1
|
Goniewicz ML, Smith DM, Edwards KC, Blount BC, Caldwell KL, Feng J, Wang L, Christensen C, Ambrose B, Borek N, van Bemmel D, Konkel K, Erives G, Stanton CA, Lambert E, Kimmel HL, Hatsukami D, Hecht SS, Niaura RS, Travers M, Lawrence C, Hyland AJ. Comparison of Nicotine and Toxicant Exposure in Users of Electronic Cigarettes and Combustible Cigarettes. JAMA Netw Open 2018; 1:e185937. [PMID: 30646298 PMCID: PMC6324349 DOI: 10.1001/jamanetworkopen.2018.5937] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Use of electronic cigarettes (e-cigarettes) is increasing. Measures of exposure to known tobacco-related toxicants among e-cigarette users will inform potential health risks to individual product users. OBJECTIVES To estimate concentrations of tobacco-related toxicants among e-cigarette users and compare these biomarker concentrations with those observed in combustible cigarette users, dual users, and never tobacco users. DESIGN, SETTING, AND PARTICIPANTS A population-based, longitudinal cohort study was conducted in the United States in 2013-2014. Cross-sectional analysis was performed between November 4, 2016, and October 5, 2017, of biomarkers of exposure to tobacco-related toxicants collected by the Population Assessment of Tobacco and Health Study. Participants included adults who provided a urine sample and data on tobacco use (N = 5105). EXPOSURES The primary exposure was tobacco use, including current exclusive e-cigarette users (n = 247), current exclusive cigarette smokers (n = 2411), and users of both products (dual users) (n = 792) compared with never tobacco users (n = 1655). MAIN OUTCOMES AND MEASURES Geometric mean concentrations of 50 individual biomarkers from 5 major classes of tobacco product constituents were measured: nicotine, tobacco-specific nitrosamines (TSNAs), metals, polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs). RESULTS Of the 5105 participants, most were aged 35 to 54 years (weighted percentage, 38%; 95% CI, 35%-40%), women (60%; 95% CI, 59%-62%), and non-Hispanic white (61%; 95% CI, 58%-64%). Compared with exclusive e-cigarette users, never users had 19% to 81% significantly lower concentrations of biomarkers of exposure to nicotine, TSNAs, some metals (eg, cadmium and lead), and some VOCs (including acrylonitrile). Exclusive e-cigarette users showed 10% to 98% significantly lower concentrations of biomarkers of exposure, including TSNAs, PAHs, most VOCs, and nicotine, compared with exclusive cigarette smokers; concentrations were comparable for metals and 3 VOCs. Exclusive cigarette users showed 10% to 36% lower concentrations of several biomarkers than dual users. Frequency of cigarette use among dual users was positively correlated with nicotine and toxicant exposure. CONCLUSIONS AND RELEVANCE Exclusive use of e-cigarettes appears to result in measurable exposure to known tobacco-related toxicants, generally at lower levels than cigarette smoking. Toxicant exposure is greatest among dual users, and frequency of combustible cigarette use is positively correlated with tobacco toxicant concentration. These findings provide evidence that using combusted tobacco cigarettes alone or in combination with e-cigarettes is associated with higher concentrations of potentially harmful tobacco constituents in comparison with using e-cigarettes alone.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
387 |
2
|
Padilla MA, Elobeid M, Ruden DM, Allison DB. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3332-47. [PMID: 20948927 PMCID: PMC2954548 DOI: 10.3390/ijerph7093332] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/09/2010] [Accepted: 08/23/2010] [Indexed: 01/17/2023]
Abstract
It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, whereas deficiencies of chromium, copper, iron, and magnesium increases adiposity. This study utilized the NHANES 99-02 data to explore the association between waist circumference and body mass index with the body burdens of selected toxic metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten). Some of the associations were significant direct relationships (barium and thallium), and some of the associations were significant inverse relationships (cadmium, cobalt, cesium, and lead). Molybdenum, antimony, and tungsten had mostly insignificant associations with waist circumference and body mass index. This is novel result for most of the toxic metals studied, and a surprising result for lead because high stored lead levels have been shown to correlate with higher rates of diabetes, and obesity may be a key risk factor for developing diabetes. These associations suggest the possibility that environmental exposure to metals may contribute to variations in human weight gain/loss. Future research, such as prospective studies rather than the cross-sectional studies presented here, is warranted to confirm these findings.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
