1
|
Abstract
Melanoma is the most aggressive form of skin cancer and is notoriously resistant to all current modalities of cancer therapy. A large set of genetic, functional and biochemical studies suggest that melanoma cells become 'bullet proof' against a variety of chemotherapeutic drugs by exploiting their intrinsic resistance to apoptosis and by reprogramming their proliferation and survival pathways during melanoma progression. In recent years, the identification of molecules involved in the regulation and execution of apoptosis, and their alteration in melanoma, have provided new insights into the molecular basis for melanoma chemoresistance. With this knowledge in hand, the challenge is now to devise strategies potent enough to compensate or bypass these cell death defects and improve the actual poor prognosis of patients at late stages of the disease.
Collapse
|
Review |
22 |
614 |
2
|
Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. PIGMENT CELL RESEARCH 2003; 16:101-10. [PMID: 12622786 DOI: 10.1034/j.1600-0749.2003.00029.x] [Citation(s) in RCA: 551] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many modalities of treatment for acquired skin hyperpigmentation are available including chemical agents or physical therapies, but none are completely satisfactory. Depigmenting compounds should act selectively on hyperactivated melanocytes, without short- or long-term side-effects, and induce a permanent removal of undesired pigment. Since 1961 hydroquinone, a tyrosinase inhibitor, has been introduced and its therapeutic efficacy demonstrated, and other whitening agents specifically acting on tyrosinase by different mechanisms have been proposed. Compounds with depigmenting activity are now numerous and the classification of molecules, based on their mechanism of action, has become difficult. Systematic studies to assess both the efficacy and the safety of such molecules are necessary. Moreover, the evidence that bleaching compounds are fairly ineffective on dermal accumulation of melanin has prompted investigations on the effectiveness of physical therapies, such as lasers. This review which describes the different approaches to obtain depigmentation, suggests a classification of whitening molecules on the basis of the mechanism by which they interfere with melanogenesis, and confirms the necessity to apply standardized protocols to evaluate depigmenting treatments.
Collapse
|
Review |
22 |
551 |
3
|
Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 2000; 35:927-45. [PMID: 11121681 DOI: 10.1016/s0531-5565(00)00180-7] [Citation(s) in RCA: 474] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Replicative senescence of human diploid fibroblasts (HDFs) or melanocytes is caused by the exhaustion of their proliferative potential. Stress-induced premature senescence (SIPS) occurs after many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Cells in replicative senescence share common features with cells in SIPS: morphology, senescence-associated beta-galactosidase activity, cell cycle regulation, gene expression and telomere shortening. Telomere shortening is attributed to the accumulation of DNA single-strand breaks induced by oxidative damage. SIPS could be a mechanism of accumulation of senescent-like cells in vivo. Melanocytes exposed to sublethal doses of UVB undergo SIPS. Melanocytes from dark- and light- skinned populations display differences in their cell cycle regulation. Delayed SIPS occurs in melanocytes from light-skinned populations since a reduced association of p16(Ink-4a) with CDK4 and reduced phosphorylation of the retinoblastoma protein are observed. The role of reactive oxygen species in melanocyte SIPS is unclear. Both replicative senescence and SIPS are dependent on two major pathways. One is triggered by DNA damage, telomere damage and/or shortening and involves the activation of the p53 and p21(waf-1) proteins. The second pathway results in the accumulation of p16(Ink-4a) with the MAP kinase signalling pathway as possible intermediate. These data corroborate the thermodynamical theory of ageing, according to which the exposure of cells to sublethal stresses of various natures can trigger SIPS, with possible modulations of this process by bioenergetics.
Collapse
|
Review |
25 |
474 |
4
|
Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. ACTA ACUST UNITED AC 2007; 19:550-71. [PMID: 17083484 DOI: 10.1111/j.1600-0749.2006.00334.x] [Citation(s) in RCA: 465] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An overview of agents causing hypopigmentation in human skin is presented. The review is organized to put forward groups of biological and chemical agents. Their mechanisms of action cover (i) tyrosinase inhibition, maturation and enhancement of its degradation; (ii) Mitf inhibition; (iii) downregulation of MC1R activity; (iv) interference with melanosome maturation and transfer; (v) melanocyte loss, desquamation and chemical peeling. Tyrosinase inhibition is the most common approach to achieve skin hypopigmentation as this enzyme catalyses the rate-limiting step of pigmentation. Despite the large number of tyrosinase inhibitors in vitro, only a few are able to induce effects in clinical trials. The gap between in-vitro and in-vivo studies suggests that innovative strategies are needed for validating their efficacy and safety. Successful treatments need the combination of two or more agents acting on different mechanisms to achieve a synergistic effect. In addition to tyrosinase inhibition, other parameters related to cytotoxicity, solubility, cutaneous absorption, penetration and stability of the agents should be considered. The screening test system is also very important as keratinocytes play an active role in modulating melanogenesis within melanocytes. Mammalian skin or at least keratinocytes/melanocytes co-cultures should be preferred rather than pure melanocyte cultures or soluble tyrosinase.
