably not CD46 as a cellular receptor.
Collapse
|
research-article |
24 |
325 |
2
|
Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ, Rabourdin-Combe C. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 1997; 186:813-23. [PMID: 9294136 PMCID: PMC2199042 DOI: 10.1084/jem.186.6.813] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1997] [Revised: 07/11/1997] [Indexed: 02/05/2023] Open
Abstract
Secondary infections due to a marked immunosuppression have long been recognized as a major cause of the high morbidity and mortality rate associated with acute measles. The mechanisms underlying the inhibition of cell-mediated immunity are not clearly understood but dysfunctions of monocytes as antigen-presenting cells (APC) are implicated. In this report, we demonstrate that measles virus (MV) replicates weakly in the resting dendritic cells (DC) as in lipopolysaccharide-activated monocytes, but intensively in CD40-activated DC. The interaction of MV-infected DC with T cells not only induces syncytia formation where MV undergoes massive replication, but also leads to an impairment of DC and T cell function and cell death. CD40-activated DC decrease their capacity to produce interleukin (IL) 12, and T cells are unable to proliferate in response to MV-infected DC stimulation. A massive apoptosis of both DC and T cells is observed in the MV pulsed DC-T cell cocultures. This study suggests that DC represent a major target of MV. The enhanced MV replication during DC-T cell interaction, leading to an IL-12 production decrease and the deletion of DC and T cells, may be the essential mechanism of immunosuppression induced by MV.
Collapse
|
|
28 |
322 |
3
|
de Swart RL, Ludlow M, de Witte L, Yanagi Y, van Amerongen G, McQuaid S, Yüksel S, Geijtenbeek TBH, Duprex WP, Osterhaus ADME. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 2007; 3:e178. [PMID: 18020706 PMCID: PMC2077902 DOI: 10.1371/journal.ppat.0030178] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 10/05/2007] [Indexed: 11/18/2022] Open
Abstract
Measles virus (MV) is hypothesized to enter the host by infecting epithelial cells of the respiratory tract, followed by viremia mediated by infected monocytes. However, neither of these cell types express signaling lymphocyte activation molecule (CD150), which has been identified as the receptor for wild-type MV. We have infected rhesus and cynomolgus macaques with a recombinant MV strain expressing enhanced green fluorescent protein (EGFP); thus bringing together the optimal animal model for measles and a virus that can be detected with unprecedented sensitivity. Blood samples and broncho-alveolar lavages were collected every 3 d, and necropsies were performed upon euthanasia 9 or 15 d after infection. EGFP production by MV-infected cells was visualized macroscopically, in both living and sacrificed animals, and microscopically by confocal microscopy and FACS analysis. At the peak of viremia, EGFP fluorescence was detected in skin, respiratory and digestive tract, but most intensely in all lymphoid tissues. B- and T-lymphocytes expressing CD150 were the major target cells for MV infection. Highest percentages (up to 30%) of infected lymphocytes were detected in lymphoid tissues, and the virus preferentially targeted cells with a memory phenotype. Unexpectedly, circulating monocytes did not sustain productive MV infection. In peripheral tissues, large numbers of MV-infected CD11c+ MHC class-II+ myeloid dendritic cells were detected in conjunction with infected T-lymphocytes, suggesting transmission of MV between these cell types. Fluorescent imaging of MV infection in non-human primates demonstrated a crucial role for lymphocytes and dendritic cells in the pathogenesis of measles and measles-associated immunosuppression.