173 |
3
|
Singh KP, Mohan D, Sinha S, Dalwani R. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. CHEMOSPHERE 2004; 55:227-55. [PMID: 14761695 DOI: 10.1016/j.chemosphere.2003.10.050] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 09/30/2003] [Accepted: 10/24/2003] [Indexed: 05/12/2023]
Abstract
Studies were undertaken to assess the impact of wastewater/sludge disposal (metals and pesticides) from sewage treatment plants (STPs) in Jajmau, Kanpur (5 MLD) and Dinapur, Varanasi (80 MLD), on health, agriculture and environmental quality in the receiving/application areas around Kanpur and Varanasi in Uttar Pradesh, India. The raw, treated and mixed treated urban wastewater samples were collected from the inlet and outlet points of the plants during peak (morning and evening) and non-peak (noon) hours. The impact of the treated wastewater toxicants (metals and pesticides) on the environmental quality of the disposal area was assessed in terms of their levels in different media samples viz., water, soil, crops, vegetation, and food grains. The data generated show elevated levels of metals and pesticides in all the environmental media, suggesting a definite adverse impact on the environmental quality of the disposal area. The critical levels of the heavy metals in the soil for agricultural crops are found to be much higher than those observed in the study areas receiving no effluents. The sludge from the STPs has both positive and negative impacts on agriculture as it is loaded with high levels of toxic heavy metals and pesticides, but also enriched with several useful ingredients such as N, P, and K providing fertilizer values. The sludge studied had cadmium, chromium and nickel levels above tolerable levels as prescribed for agricultural and lands application. Bio-monitoring of the metals and pesticides levels in the human blood and urine of the different population groups under study areas was undertaken. All the different approaches indicated a considerable risk and impact of heavy metals and pesticides on human health in the exposed areas receiving the wastewater from the STPs.
Collapse
|
Comparative Study |
21 |
165 |
4
|
Shapiro GD, Dodds L, Arbuckle TE, Ashley-Martin J, Fraser W, Fisher M, Taback S, Keely E, Bouchard MF, Monnier P, Dallaire R, Morisset A, Ettinger AS. Exposure to phthalates, bisphenol A and metals in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: The MIREC study. ENVIRONMENT INTERNATIONAL 2015; 83:63-71. [PMID: 26101084 DOI: 10.1016/j.envint.2015.05.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/11/2015] [Accepted: 05/24/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Studies from several countries report increases in rates of gestational diabetes mellitus (GDM) over recent decades. Exposure to environmental chemicals could contribute to this trend. OBJECTIVES To determine the associations between plasticisers and metals measured in early pregnancy with impaired glucose tolerance (IGT) and GDM in a Canadian pregnancy cohort. METHODS Women enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) Study were included if they had a singleton delivery and did not have pre-existing diabetes. Eleven phthalate metabolites and total bisphenol A (BPA) were measured in first-trimester urine samples, and four metals (lead, cadmium, mercury and arsenic) were measured in first-trimester blood samples. IGT and GDM were assessed in accordance with standard guidelines by chart review. Chemical concentrations were grouped by quartiles, and associations with outcomes were examined using logistic regression with adjustment for maternal age, race, pre-pregnancy BMI, and education. Restricted cubic spline analysis was performed to help assess linearity and nature of any dose-response relationships. RESULTS Of 2001 women recruited into the MIREC cohort, 1274 met the inclusion criteria and had outcome data and biomonitoring data measured for at least one of the chemicals we examined. Elevated odds of GDM were observed in the highest quartile of arsenic exposure (OR = 3.7, 95% CI = 1.4-9.6) in the adjusted analyses. A significant dose-response relationship was observed in a cubic spline model between arsenic and odds of GDM (p < 0.01). No statistically significant associations were observed between phthalates or BPA or other metals with IGT or GDM. CONCLUSIONS Our findings add to the growing body of evidence supporting the role of maternal arsenic exposure as a risk factor for gestational diabetes.