Collapse
|
Review |
18 |
465 |
5
|
Eisinger M, Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci U S A 1982; 79:2018-22. [PMID: 6952249 PMCID: PMC346113 DOI: 10.1073/pnas.79.6.2018] [Citation(s) in RCA: 390] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cultures consisting almost entirely of human melanocytes were obtained from epidermal single-cell suspensions by using phorbol 12-myristate 13-acetate (10 ng/ml) in the culture medium. At this concentration, phorbol ester is toxic to human keratinocytes but not to melanocytes. When the seeding density was optimal (0.8-2 x 10(4)/cm2) and the medium contained both phorbol ester and cholera toxin, melanocytes proliferated extensively. Under these conditions, human melanocytes could be passaged serially in vitro and grown in quantity. This cell culture system can thus be used to answer basic questions related to pigment cell biology and may serve as a control for studies of malignant melanocytes.
Collapse
|
research-article |
43 |
390 |
6
|
Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT, Donahue MK, Narayan R, Flaherty KT, Wargo JA, Root DE, Garraway LA. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 2013; 504:138-42. [PMID: 24185007 PMCID: PMC4098832 DOI: 10.1038/nature12688] [Citation(s) in RCA: 372] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 09/19/2013] [Indexed: 11/16/2022]
Abstract
Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF-MEK-ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here we carried out systematic gain-of-function resistance studies by expressing more than 15,500 genes individually in a BRAF(V600E) melanoma cell line treated with RAF, MEK, ERK or combined RAF-MEK inhibitors. These studies revealed a cyclic-AMP-dependent melanocytic signalling network not previously associated with drug resistance, including G-protein-coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAF(V600E) melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF-MEK inhibition but restored in relapsing tumours. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAPK-pathway and histone-deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF-MEK-ERK inhibition, which may be overcome by combining signalling- and chromatin-directed therapeutics.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
372 |
7
|
Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, Urabe K, Hearing VJ. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci U S A 1995; 92:1789-93. [PMID: 7878059 PMCID: PMC42605 DOI: 10.1073/pnas.92.5.1789] [Citation(s) in RCA: 290] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The significance of melanotropic hormones as physiologic regulators of cutaneous pigmentation in humans is still controversial. Until recently, no direct effect for melanotropins could be demonstrated on human melanocytes. Here we present conclusive evidence that alpha-melanotropin (alpha-melanocyte-stimulating hormone, alpha-MSH) and the related hormone corticotropin (adrenocorticotropic hormone, ACTH) stimulate the proliferation and melanogenesis of human melanocytes maintained in culture in a growth medium lacking any AMP inducer. The minimal effective dose of either hormone is 0.1 nM. In time-course experiments, the increase in cell number and tyrosinase activity became evident after one treatment of the melanocytes with 100 nM alpha-MSH for 48 hr. The mitogenic effect gradually increased to 50-270% above control, depending on the individual melanocyte strain, with continuous treatment with 100 nM alpha-MSH for 8 days, whereas the melanogenic effect became maximal (70-450% increase above control) after 4 days of treatment. Western blot analysis of tyrosinase and the tyrosinase-related proteins TRP-1 and TRP-2 revealed that alpha-MSH increased the expression of those three melanogenic proteins. This was not accompanied by any change in their mRNA levels after brief (1.5-24 hr) or prolonged (6 days) treatment with 100 nM alpha-MSH, suggesting that the increased expression of these melanogenic proteins was due to posttranscriptional events. These results demonstrate both mitogenic and melanogenic effects of alpha-MSH and ACTH on human melanocytes. That both hormones are effective at subnanomolar concentrations, combined with the presence of melanotropin receptors on human melanocytes, strongly suggests that these melanotropins play a physiologic role in regulating human cutaneous pigmentation.