Collapse
|
research-article |
18 |
213 |
4
|
Grosjean I, Caux C, Bella C, Berger I, Wild F, Banchereau J, Kaiserlian D. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 1997; 186:801-12. [PMID: 9294135 PMCID: PMC2199052 DOI: 10.1084/jem.186.6.801] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Measles causes a profound immune suppression which is responsible for the high morbidity and mortality induced by secondary infections. Dendritic cells (DC) are professional antigen-presenting cells required for initiation of primary immune responses. To determine whether infection of DC by measles virus (MV) may play a role in virus-induced suppression of cell-mediated immunity, we examined the ability of CD1a+ DC derived from cord blood CD34+ progenitors and Langerhans cells isolated from human epidermis to support MV replication. Here we show that both cultured CD1a+ DC and epidermal Langerhans cells can be infected in vitro by both vaccine and wild type strains of MV. DC infection with MV resulted within 24-48 h in cell-cell fusion, cell surface expression of hemagglutinin, and virus budding associated with production of infectious virus. MV infection of DC completely abrogated the ability of the cells to stimulate the proliferation of naive allogeneic CD4+ T cell as early as day 2 of mixed leukocyte reaction (MLR) (i.e., on day 4 of DC infection). Mannose receptor-mediated endocytosis and viability studies indicated that the loss of DC stimulatory function could not be attributed to the death or apoptosis of DC. This total loss of DC stimulatory function required viral replication in the DC since ultraviolet (UV)-inactivated MV or UV-treated supernatant from MV-infected DC did not alter the allostimulatory capacity of DC. As few as 10 MV- infected DC could block the stimulatory function of 10(4) uninfected DC. More importantly, MV-infected DC, in which production of infectious virus was blocked by UV treatment or paraformaldehyde fixation, actively suppressed allogeneic MLR upon transfer to uninfected DC-T-cultures. Thus, the mechanisms which contribute to the loss of the allostimulatory function of DC include both virus release and active suppression mediated by MV-infected DC, independent of virus production. These data suggest that carriage of MV by DC may facilitate virus spreading to secondary lymphoid organs and that MV replication in DC may play a central role in the general immune suppression observed during measles.
Collapse
|
research-article |
28 |
206 |
5
|
Xia Y, Bjørnstad ON, Grenfell BT. Measles Metapopulation Dynamics: A Gravity Model for Epidemiological Coupling and Dynamics. Am Nat 2004; 164:267-81. [PMID: 15278849 DOI: 10.1086/422341] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 01/12/2004] [Indexed: 11/03/2022]
Abstract
Infectious diseases provide a particularly clear illustration of the spatiotemporal underpinnings of consumer-resource dynamics. The paradigm is provided by extremely contagious, acute, immunizing childhood infections. Partially synchronized, unstable oscillations are punctuated by local extinctions. This, in turn, can result in spatial differentiation in the timing of epidemics and, depending on the nature of spatial contagion, may result in traveling waves. Measles epidemics are one of a few systems documented well enough to reveal all of these properties and how they are affected by spatiotemporal variations in population structure and demography. On the basis of a gravity coupling model and a time series susceptible-infected-recovered (TSIR) model for local dynamics, we propose a metapopulation model for regional measles dynamics. The model can capture all the major spatiotemporal properties in prevaccination epidemics of measles in England and Wales.
Collapse
|
|
21 |
201 |
6
|
Yanagi Y, Takeda M, Ohno S. Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 2006; 87:2767-2779. [PMID: 16963735 DOI: 10.1099/vir.0.82221-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Measles virus(MV), a member of the genusMorbillivirusin the familyParamyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4+T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV.Canine distemper virusandRinderpest virus, other members of the genusMorbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM−cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cellsin vivo. MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.
Collapse
|
|
19 |
164 |
7
|
Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD. CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 2001; 279:9-21. [PMID: 11145884 DOI: 10.1006/viro.2000.0711] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural isolates of measles virus readily infect several lymphocyte cell lines. These viruses appear to use a receptor other than CD46, the molecule to which most laboratory strains of virus bind. Methods used to identify and characterize this lymphocyte receptor for measles virus are described in this study. A binding assay with a soluble form of measles virus H protein demonstrated that B-cell lines, activated with Epstein-Barr virus, or T cells, transformed with human T-cell leukemia virus, exhibit this receptor on their cell surfaces. On the other hand, resting lymphocytes, monocytes, or immature leukocytes either failed to express or possessed reduced levels of this receptor. A cDNA library derived from B95-8 marmoset B-cell lines was used to identify this receptor through expression cloning. This molecule was shown to be CDw150, which is also known as the signaling lymphocytic activation molecule (SLAM). When the lymphocyte receptor was expressed in Chinese hamster ovary (CHOP) or human embryonic kidney (293T) cells, these cells became susceptible to lymphotropic as well as laboratory strains of measles virus. Binding assays confirmed that either lymphotropic or laboratory strains of measles virus could adhere to human or marmoset CDw150, but interaction with the mouse homolog was weak. These infections were independent of the presence of CD46 on the host cell surface. Interaction of measles virus with CDw150(SLAM) could explain the immunosuppressive properties of this virus.