Collapse
|
|
10 |
158 |
5
|
|
Review |
25 |
150 |
6
|
Abstract
UNLABELLED Our objective was to evaluate the relationship of urine metals including barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, tungsten, and uranium with diabetes prevalence. Data were from a cross-sectional study of 9,447 participants of the 1999-2010 National Health and Nutrition Examination Survey, a representative sample of the U.S. civilian noninstitutionalized population. Metals were measured in a spot urine sample, and diabetes status was determined based on a previous diagnosis or an A1C ≥6.5% (48 mmol/mol). After multivariable adjustment, the odds ratios of diabetes associated with the highest quartile of metal, compared with the lowest quartile, were 0.86 (95% CI 0.66-1.12) for barium (Ptrend = 0.13), 0.74 (0.51-1.09) for cadmium (Ptrend = 0.35), 1.21 (0.85-1.72) for cobalt (Ptrend = 0.59), 1.31 (0.90-1.91) for cesium (Ptrend = 0.29), 1.76 (1.24-2.50) for molybdenum (Ptrend = 0.01), 0.79 (0.56-1.13) for lead (Ptrend = 0.10), 1.72 (1.27-2.33) for antimony (Ptrend < 0.01), 0.76 (0.51-1.13) for thallium (Ptrend = 0.13), 2.18 (1.51-3.15) for tungsten (Ptrend < 0.01), and 1.46 (1.09-1.96) for uranium (Ptrend = 0.02). Higher quartiles of barium, molybdenum, and antimony were associated with greater HOMA of insulin resistance after adjustment. Molybdenum, antimony, tungsten, and uranium were positively associated with diabetes, even at the relatively low levels seen in the U.S. POPULATION Prospective studies should further evaluate metals as risk factors for diabetes.
Collapse
|
research-article |
9 |
129 |
7
|
Gardner RM, Kippler M, Tofail F, Bottai M, Hamadani J, Grandér M, Nermell B, Palm B, Rasmussen KM, Vahter M. Environmental exposure to metals and children's growth to age 5 years: a prospective cohort study. Am J Epidemiol 2013; 177:1356-67. [PMID: 23676282 PMCID: PMC3676155 DOI: 10.1093/aje/kws437] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this prospective cohort study, based on 1,505 mother-infant pairs in rural Bangladesh, we evaluated the associations between early-life exposure to arsenic, cadmium, and lead, assessed via concentrations in maternal and child urine, and children's weights and heights up to age 5 years, during the period 2001–2009. Concurrent and prenatal exposures were evaluated using linear regression analysis, while longitudinal exposure was assessed using mixed-effects linear regression. An inverse association was found between children's weight and height, age-adjusted z scores, and growth velocity at age 5 years and concurrent exposure to cadmium and arsenic. In the longitudinal analysis, multivariable-adjusted attributable differences in children's weight at age 5 years were −0.33 kg (95% confidence interval (CI): −0.60, −0.06) for high (≥95th percentile) arsenic exposure and −0.57 kg (95% CI: −0.88, −0.26) for high cadmium exposure, in comparison with children with the lowest exposure (≤5th percentile). Multivariable-adjusted attributable differences in height were −0.50 cm (95% CI: −1.20, 0.21) for high arsenic exposure and −1.6 cm (95% CI: −2.4, −0.77) for high cadmium exposure. The associations were apparent primarily among girls. The negative effects on children's growth at age 5 years attributable to arsenic and cadmium were of similar magnitude to the difference between girls and boys in terms of weight (−0.67 kg, 95% CI: −0.82, −0.53) and height (−1.3 cm, 95% CI: −1.7, −0.89).