Collapse
|
research-article |
30 |
290 |
8
|
Arad S, Konnikov N, Goukassian DA, Gilchrest BA. Quantification of Inducible SOS-Like Photoprotective Responses in Human Skin. J Invest Dermatol 2007; 127:2629-36. [PMID: 17522706 DOI: 10.1038/sj.jid.5700893] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To document and quantify inducible photoprotective effects in human skin, explant cultures were treated once with thymidine dinucleotide (pTT) or diluent alone or UV-irradiated. Both pTT and UV increased the melanogenic protein levels on days 1-5 and comparably increased melanocyte dendricity and epidermal melanin content. Explants treated with pTT or UV but not with diluent alone showed initial inhibition of epidermal proliferation followed by mild reactive hyperplasia; melanocyte proliferation was minimal. To determine whether pTT and UV provide comparable protection against subsequent UV-induced DNA damage, explants were pTT- or diluent-treated or UV-irradiated. All explants were then irradiated with the same UV dose 72 hours later. Compared to diluent alone, pTT or UV pretreatment decreased the number of epidermal cells positive for cyclobutane pyrimidine dimers (CPDs) 50% immediately post-irradiation. In pTT- and UV- versus diluent-pretreated explants, the rate of CPD removal was also more rapid, approximately 80 vs 45% of the initial burden within 72 hours. These data confirm and quantify comparable SOS-like responses in human skin after pTT or UV irradiation, attributable to both increased epidermal melanin and increased DNA repair rate, in the case of pTT in the absence of initial damage.
Collapse
|
|
18 |
267 |
9
|
Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, Gilchrest BA. Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J Clin Invest 1997; 100:2333-40. [PMID: 9410912 PMCID: PMC508430 DOI: 10.1172/jci119772] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the extracellular deposition in the brain of aggregated beta-amyloid peptide, presumed to play a pathogenic role, and by preferential loss of neurons that express the 75-kD neurotrophin receptor (p75NTR). Using rat cortical neurons and NIH-3T3 cell line engineered to stably express p75NTR, we find that the beta-amyloid peptide specifically binds the p75NTR. Furthermore, 3T3 cells expressing p75NTR, but not wild-type control cells lacking the receptor, undergo apoptosis in the presence of aggregated beta-amyloid. Normal neural crest-derived melanocytes that express physiologic levels of p75NTR undergo apoptosis in the presence of aggregated beta-amyloid, but not in the presence of control peptide synthesized in reverse. These data imply that neuronal death in Alzheimer's disease is mediated, at least in part, by the interaction of beta-amyloid with p75NTR, and suggest new targets for therapeutic intervention.
Collapse
|
research-article |
28 |
266 |
10
|
Sanchez NP, Pathak MA, Sato S, Fitzpatrick TB, Sanchez JL, Mihm MC. Melasma: a clinical, light microscopic, ultrastructural, and immunofluorescence study. J Am Acad Dermatol 1981; 4:698-710. [PMID: 6787100 DOI: 10.1016/s0190-9622(81)70071-9] [Citation(s) in RCA: 260] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Melasma is an acquired brown hypermelanosis of the face. Although it is thought that melasma is associated with multiple etiologic factors (pregnancy, gastric, racial, and endocrine), one of the primary causes of its exacerbation appears to be exposure to sunlight. Three patterns of melasma are recognized clinically: (1) a centrofacial pattern, (2) a malar pattern, and (3) a mandibular pattern. Examination of patients with Wood's light (320--400 nm) is useful in classifying the specific type of melasma in correlation with the localization of pigment granules (melanosomes) in the epidermis and dermis. Four types of melasma are described on the basis of Wood's light examination: (1) an epidermal type, (2) a dermal type, (3) a mixed type, and (4) a fourth type, described in patients of dark complexion, in which the lesions, for lack of contrast, are not discernible on Wood's light examination, perhaps due to the increased number of melanosomes in the normal skin of black individuals. Light, histochemical, and electron microscopic studies revealed an increase in number and activity of type-specific melanocytes which appeared to be engaged in increased formation, melanization, and transfer of pigment granules (melanosomes) to the epidermis as well as to the dermis. The melanocyte seems to undergo a functional alteration brought about by a combination of multiple factors, including persistent sun exposure, hormonal factors, and genetic predisposition.