Collapse
|
|
24 |
146 |
8
|
Guseva S, Milles S, Jensen MR, Salvi N, Kleman JP, Maurin D, Ruigrok RWH, Blackledge M. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. SCIENCE ADVANCES 2020; 6:eaaz7095. [PMID: 32270045 PMCID: PMC7112944 DOI: 10.1126/sciadv.aaz7095] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 05/14/2023]
Abstract
Many viruses are known to form cellular compartments, also called viral factories. Paramyxoviruses, including measles virus, colocalize their proteomic and genomic material in puncta in infected cells. We demonstrate that purified nucleoproteins (N) and phosphoproteins (P) of measles virus form liquid-like membraneless organelles upon mixing in vitro. We identify weak interactions involving intrinsically disordered domains of N and P that are implicated in this process, one of which is essential for phase separation. Fluorescence allows us to follow the modulation of the dynamics of N and P upon droplet formation, while NMR is used to investigate the thermodynamics of this process. RNA colocalizes to droplets, where it triggers assembly of N protomers into nucleocapsid-like particles that encapsidate the RNA. The rate of encapsidation within droplets is enhanced compared to the dilute phase, revealing one of the roles of liquid-liquid phase separation in measles virus replication.
Collapse
|
research-article |
5 |
145 |
9
|
Rima BK, Earle JA, Baczko K, ter Meulen V, Liebert UG, Carstens C, Carabaña J, Caballero M, Celma ML, Fernandez-Muñoz R. Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 1997; 78 ( Pt 1):97-106. [PMID: 9010291 DOI: 10.1099/0022-1317-78-1-97] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phylogenetic analysis of the sequence of the H gene of 75 measles virus (MV) strains (32 published and 43 new sequences) was carried out. The lineage groups described from comparison of the nucleotide sequences encoding the C-terminal regions of the N protein of MV were the same as those derived from the H gene sequences in almost all cases. The databases document a number of distinct genotype switches that have occurred in Madrid (Spain). Well-documented is the complete replacement of lineage group C2, the common European genotype at that time, with that of group D3 around the autumn of 1993. No further isolations of group C2 took place in Madrid after this time. The rate of mutation of the H gene sequences of MV genotype D3 circulating in Madrid from 1993 to 1996 was very low (5 x 10(-4) per annum for a given nucleotide position). This is an order of magnitude lower than the rates of mutation observed in the HN genes of human influenza A viruses. The ratio of expressed over silent mutations indicated that the divergence was not driven by immune selection in this gene. Variations in amino acid 117 of the H protein (F or L) may be related to the ability of some strains to haemagglutinate only in the presence of salt. Adaptation of MV to different primate cell types was associated with very small numbers of mutations in the H gene. The changes could not be predicted when virus previously grown in human B cell lines was adapted to monkey Vero cells. In contrast, rodent brain-adapted viruses displayed a lot of amino acid sequence variation from normal MV strains. There was no convincing evidence for recombination between MV genotypes.
Collapse
|
|
28 |
143 |
10
|
Hummel KB, Lowe L, Bellini WJ, Rota PA. Development of quantitative gene-specific real-time RT-PCR assays for the detection of measles virus in clinical specimens. J Virol Methods 2005; 132:166-73. [PMID: 16274752 DOI: 10.1016/j.jviromet.2005.10.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/23/2005] [Accepted: 10/03/2005] [Indexed: 11/17/2022]
Abstract
Real-time RT-PCR assays targeting sequences in the measles virus (MV) nucleoprotein (N), fusion (F), and hemagglutinin (H) genes were developed for the detection of MV RNA in clinical specimens. Four primer and probe sets each for the N, F, and H genes were evaluated and reaction conditions optimized. Using dilution series of synthetic RNAs, the limits of detection were determined to be approximately 10 copies for each target RNA/reaction. The relationship between C(t) values and RNA concentration was linear within a range of 10-10(6) RNA copies/reaction, and intra- and inter-assay variability was low. The N gene-specific real-time assay detected MV RNA in 100% of clinical samples from confirmed measles cases compared to 41% by standard RT-PCR. The MV H and F gene-specific real-time assays detected MV RNA in 93% and 82% of these specimens, respectively. Real-time assays could detect RNA from strains representing each active genotype of MV and were also highly specific, as no false positives were identified when samples known to contain other respiratory viruses were tested. Real-time RT-PCR assays will be available to support routine measles laboratory surveillance, to facilitate research projects on pathogenesis that require sensitive and quantitative detection of MV RNA, and to aid in the investigation of serious disease sequelae resulting from natural measles infection or vaccination with measles-containing vaccines.