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
125 |
8
|
Feng W, He X, Chen M, Deng S, Qiu G, Li X, Liu C, Li J, Deng Q, Huang S, Wang T, Dai X, Yang B, Yuan J, He M, Zhang X, Chen W, Kan H, Wu T. Urinary metals and heart rate variability: a cross-sectional study of urban adults in Wuhan, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:217-22. [PMID: 25356836 PMCID: PMC4348740 DOI: 10.1289/ehp.1307563] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Epidemiological studies have suggested an association between external estimates of exposure to metals in air particles and altered heart rate variability (HRV). However, studies on the association between internal assessments of metals exposure and HRV are limited. OBJECTIVES The purpose of this study was to examine the potential association between urinary metals and HRV among residents of an urban community in Wuhan, China. METHODS We performed a cross-sectional analysis of 23 urinary metals and 5-min HRV indices (SDNN, standard deviation of normal-to-normal intervals; r-MSSD, root mean square of successive differences in adjacent normal-to-normal intervals; LF, low frequency; HF, high frequency; TP, total power) using baseline data on 2,004 adult residents of Wuhan. RESULTS After adjusting for other metals, creatinine, and other covariates, natural log-transformed urine titanium concentration was positively associated with all HRV indices (all p < 0.05). Moreover, we estimated negative associations between cadmium and r-MSSD, LF, HF, and TP; between lead and r-MSSD, HF, and TP; and between iron, copper, and arsenic and HF, SDNN, and LF, respectively, based on models adjusted for other metals, creatinine, and covariates (all p < 0.10). Several associations differed according to cardiovascular disease risk factors. For example, negative associations between cadmium and r-MSSD were stronger among participants ≤ 52 years of age (vs. > 52), current smokers (vs. nonsmokers), body mass index < 25 kg/m2 (vs. ≥ 25), and among those who were not hypertensive. CONCLUSIONS Urine concentrations of several metals were associated with HRV parameters in our cross-sectional study population. These findings need replication in other studies with adequate sample sizes.
Collapse
|
research-article |
10 |
104 |
9
|
Gregus Z, Klaassen CD. Disposition of metals in rats: a comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals. Toxicol Appl Pharmacol 1986; 85:24-38. [PMID: 3726885 DOI: 10.1016/0041-008x(86)90384-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fecal (0-4 days), urinary (0-4 days), and biliary (0-2 hr) excretion and tissue distribution of 18 metals were examined in rats after iv administration. Total (fecal + urinary) excretion was relatively rapid (over 50% of dose in 4 days) for cobalt, silver, and manganese; was between 50 and 20% for copper, thallium, bismuth, lead, cesium, gold, zinc, mercury, selenium, and chromium; and was below 20% for arsenic, cadmium, iron methyl mercury, and tin. Feces was the predominant route of excretion for silver, manganese, copper, thallium, lead, zinc, cadmium, iron, and methyl mercury whereas urine was the predominant route of excretion for cobalt, cesium, gold, selenium, and chromium; while both excretion routes were equally important for bismuth, mercury, arsenic, and tin. Biliary excretion seems to be an important determinant for the fecal excretion of silver, arsenic, manganese, copper, selenium, cadmium, lead, bismuth, cobalt, and methyl mercury. Between 45 (silver) and 0.8% (methyl mercury) of the dosages administered of these metals was excreted into bile in 2 hr, and they exhibited high bile/plasma concentration ratios. The biliary excretion of copper, selenium, lead, and chromium did not increase proportionally with dosage, suggesting that the hepatobiliary transport of these metals is saturable. The fraction of dosage excreted into bile was independent of the dosage for silver, arsenic, manganese, bismuth, methyl mercury, mercury, gold, cesium, thallium, and tin, but markedly increased with increase in dosage of cadmium, cobalt, zinc, and iron. The latter phenomenon is probably due to saturation of hepatic (cadmium, zinc) or extrahepatic (iron) metal-binding sites. Comparison of biliary and fecal excretion rates indicates that arsenic and selenium undergo intestinal reabsorption, whereas thallium and zinc enter the feces also by non-biliary routes. Most of the metals reached the highest concentration in liver and kidney. However, there was no direct relationship between the distribution of metals to these excretory organs and their primary route of excretion.