Collapse
|
|
44 |
260 |
11
|
Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V, Bennett F, Pollock PM, Trent JM, Hendrix MJC, Rizzo P, Miele L, Nickoloff BJ. Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res 2005; 65:6282-93. [PMID: 16024630 DOI: 10.1158/0008-5472.can-05-0676] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with metastatic melanoma or multiple myeloma have a dismal prognosis because these aggressive malignancies resist conventional treatment. A promising new oncologic approach uses molecularly targeted therapeutics that overcomes apoptotic resistance and, at the same time, achieves tumor selectivity. The unexpected selectivity of proteasome inhibition for inducing apoptosis in cancer cells, but not in normal cells, prompted us to define the mechanism of action for this class of drugs, including Food and Drug Administration-approved bortezomib. In this report, five melanoma cell lines and a myeloma cell line are treated with three different proteasome inhibitors (MG-132, lactacystin, and bortezomib), and the mechanism underlying the apoptotic pathway is defined. Following exposure to proteasome inhibitors, effective killing of human melanoma and myeloma cells, but not of normal proliferating melanocytes, was shown to involve p53-independent induction of the BH3-only protein NOXA. Induction of NOXA at the protein level was preceded by enhanced transcription of NOXA mRNA. Engagement of mitochondrial-based apoptotic pathway involved release of cytochrome c, second mitochondria-derived activator of caspases, and apoptosis-inducing factor, accompanied by a proteolytic cascade with processing of caspases 9, 3, and 8 and poly(ADP)-ribose polymerase. Blocking NOXA induction using an antisense (but not control) oligonucleotide reduced the apoptotic response by 30% to 50%, indicating a NOXA-dependent component in the overall killing of melanoma cells. These results provide a novel mechanism for overcoming the apoptotic resistance of tumor cells, and validate agents triggering NOXA induction as potential selective cancer therapeutics for life-threatening malignancies such as melanoma and multiple myeloma.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
257 |
12
|
Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, Bae H. Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 2007; 20:921-34. [PMID: 16841367 DOI: 10.1002/ptr.1954] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The type and amount of melanin synthesized by the melanocyte, and its distribution pattern in the surrounding keratinocytes, determines the actual color of the skin. Melanin forms through a series of oxidative reactions involving the amino acid tyrosine in the presence of the enzyme tyrosinase. Tyrosinase catalyses three different reactions in the biosynthetic pathway of melanin in melanocytes: the hydroxylation of tyrosine to l-DOPA and the oxidation of l-DOPA to dopaquinone; furthermore, in humans, dopaquinone is converted by a series of complex reactions to melanin. Among the skin-lightening and depigmenting agents, magnesium-l-ascorbyl-2-phosphate (MAP), hydroxyanisole, N-acetyl-4-S-cysteaminylphenol, arbutin (hydroquinone-beta-d-glucopyranoside) and hydroquinone (HQ) are the most widely prescribed worldwide. However, with reports of potential mutagenicity and epidemics of ochronosis, there has been an increasing impetus to find alternative herbal and pharmaceutical depigmenting agents. A review of the literature reveals that numerous other depigmenting or skin-lightening agents are either in use or in investigational stages. Some of these, such as kojic, glycolic and azelaic acids, are well known to most dermatologists. Others have been discovered and reported in the literature more recently. Several depigmentation and lightening agents are discussed, including their historical background, biochemical characteristics, type of inhibition and activators from various sources. In addition, the clinical importance of mushroom tyrosinase as a recent prospect is discussed in this paper.
Collapse
|
Review |
18 |
247 |
13
|
Hakozaki T, Minwalla L, Zhuang J, Chhoa M, Matsubara A, Miyamoto K, Greatens A, Hillebrand GG, Bissett DL, Boissy RE. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol 2002; 147:20-31. [PMID: 12100180 DOI: 10.1046/j.1365-2133.2002.04834.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cutaneous hyperpigmentation occurs in multiple conditions. In addition, many Asian women desire a lighter skin colour. Thus, there is a need for the development of skin lightening agents. Niacinamide is a possible candidate. OBJECTIVES To investigate the effects of niacinamide on melanogenesis in vitro and on facial hyperpigmentation and skin colour in vivo in Japanese women. METHODS Melanin production was measured in a purified mushroom tyrosinase assay, cultured melanocytes, a keratinocyte/melanocyte coculture model, and a pigmented reconstructed epidermis (PREP) model. The clinical trials included 18 subjects with hyperpigmentation who used 5% niacinamide moisturizer and vehicle moisturizer in a paired design, and 120 subjects with facial tanning who were assigned to two of three treatments: vehicle, sunscreen and 2% niacinamide + sunscreen. Changes in facial hyperpigmentation and skin colour were objectively quantified by computer analysis and visual grading of high-resolution digital images of the face. RESULTS Niacinamide had no effect on the catalytic activity of mushroom tyrosinase or on melanogenesis in cultured melanocytes. However, niacinamide gave 35-68% inhibition of melanosome transfer in the coculture model and reduced cutaneous pigmentation in the PREP model. In the clinical studies, niacinamide significantly decreased hyperpigmentation and increased skin lightness compared with vehicle alone after 4 weeks of use. CONCLUSIONS The data suggest niacinamide is an effective skin lightening compound that works by inhibiting melanosome transfer from melanocytes to keratinocytes.