Collapse
|
Journal Article |
20 |
143 |
11
|
tenOever BR, Servant MJ, Grandvaux N, Lin R, Hiscott J. Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 2002; 76:3659-69. [PMID: 11907205 PMCID: PMC136070 DOI: 10.1128/jvi.76.8.3659-3669.2002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of cellular recognition for virus infection remain poorly understood despite the wealth of information regarding the signaling events and transcriptional responses that ensue. Host cells respond to viral infection through the activation of multiple signaling cascades, including the activation of NF-kappaB, c-Jun/ATF-2 (AP-1), and the interferon regulatory factors (IRFs). Although viral products such as double-stranded RNA (dsRNA) and the processes of viral binding and fusion have been implicated in the activation of NF-kappaB and AP-1, the mechanism(s) of IRF-1, IRF-3, and IRF-7 activation has yet to be fully elucidated. Using recombinant measles virus (MeV) constructs, we now demonstrate that phosphorylation-dependent IRF-3 activation represents a novel cellular detection system that recognizes the MeV nucleocapsid structure. At low multiplicities of infection, IRF-3 activation is dependent on viral transcription, since UV cross-linking and a deficient MeV containing a truncated polymerase L gene failed to induce IRF-3 phosphorylation. Expression of the MeV nucleocapsid (N) protein, without the requirement for any additional viral proteins or the generation of dsRNA, was sufficient for IRF-3 activation. In addition, the nucleocapsid protein was found to associate with both IRF-3 and the IRF-3 virus-activated kinase, suggesting that it may aid in the colocalization of the kinase and the substrate. Altogether, this study suggests that IRF-3 recognizes nucleocapsid structures during the course of an MeV infection and triggers the induction of interferon production.
Collapse
|
research-article |
23 |
143 |
12
|
Bellini WJ, Rota JS, Lowe LE, Katz RS, Dyken PR, Zaki SR, Shieh WJ, Rota PA. Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 2005; 192:1686-93. [PMID: 16235165 DOI: 10.1086/497169] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 06/06/2005] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The most severe sequela of measles virus infection is subacute sclerosing panencephalitis (SSPE), a fatal disease of the central nervous system that generally develops 7-10 years after infection. From 1989 through 1991, a resurgence of measles occurred in the United States, with 55,622 cases of measles reported. The purpose of the present study was to identify cases of SSPE that were associated with the resurgence of measles and to calculate the risk of developing SSPE. METHODS Brain tissue samples obtained from 11 patients with a presumptive diagnosis of SSPE were tested for the presence of measles virus RNA. Measles virus genotypes were determined by reverse-transcription polymerase chain reaction (RT-PCR) and by analysis of the sequences of the PCR products. A search of the literature was conducted to identify reports of cases of SSPE in persons residing in the United States who had measles during 1989-1991. RESULTS The measles virus sequences derived from brain tissue samples obtained from 11 patients with SSPE confirmed the diagnosis of SSPE. For 5 of the 11 patients with SSPE who had samples tested by RT-PCR and for 7 patients with SSPE who were identified in published case reports, it was determined that the development of SSPE was associated with the measles resurgence that occurred in the United States during 1989-1991. The estimated risk of developing SSPE was 10-fold higher than the previous estimate reported for the United States in 1982. CONCLUSIONS Vaccination against measles prevents more cases of SSPE than was originally estimated.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
139 |
13
|
Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 2006; 360:72-83. [PMID: 17112561 DOI: 10.1016/j.virol.2006.09.049] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/04/2006] [Accepted: 09/28/2006] [Indexed: 12/23/2022]
Abstract