Collapse
|
Comparative Study |
39 |
103 |
10
|
Asante KA, Agusa T, Biney CA, Agyekum WA, Bello M, Otsuka M, Itai T, Takahashi S, Tanabe S. Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:63-73. [PMID: 22446112 DOI: 10.1016/j.scitotenv.2012.02.072] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/25/2012] [Accepted: 02/27/2012] [Indexed: 05/19/2023]
Abstract
To understand human contamination by multi-trace elements (TEs) in electrical and electronic waste (e-waste) recycling site at Agbogbloshie, Accra in Ghana, this study analyzed TEs and As speciation in urine of e-waste recycling workers. Concentrations of Fe, Sb, and Pb in urine of e-waste recycling workers were significantly higher than those of reference sites after consideration of interaction by age, indicating that the recycling workers are exposed to these TEs through the recycling activity. Urinary As concentration was relatively high, although the level in drinking water was quite low. Speciation analysis of As in human urine revealed that arsenobetaine and dimethylarsinic acid were the predominant As species and concentrations of both species were positively correlated with total As concentration as well as between each other. These results suggest that such compounds may be derived from the same source, probably fish and shellfish and greatly influence As exposure levels. To our knowledge, this is the first study on human contamination resulting from the primitive recycling of e-waste in Ghana. This study will contribute to the knowledge about human exposure to trace elements from an e-waste site in a less industrialized region so far scantly covered in the literature.
Collapse
|
|
13 |
102 |
11
|
Julander A, Lundgren L, Skare L, Grandér M, Palm B, Vahter M, Lidén C. Formal recycling of e-waste leads to increased exposure to toxic metals: an occupational exposure study from Sweden. ENVIRONMENT INTERNATIONAL 2014; 73:243-51. [PMID: 25300751 DOI: 10.1016/j.envint.2014.07.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Electrical and electronic waste (e-waste) contains multiple toxic metals. However, there is currently a lack of exposure data for metals on workers in formal recycling plants. The objective of this study was to evaluate workers' exposure to metals, using biomarkers of exposure in combination with monitoring of personal air exposure. We assessed exposure to 20 potentially toxic metals among 55 recycling workers and 10 office workers at three formal e-waste recycling plants in Sweden. Workers at two of the plants were followed-up after 6 months. We collected the inhalable fraction and OFC (37-mm) fraction of particles, using personal samplers, as well as spot samples of blood and urine. We measured metal concentrations in whole blood, plasma, urine, and air filters using inductively coupled plasma-mass spectrometry following acid digestion. The air sampling indicated greater airborne exposure, 10 to 30 times higher, to most metals among the recycling workers handling e-waste than among the office workers. The exposure biomarkers showed significantly higher concentrations of chromium, cobalt, indium, lead, and mercury in blood, urine, and/or plasma of the recycling workers, compared with the office workers. Concentrations of antimony, indium, lead, mercury, and vanadium showed close to linear associations between the inhalable particle fraction and blood, plasma, or urine. In conclusion, our study of formal e-waste recycling shows that workers performing recycling tasks are exposed to multiple toxic metals.