Collapse
|
Clinical Trial |
23 |
240 |
14
|
Khatib S, Nerya O, Musa R, Shmuel M, Tamir S, Vaya J. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorg Med Chem 2005; 13:433-41. [PMID: 15598564 DOI: 10.1016/j.bmc.2004.10.010] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Accepted: 10/06/2004] [Indexed: 11/23/2022]
Abstract
Compounds, which inhibit tyrosinase, could be effective as depigmenting agents. We have introduced a group of mono-, di-, tri- and tetra-substituted hydroxychalcones as effective tyrosinase inhibitors, showing that the most important factor determining tyrosinase inhibition efficiency is the position of the hydroxyl group(s) rather their number. The aim of the present study was to investigate the contribution of the different functional groups of the tetrahydroxychalcones to their inhibitory potency, with a view to optimizing the design of whitening agents. Four tetrahydroxychalcones were evaluated, the commercially available Butein and other three were synthesized, and their inhibitory effect on tyrosinase was tested. Results showed that a 2,4-substituted resorcinol subunit on ring B contributed the most to inhibitory potency. Changing the resorcinol substitute to position 3,5- or placing it on ring A significantly diminished the inhibitory effect of the compounds. A catechol subunit on ring A acted as a metal chelator (in the presence of copper ions) and as a competitive inhibitor (in the presence of tyrosinase), while a catechol on ring B oxidized to o-quinone (in the presence of both copper ions and tyrosinase). Three of the compounds also demonstrated antioxidant activity, which may contribute to the prevention of pigmentation. An examination of correlations between inhibitory activity and physical properties of the chalcones tested (such as dissociation energy and molecular planarity) showed positive correlation with the moment dipole value in the Y-axis, which may be used as an indicator of the inhibitory potential of new molecules. The present study revealed two very active tyrosinase inhibitors, 2,4,3',4'-hydroxychalcone and 2,4,2',4'-hydroxychalcone (with IC50 of 0.2 and 0.02 microM, respectively). Structure-related activity studies added some understanding of the role and contribution of different functional groups associated with tyrosinase inhibitors.
Collapse
|
Journal Article |
20 |
236 |
15
|
Curto EV, Kwong C, Hermersdörfer H, Glatt H, Santis C, Virador V, Hearing VJ, Dooley TP. Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 1999; 57:663-72. [PMID: 10037452 DOI: 10.1016/s0006-2952(98)00340-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To discover safe and effective topical skin-lightening agents, we have evaluated alkyl esters of the natural product gentisic acid (GA), which is related to our lead compound methyl gentisate (MG), and four putative tyrosinase inhibitors, utilizing mammalian melanocyte cell cultures and cell-free extracts. Desirable characteristics include the ability to inhibit melanogenesis in cells (IC50 < 100 microg/mL) without cytotoxicity, preferably due to tyrosinase inhibition. Of the six esters synthesized, the smaller esters (e.g. methyl and ethyl) were more effective enzyme inhibitors (IC50 approximately 11 and 20 microg/mL, respectively). For comparison, hydroquinone (HQ), a commercial skin "bleaching" agent, was a less effective enzyme inhibitor (IC50 approximately 72 microg/mL), and was highly cytotoxic to melanocytes in vitro at concentrations substantially lower than the IC50 for enzymatic inhibition. Kojic acid was a potent inhibitor of the mammalian enzyme (IC50 approximately 6 microg/mL), but did not reduce pigmentation in cells. Both arbutin and magnesium ascorbyl phosphate were ineffective in the cell-free and cell-based assays. MG at 100 microg/mL exhibited a minimal inhibitory effect on DHICA oxidase (TRP 1) and no effect on DOPAchrome tautomerase (TRP-2), suggesting that MG inhibits melanogenesis primarily via tyrosinase inhibition. MG and GA were non-mutagenic at the hprt locus in V79 Chinese hamster cells, whereas HQ was highly mutagenic and cytotoxic. The properties of MG in vitro, including (1) pigmentation inhibition in melanocytes, (2) tyrosinase inhibition and selectivity, (3) reduced cytotoxicity relative to HQ, and (4) lack of mutagenic potential in mammalian cells, establish MG as a superior candidate skin-lightening agent.