The measles virus (MV) P gene encodes three proteins: P, an essential polymerase cofactor, and C and V, which have multiple functions including immune evasion. We show here that the MV P protein also contributes to immune evasion, and that tyrosine 110 is required to block nuclear translocation of the signal transducer and activator of transcription factors (STAT) after interferon type I treatment. In particular, MV P inhibits STAT1 phosphorylation. This is shown not only by transient expression but also by reverse genetic analyses based on a new functional infectious cDNA derived from a MV vaccine vial (Moraten strain). Our study also identifies a conserved sequence around P protein tyrosine 110 as a candidate interaction site with a cellular protein.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
138 |
14
|
Zhou Y, Su JM, Samuel CE, Ma D. Measles Virus Forms Inclusion Bodies with Properties of Liquid Organelles. J Virol 2019; 93:e00948-19. [PMID: 31375591 PMCID: PMC6803276 DOI: 10.1128/jvi.00948-19] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Nonsegmented negative-strand RNA viruses, including measles virus (MeV), a member of the Paramyxoviridae family, are assumed to replicate in cytoplasmic inclusion bodies. These cytoplasmic viral factories are not membrane bound, and they serve to concentrate the viral RNA replication machinery. Although inclusion bodies are a prominent feature in MeV-infected cells, their biogenesis and regulation are not well understood. Here, we show that infection with MeV triggers inclusion body formation via liquid-liquid phase separation (LLPS), a process underlying the formation of membraneless organelles. We find that the viral nucleoprotein (N) and phosphoprotein (P) are sufficient to trigger MeV phase separation, with the C-terminal domains of the viral N and P proteins playing a critical role in the phase transition. We provide evidence suggesting that the phosphorylation of P and dynein-mediated transport facilitate the growth of these organelles, implying that they may have key regulatory roles in the biophysical assembly process. In addition, our findings support the notion that these inclusions change from liquid to gel-like structures as a function of time after infection, leaving open the intriguing possibility that the dynamics of these organelles can be tuned during infection to optimally suit the changing needs during the viral replication cycle. Our study provides novel insight into the process of formation of viral inclusion factories, and taken together with earlier studies, suggests that Mononegavirales have broadly evolved to utilize LLPS as a common strategy to assemble cytoplasmic replication factories in infected cells.IMPORTANCE Measles virus remains a pathogen of significant global concern. Despite an effective vaccine, outbreaks continue to occur, and globally ∼100,000 measles-related deaths are seen annually. Understanding the molecular basis of virus-host interactions that impact the efficiency of virus replication is essential for the further development of prophylactic and therapeutic strategies. Measles virus replication occurs in the cytoplasm in association with discrete bodies, though little is known of the nature of the inclusion body structures. We recently established that the cellular protein WD repeat-containing protein 5 (WDR5) enhances MeV growth and is enriched in cytoplasmic viral inclusion bodies that include viral proteins responsible for RNA replication. Here, we show that MeV N and P proteins are sufficient to trigger the formation of WDR5-containing inclusion bodies, that these structures display properties characteristic of phase-separated liquid organelles, and that P phosphorylation together with the host dynein motor affect the efficiency of the liquid-liquid phase separation process.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
133 |
15
|
ENDERS JF, McCARTHY K, MITUS A, CHEATHAM WJ. Isolation of measles virus at autopsy in cases of giant-cell pneumonia without rash. N Engl J Med 1959; 261:875-81. [PMID: 13820247 DOI: 10.1056/nejm195910292611801] [Citation(s) in RCA: 128] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
66 |
128 |
16
|
de Vries RD, McQuaid S, van Amerongen G, Yüksel S, Verburgh RJ, Osterhaus ADME, Duprex WP, de Swart RL. Measles immune suppression: lessons from the macaque model. PLoS Pathog 2012; 8:e1002885. [PMID: 22952446 PMCID: PMC3431343 DOI: 10.1371/journal.ppat.1002885] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/15/2012] [Indexed: 11/19/2022] Open
Abstract
Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV) infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA(-) memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA(-) memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression.