Collapse
|
Comparative Study |
26 |
220 |
16
|
Blázquez C, Carracedo A, Barrado L, Real PJ, Fernández-Luna JL, Velasco G, Malumbres M, Guzmán M. Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J 2006; 20:2633-5. [PMID: 17065222 DOI: 10.1096/fj.06-6638fje] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Melanoma causes the greatest number of skin cancer-related deaths worldwide. Despite intensive research, prevention and early detection are the only effective measures against melanoma, so new therapeutic strategies are necessary for the management of this devastating disease. Here, we evaluated the efficacy of cannabinoid receptor agonists, a new family of potential antitumoral compounds, at skin melanoma. Human melanomas and melanoma cell lines express CB1 and CB2 cannabinoid receptors. Activation of these receptors decreased growth, proliferation, angiogenesis and metastasis, and increased apoptosis, of melanomas in mice. Cannabinoid antimelanoma activity was independent of the immune status of the animal, could be achieved without overt psychoactive effects and was selective for melanoma cells vs. normal melanocytes. Cannabinoid antiproliferative action on melanoma cells was due, at least in part, to cell cycle arrest at the G1-S transition via inhibition of the prosurvival protein Akt and hypophosphorylation of the pRb retinoblastoma protein tumor suppressor. These findings may contribute to the design of new chemotherapeutic strategies for the management of melanoma.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Cannabinoids/therapeutic use
- Cell Cycle
- Cell Line, Tumor
- Gene Expression Regulation
- Humans
- Melanocytes/drug effects
- Melanoma/drug therapy
- Mice
- Neovascularization, Pathologic/drug therapy
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
|
|
19 |
214 |
17
|
Abstract
To find novel skin-whitening agents, the melanogenesis inhibitory action of gallic acid (GA) was investigated. In this current study, the effects of GA on mushroom tyrosinase, tyrosinase inhibitory activity, and melanin content were assessed in B16 melanoma cells (B16 cells). Results indicated that GA has a strong antityrosinase activity (IC50=3.59x10(-6) M). Furthermore, data on murine tyrosinase activity and melanin biosynthesis revealed that GA effectively suppressed murine tyrosinase action and the amount of melanin. To investigate the relation between GA's inhibition of melanogenesis and antioxidant activity, the effect of GA on reactive species (RS) generation and the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in were determined in B16 cells. Results indicated that GA effectively down-regulated the RS generation and enhanced the GSH/GSSG ratio. Based on these results, I propose that GA exerts antimelanogenic activity coupled with antioxidant properties by suppressing RS generation and maintaining a higher GSH/GSSG ratio.
Collapse
|
|
18 |
210 |
18
|
Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, Cadet J, Douki T, Mouret S, Tucker MA, Popratiloff A, Merlino G, De Fabo EC. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun 2012; 3:884. [PMID: 22673911 PMCID: PMC3621412 DOI: 10.1038/ncomms1893] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/08/2012] [Indexed: 11/09/2022] Open
Abstract
Malignant melanoma of the skin (CMM) is associated with ultraviolet radiation exposure, but the mechanisms and even the wavelengths responsible are unclear. Here we use a mammalian model to investigate melanoma formed in response to precise spectrally defined ultraviolet wavelengths and biologically relevant doses. We show that melanoma induction by ultraviolet A (320-400 nm) requires the presence of melanin pigment and is associated with oxidative DNA damage within melanocytes. In contrast, ultraviolet B radiation (280-320 nm) initiates melanoma in a pigment-independent manner associated with direct ultraviolet B DNA damage. Thus, we identified two ultraviolet wavelength-dependent pathways for the induction of CMM and describe an unexpected and significant role for melanin within the melanocyte in melanomagenesis.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
209 |
19
|
Kadekaro AL, Kavanagh R, Kanto H, Terzieva S, Hauser J, Kobayashi N, Schwemberger S, Cornelius J, Babcock G, Shertzer HG, Scott G, Abdel-Malek ZA. alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res 2005; 65:4292-9. [PMID: 15899821 DOI: 10.1158/0008-5472.can-04-4535] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UV radiation is an important etiologic factor for skin cancer, including melanoma. Constitutive pigmentation and the ability to tan are considered the main photoprotective mechanism against sun-induced carcinogenesis. Pigmentation in the skin is conferred by epidermal melanocytes that synthesize and transfer melanin to keratinocytes. Therefore, insuring the survival and genomic stability of epidermal melanocytes is critical for inhibiting photocarcinogenesis, particularly melanoma, the most deadly form of skin cancer. The paracrine factors alpha-melanocortin and endothelin-1 are critical for the melanogenic response of cultured human melanocytes to UV radiation. We report that alpha-melanocortin and endothelin-1 rescued human melanocytes from UV radiation-induced apoptosis and reduced DNA photoproducts and oxidative stress. The survival effects of alpha-melanocortin and endothelin-1 were mediated by activation of the melanocortin 1 and endothelin receptors, respectively. Treatment of melanocytes with alpha-melanocortin and/or endothelin-1 before exposure to UV radiation activated the inositol triphosphate kinase-Akt pathway and increased the phosphorylation and expression of the microphthalmia-related transcription factor. Treatment with alpha-melanocortin and/or endothelin-1 enhanced the repair of cyclobutane pyrimidine dimers and reduced the levels of hydrogen peroxide induced by UV radiation. These effects are expected to reduce genomic instability and mutagenesis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
207 |
20
|
Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, Arnheiter H. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 1997; 124:2377-86. [PMID: 9199364 DOI: 10.1242/dev.124.12.2377] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The more than 20 different Mitf mutations in the mouse are all associated with deficiencies in neural crest-derived melanocytes that range from minor functional disturbances with some alleles to complete absence of mature melanocytes with others. In the trunk region of wild-type embryos, Mitf-expressing cells that coexpressed the melanoblast marker Dct and the tyrosine kinase receptor Kit were found in the dorsolateral neural crest migration pathway. In contrast, in embryos homozygous for an Mitf allele encoding a non-functional Mitf protein, Mitf-expressing cells were extremely rare, no Dct expression was ever found, and the number of Kit-expressing cells was much reduced. Wild-type neural crest cell cultures rapidly gave rise to cells that expressed Mitf and coexpressed Kit and Dct. With time in culture, Kit expression was increased, and pigmented, dendritic cells developed. Addition of the Kit ligand Mgf or endothelin 3 or a combination of these factors all rapidly increased the number of Dct-positive cells. Cultures from Mitf mutant embryos initially displayed Mitf-positive cells similar in numbers and Kit-expression as did wild-type cultures. However, Kit expression did not increase with time in culture and the mutant cells never responded to Mgf or endothelin 3, did not express Dct, and never showed pigment. In fact, even Mitf expression was rapidly lost. The results suggest that Mitf first plays a role in promoting the transition of precursor cells to melanoblasts and subsequently, by influencing Kit expression, melanoblast survival.
Collapse
|
|
28 |
205 |
21
|
Abstract
Various drugs and other chemicals, such as organic amines, metals, polycyclic aromatic hydrocarbons, etc., are bound to melanin and retained in pigmented tissues for long periods. The physiological significance of the binding is not evident, but it has been suggested that the melanin protects the pigmented cells and adjacent tissues by adsorbing potentially harmful substances, which then are slowly released in nontoxic concentrations. Long-term exposure, on the other hand, may build up high levels of noxious chemicals, stored on the melanin, which ultimately may cause degeneration in the melanin-containing cells, and secondary lesions in surrounding tissues. In the eye, e.g., and in the inner ear, the pigmented cells are located close to the receptor cells, and melanin binding may be an important factor in the development of some ocular and inner ear lesions. In the brain, neuromelanin is present in nerve cells in the extrapyramidal system, and the melanin affinity of certain neurotoxic agents may be involved in the development of parkinsonism, and possibly tardive dyskinesia. In recent years, various carcinogenic compounds have been found to accumulate selectively in the pigment cells of experimental animals, and there are many indications of a connection between the melanin affinity of these agents and the induction of malignant melanoma.
Collapse
|
Review |
32 |
205 |
22
|
Gangi Setty SR, Tenza D, Sviderskaya EV, Bennett DC, Raposo G, Marks MS. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 2008; 454:1142-6. [PMID: 18650808 PMCID: PMC2812007 DOI: 10.1038/nature07163] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 06/10/2008] [Indexed: 11/08/2022]
Abstract
Copper is a cofactor for many cellular enzymes and transporters. It can be loaded onto secreted and endomembrane cuproproteins by translocation from the cytosol into membrane-bound organelles by ATP7A or ATP7B transporters, the genes for which are mutated in the copper imbalance syndromes Menkes disease and Wilson disease, respectively. Endomembrane cuproproteins are thought to incorporate copper stably on transit through the trans-Golgi network, in which ATP7A accumulates by dynamic cycling through early endocytic compartments. Here we show that the pigment-cell-specific cuproenzyme tyrosinase acquires copper only transiently and inefficiently within the trans-Golgi network of mouse melanocytes. To catalyse melanin synthesis, tyrosinase is subsequently reloaded with copper within specialized organelles called melanosomes. Copper is supplied to melanosomes by ATP7A, a cohort of which localizes to melanosomes in a biogenesis of lysosome-related organelles complex-1 (BLOC-1)-dependent manner. These results indicate that cell-type-specific localization of a metal transporter is required to sustain metallation of an endomembrane cuproenzyme, providing a mechanism for exquisite spatial control of metalloenzyme activity. Moreover, because BLOC-1 subunits are mutated in subtypes of the genetic disease Hermansky-Pudlak syndrome, these results also show that defects in copper transporter localization contribute to hypopigmentation, and hence perhaps other systemic defects, in Hermansky-Pudlak syndrome.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
202 |
23
|
Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S, Grammatico P, Picardo M. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 1997; 109:310-3. [PMID: 9284096 DOI: 10.1111/1523-1747.ep12335801] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To examine the sensitivity of vitiligo melanocytes to external oxidative stress, we studied enzymatic and non-enzymatic anti-oxidants in cultured melanocytes of normal subjects (n = 20) and melanocytes from apparently normal skin of vitiligo patients (n = 10). The activity of superoxide dismutase and catalase and the intracellular concentrations of vitamin E and ubiquinone were evaluated in cultures at the fourth or fifth passage. In addition, cells were exposed to various concentrations of a peroxidizing agent, cumene hydroperoxide (CUH, 0.66-20 microM), for 1 and 24 h. Compared to normal melanocytes, vitiligo melanocytes showed normal superoxide dismutase and significantly lower catalase activities and higher vitamin E and lower ubiquinone levels. At the concentration used, CUH did not significantly affect cell number or viability of melanocytes after either period of culture. On the contrary, vitiligo melanocytes were susceptible to the toxic effect of CUH after 24 h of continuous treatment at concentrations greater than 6.6 microM. The degree of CUH toxicity correlated strictly with the anti-oxidant pattern, defined as the ratio between vitamin E concentration and catalase activity, suggesting that the alteration in the antioxidants was the basis for sensitivity to the external oxidative stress. Our results demonstrate the presence of an imbalance in the anti-oxidant system in vitiligo melanocytes and provide further support for a free radical-mediated damage as an initial pathogenic event in melanocyte degeneration in vitiligo.