Collapse
|
research-article |
13 |
127 |
17
|
Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, McClure H, Feinberg MB, Brahic M, Tangy F. A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 2003; 77:11546-54. [PMID: 14557640 PMCID: PMC229349 DOI: 10.1128/jvi.77.21.11546-11554.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live attenuated RNA viruses make highly efficient vaccines. Among them, measles virus (MV) vaccine has been given to a very large number of children and has been shown to be highly efficacious and safe. Therefore, this vaccine might be a very promising vector to immunize children against both measles and other infectious agents, such as human immunodeficiency virus. A vector was previously derived from the Edmonston B strain of MV, a vaccine strain abandoned 25 years ago. Sequence analysis revealed that the genome of this vector diverges from Edmonston B by 10 amino acid substitutions not related to any Edmonston subgroup. Here we describe an infectious cDNA for the Schwarz/Moraten strain, a widely used MV vaccine. This cDNA was constructed from a batch of commercial vaccine. The extremities of the cDNA were engineered in order to maximize virus yield during rescue. A previously described helper cell-based rescue system was adapted by cocultivating transfected cells on primary chicken embryo fibroblasts, the cells used to produce the Schwarz/Moraten vaccine. After two passages the sequence of the rescued virus was identical to that of the cDNA and of the published Schwarz/Moraten sequence. Two additional transcription units were introduced in the cDNA for cloning foreign genetic material. The immunogenicity of rescued virus was studied in macaques and in mice transgenic for the CD46 MV receptor. Antibody titers and T-cell responses (ELISpot) in animals inoculated with low doses of rescued virus were identical to those obtained with commercial Schwarz MV vaccine. In contrast, the immunogenicity of the previously described Edmonston B strain-derived MV clone was much lower. This new molecular clone will allow for the production of MV vaccine without having to rely on seed stocks. The additional transcription units allow expressing heterologous antigens, thereby providing polyvalent vaccines based on an approved, safe, and efficient MV vaccine strain that is used worldwide.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
122 |
18
|
Patterson CE, Lawrence DMP, Echols LA, Rall GF. Immune-mediated protection from measles virus-induced central nervous system disease is noncytolytic and gamma interferon dependent. J Virol 2002; 76:4497-506. [PMID: 11932415 PMCID: PMC155105 DOI: 10.1128/jvi.76.9.4497-4506.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neurons of the mammalian central nervous system (CNS) are an essential and largely nonrenewable cell population. Thus, virus infections that result in neuronal depletion, either by virus-mediated cell death or by induction of the cytolytic immune response, could cause permanent neurological impairment of the host. In a transgenic mouse model of measles virus (MV) infection of neurons, we have previously shown that the host T-cell response was required for resolution of infection in susceptible adult mice. In this report, we show that this protective response did not result in neuronal death, even during the peak of T-cell infiltration into the brain parenchyma. When susceptible mice were intercrossed with specific immune knockout mice, a critical role for gamma interferon (IFN-gamma) was identified in protection against MV infection and CNS disease. Moreover, the addition of previously activated splenocytes or recombinant murine IFN-gamma to MV-infected primary neurons resulted in the inhibition of viral replication in the absence of neuronal death. Together, these data support the hypothesis that the host immune response can promote viral clearance without concomitant neuronal loss, a process that appears to be mediated by cytokines.
Collapse
|
research-article |
23 |
121 |
19
|
Oldstone MB, Lewicki H, Thomas D, Tishon A, Dales S, Patterson J, Manchester M, Homann D, Naniche D, Holz A. Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 1999; 98:629-40. [PMID: 10490102 DOI: 10.1016/s0092-8674(00)80050-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Measles virus (MV) infects 40 million persons and kills one million per year primarily by suppressing the immune system and afflicting the central nervous system (CNS). The lack of a suitable small animal model has impeded progress of understanding how MV causes disease and the development of novel therapies and improved vaccines. We tested a transgenic mouse line in which expression of the MV receptor CD46 closely mimicked the location and amount of CD46 found in humans. Virus replicated in and was recovered from these animals' immune systems and was associated with suppression of humoral and cellular immune responses. Infectious virus was recovered from the CNS, replicated primarily in neurons, and spread to distal sites presumably by fast axonal transport. Thus, a small animal model is available for analysis of MV pathogenesis.
Collapse
|
|
26 |
120 |
20
|
Abstract
Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells (DCs) are susceptible to infection and can transmit infection to lymphocytes. MV-infected DCs are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
118 |
21
|
Patterson JB, Thomas D, Lewicki H, Billeter MA, Oldstone MB. V and C proteins of measles virus function as virulence factors in vivo. Virology 2000; 267:80-9. [PMID: 10648185 DOI: 10.1006/viro.1999.0118] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The measles virus (MV) P gene encodes three proteins: the P protein and two nonstructural proteins, C and V. Because the functions of both the C and V protein are unknown, we used MV C (C-) and V (V-) deletion recombinants generated by the MV reverse genetics system (F. Radecke, P. Spielhofer, H. Schnieder, K. Kaelin, M. Huber, C. Dotsch, G. Christiansen, and M. A. Billeter 1995. EMBO J. 14, 5773-5784). Compared to parental vaccine strain, Edmonston (Ed) MV, both had normal growth and cytopathic effects in Vero cells and showed similar growth kinetics in human neuroblastoma SK-N-MC cells and in primary mouse neurons expressing the MV receptor, CD46. However, in vivo, using YAC-CD46 transgenic mice as a model for MV induced CNS disease (M. B. A. Oldstone, H. Lewicki, D. Thomas, A. Tishon, S. Dales, J. Patterson, M. Manchester, D. Homann, D. Naniche, and A. Holz 1999. Cell 98, 629-640), C- and V- viruses differed markedly from wt Ed(V(+)C(+)) virus. Newborn mice inoculated with as little as 10(3) PFU of Ed strain became ill and died after 10-15 days. In contrast, those inoculated with 10(3) or 10(4) PFU of MV C- or MV V- showed significantly fewer and milder clinical symptoms and had a lower mortality. A total of 10(5) PFU V- virus were required to kill most YAC-CD46 mice, and less than half (44%) were killed with a corresponding dose of MV C-. Immunohistochemical staining for MV antigens showed similar extents of spread for MV C- and MV Ed but restricted spread for MV V- throughout the brain. Viral load and transcription were markedly reduced for V- but not for C-. Multiple cytokines and chemokines were equivalently upregulated for all three viruses. Therefore, MV C and V proteins encode virulence functions in vivo and likely operate via separate mechanisms.
Collapse
|
|
25 |
116 |
22
|
Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MB. A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci U S A 1997; 94:4659-63. [PMID: 9114047 PMCID: PMC20780 DOI: 10.1073/pnas.94.9.4659] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1996] [Accepted: 02/17/1997] [Indexed: 02/04/2023] Open
Abstract
In addition to the rash, fever, and upper respiratory tract congestion that are the hallmarks of acute measles virus (MV) infection, invasion of the central nervous system (CNS) can occur, establishing a persistent infection primarily in neurons. The recent identification of the human membrane glycoprotein, CD46, as the MV receptor allowed for the establishment of transgenic mice in which the CD46 gene was transcriptionally regulated by a neuron-specific promoter. Expression of the measles receptor rendered primary CD46-positive neurons permissive to infection with MV-Edmonston. Notably, viral transmission within these cultures occurred in the absence of extracellular virus, presumably via neuronal processes. No infection was seen in nontransgenic mice inoculated intracerebrally with MV-Edmonston. In contrast, scattered neurons were infected following inoculation of transgenic adults, and an impressive widespread neuronal infection was established in transgenic neonates. The neonatal infection resulted in severe CNS disease by 3-4 weeks after infection. Illness was characterized initially by awkward gait and a lack of mobility, and in later stages seizures leading to death. These results show that expression of the MV receptor on specific murine cells (neurons) in vivo is absolutely essential to confer both susceptibility to infection and neurologic disease by this human virus. The disparity in clinical findings between neonatal and adult transgenic mice indicates that differences exist between the developing and mature CNS with respect to MV infection and pathogenesis.