Collapse
|
|
28 |
199 |
24
|
Nerya O, Vaya J, Musa R, Izrael S, Ben-Arie R, Tamir S. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:1201-7. [PMID: 12590456 DOI: 10.1021/jf020935u] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tyrosinase is known to be a key enzyme in melanin biosynthesis, involved in determining the color of mammalian skin and hair. Various dermatological disorders, such as melasama, age spots, and sites of actinic damage, arise from the accumulation of an excessive level of epidermal pigmentation. The inadequacy of current therapies to treat these conditions as well as high cytotoxicity and mutagenicity, poor skin penetration, and low stability of formulations led us to seek new whitening agents to meet the medical requirements for depigmenting agents. The inhibitory effect of licorice extract on tyrosinase activity was higher than that expected from the level of glabridin in the extract. This led us to test for other components that may contribute to this strong inhibitory activity. Results indicated that glabrene and isoliquiritigenin (2',4',4-trihydroxychalcone) in the licorice extract can inhibit both mono- and diphenolase tyrosinase activities. The IC(50) values for glabrene and isoliquiritigenin were 3.5 and 8.1 microM, respectively, when tyrosine was used as substrate. The effects of glabrene and isoliquiritigenin on tyrosinase activity were dose-dependent and correlated to their ability to inhibit melanin formation in melanocytes. This is the first study indicating that glabrene and isoliquiritigenin exert varying degrees of inhibition on tyrosinase-dependent melanin biosynthesis, suggesting that isoflavenes and chalcones may serve as candidates for skin-lightening agents.
Collapse
|
|
22 |
197 |
25
|
Abstract
Although the ability of UV irradiation to induce pigmentation in vivo and in vitro is well documented, the intracellular signals that trigger this response are poorly understood. We have recently shown that increasing DNA repair after irradiation enhances UV-induced melanization. Moreover, addition of small DNA fragments, particularly thymine dinucleotides (pTpT), selected to mimic sequences excised during the repair of UV-induced DNA photoproducts, to unirradiated pigment cells in vitro or to guinea pig skin in vivo induces a pigment response indistinguishable from UV-induced tanning. Here we present further evidence that DNA damage and/or the repair of this damage increases melanization. (i) Treatment with the restriction enzyme Pvu II or the DNA-damaging chemical agents methyl methanesulfonate (MMS) or 4-nitroquinoline 1-oxide (4-NQO) produces a 4- to 10-fold increase in melanin content in Cloudman S91 murine melanoma cells and an up to 70% increase in normal human melanocytes, (ii) UV irradiation, MMS, and pTpT all upregulate the mRNA level for tyrosinase, the rate-limiting enzyme in melanin biosynthesis. (iii) Treatment with pTpT or MMS increases the response of S91 cells to melanocyte-stimulating hormone (MSH) and increases the binding of MSH to its cell surface receptor, as has been reported for UV irradiation. Together, these data suggest that UV-induced DNA damage and/or the repair of this damage is an important signal in the pigmentation response to UV irradiation. Because Pvu II acts exclusively on DNA and because MMS and 4-NQO, at the concentrations used, primarily interact with DNA, such a stimulus alone appears sufficient to induce melanogenesis. Of possible practical importance, the dinucleotide pTpT mimics most, if not all, of the effects of UV irradiation on pigmentation, tyrosinase mRNA regulation, and response to MSH without the requirement for antecedent DNA damage.
Collapse
|
research-article |
29 |
195 |