Collapse
|
research-article |
28 |
115 |
23
|
McChesney MB, Miller CJ, Rota PA, Zhu YD, Antipa L, Lerche NW, Ahmed R, Bellini WJ. Experimental measles. I. Pathogenesis in the normal and the immunized host. Virology 1997; 233:74-84. [PMID: 9201218 DOI: 10.1006/viro.1997.8576] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An animal model to study measles pathogenesis and the correlates of protective immunity was established using rhesus monkeys. A measles isolate, obtained during an epidemic of measles in the primate colony at the University of California, Davis, was passaged through rhesus monkeys and amplified in rhesus mononuclear cells to create a pathogenic virus stock. Sequence analysis of the nucleoprotein and hemagglutinin genes of this isolate revealed strong homology with the Chicago 89 strain of measles virus. Conjunctival/intranasal inoculation of juvenile rhesus monkeys with this virus resulted in skin rash, pneumonia, and systemic infection with dissemination to other mucosal sites and to the lymphoid tissues. Inflammation and necrosis occurred in the lungs and lymphoid tissues and many cell types were infected with measles virus on Day 7 postinoculation (p.i.). The most commonly infected cell type was the B lymphocyte in lymphoid follicles. Measles antigen was found in follicular dendritic cells on Day 14 p.i. In contrast to naive monkeys infected with measles virus, animals vaccinated with the attenuated Moraten strain did not develop clinical or pathologic signs of measles after challenge. However, moderate to marked hyperplasia occurred in the lymph nodes and spleen of a vaccinated animal on Day 7 after pathogenic virus challenge, suggesting that an effective measles vaccine limits but does not prevent infection with wild-type measles virus.
Collapse
|
|
28 |
110 |
24
|
de Witte L, Abt M, Schneider-Schaulies S, van Kooyk Y, Geijtenbeek TBH. Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 2006; 80:3477-86. [PMID: 16537615 PMCID: PMC1440360 DOI: 10.1128/jvi.80.7.3477-3486.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) are involved in the pathogenesis of measles virus (MV) infection by inducing immune suppression and possibly spreading the virus from the respiratory tract to lymphatic tissues. It is becoming evident that DC function can be modulated by the involvement of different receptors in pathogen interaction. Therefore, we have investigated the relative contributions of different MV-specific receptors on DCs to MV uptake into and infection of these cells. DCs express the MV receptors CD46 and CD150, and we demonstrate that the C-type lectin DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is a novel receptor for laboratory-adapted and wild-type MV strains. The ligands for DC-SIGN are both MV glycoproteins F and H. In contrast to CD46 and CD150, DC-SIGN does not support MV entry, since DC-SIGN does not confer susceptibility when stably expressed in CHO cells. However, DC-SIGN is important for the infection of immature DCs with MV, since both attachment and infection of immature DCs with MV are blocked in the presence of DC-SIGN inhibitors. Our data demonstrate that DC-SIGN is crucial as an attachment receptor to enhance CD46/CD150-mediated infection of DCs in cis. Moreover, MV might not only target DC-SIGN to infect DCs but may also use DC-SIGN for viral transmission and immune suppression.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
110 |
25
|
Manchester M, Eto DS, Valsamakis A, Liton PB, Fernandez-Muñoz R, Rota PA, Bellini WJ, Forthal DN, Oldstone MB. Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 2000; 74:3967-74. [PMID: 10756008 PMCID: PMC111910 DOI: 10.1128/jvi.74.9.3967-3974.2000] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1999] [Accepted: 01/29/2000] [Indexed: 11/20/2022] Open
Abstract
Laboratory strains of measles viruses (MV), such as Edmonston and Halle, use the complement regulatory protein CD46 as a cell surface receptor. The receptor usage of clinical isolates of MV, however, remains unclear. Receptor usage by primary patient isolates of MV was compared to isolates that had been passaged on a variety of tissue culture cell lines. All of the isolates could infect cells in a CD46-dependent manner, but their tropism was restricted according to cell type (e.g., lymphocytes versus fibroblasts). The results indicate that patient isolates that have not been adapted to tissue culture cell lines use CD46 as a receptor. In addition, passaging primary MV patient isolates in B95-8 cells selected variants that had alternate receptor usage compared to the original isolate. Thus, changes in receptor usage by MV are dependent upon the cell type used for isolation. Furthermore, our results confirm the relevance of the CD46 receptor to natural measles infection.
Collapse
|
research-article |
25 |
106 |