Collapse
|
|
11 |
100 |
12
|
Jin R, Zhu X, Shrubsole MJ, Yu C, Xia Z, Dai Q. Associations of renal function with urinary excretion of metals: Evidence from NHANES 2003-2012. ENVIRONMENT INTERNATIONAL 2018; 121:1355-1362. [PMID: 30442456 DOI: 10.1016/j.envint.2018.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Urinary metals are considered measures of long-term exposures of metals, such as cadmium (Cd). Some studies indicate reduced renal function may affect the urinary excretion of several metals in general population making assessments difficult. OBJECTIVES To examine whether reduced renal function is associated with reduced urinary excretion of 12 metals or their metabolites and, in turn, an underestimated measure of Cd in general population. METHODS We conducted analyses using data from the National Health and Nutrition Examination Survey (NHANES) 2003-2012. Multiple linear regression models were used to examine the associations between urinary metal levels and estimated glomerular filtration rate (eGFR). Restricted cubic spline regression models were used to evaluate the nonlinearity. RESULTS Urinary metal levels significantly increased (p < 0.001) with increasing eGFR, except for antimony (p = 0.172). Urinary levels of arsenic, dimethylarsonic acid, cobalt, molybdenum and tungsten increased linearly with eGFR, while Cd, lead, mercury, barium, cesium and thallium increased nonlinearly (p < 0.001) with eGFR. Based on a restricted cubic spline regression model, we found, corresponding to a fixed blood Cd adverse cutpoint of 5 μg/L, predicted urinary Cd cutpoints substantially varied from 0.78-1.21 μg/g for urinary Cd between those aged <40 years and who had chronic kidney disease and those aged 60 years or over with normal renal function, respectively. CONCLUSION Reduced renal function is associated with reduced urinary metals; and associations are also observed across the eGFR range not just in the reduced range. Urinary abnormal cutpoints of metals are likely dependent on eGFR and age. The associations between urinary exposure of metals and disease risk are likely underestimated without considering the modifying effect of renal function.
Collapse
|
|
7 |
97 |
13
|
Daniel J, Ziaee H, Pradhan C, Pynsent PB, McMinn DJW. Blood and urine metal ion levels in young and active patients after Birmingham hip resurfacing arthroplasty. ACTA ACUST UNITED AC 2007; 89:169-73. [PMID: 17322429 DOI: 10.1302/0301-620x.89b2.18519] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This is a longitudinal study of the daily urinary output and the concentrations in whole blood of cobalt and chromium in patients with metal-on-metal resurfacings over a period of four years. Twelve-hour urine collections and whole blood specimens were collected before and periodically after a Birmingham hip resurfacing in 26 patients. All ion analyses were carried out using a high-resolution inductively-coupled plasma mass spectrometer. Clinical and radiological assessment, hip function scoring and activity level assessment revealed excellent hip function. There was a significant early increase in urinary metal output, reaching a peak at six months for cobalt and one year for chromium post-operatively. There was thereafter a steady decrease in the median urinary output of cobalt over the following three years, although the differences are not statistically significant. The mean whole blood levels of cobalt and chromium also showed a significant increase between the pre-operative and one-year post-operative periods. The blood levels then decreased to a lower level at four years, compared with the one-year levels. This late reduction was statistically significant for chromium but not for cobalt. The effects of systemic metal ion exposure in patients with metal-on-metal resurfacing arthroplasties continue to be a matter of concern. The levels in this study provide a baseline against which the in vivo wear performance of newer bearings can be compared.
Collapse
|
|
18 |
93 |
14
|
Tellez-Plaza M, Tang WY, Shang Y, Umans JG, Francesconi KA, Goessler W, Ledesma M, Leon M, Laclaustra M, Pollak J, Guallar E, Cole SA, Fallin MD, Navas-Acien A. Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:946-54. [PMID: 24769358 PMCID: PMC4154208 DOI: 10.1289/ehp.1306674] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND The association between human blood DNA global methylation and global hydroxymethylation has not been evaluated in population-based studies. No studies have evaluated environmental determinants of global DNA hydroxymethylation, including exposure to metals. OBJECTIVE We evaluated the association between global DNA methylation and global DNA hydroxymethylation in 48 Strong Heart Study participants for which selected metals had been measured in urine at baseline and DNA was available from 1989-1991 (visit 1) and 1998-1999 (visit 3). METHODS We measured the percentage of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in samples using capture and detection antibodies followed by colorimetric quantification. We explored the association of participant characteristics (i.e., age, adiposity, smoking, and metal exposure) with both global DNA methylation and global DNA hydroxymethylation. RESULTS The Spearman's correlation coefficient for 5-mC and 5-hmC levels was 0.32 (p = 0.03) at visit 1 and 0.54 (p < 0.001) at visit 3. Trends for both epigenetic modifications were consistent across potential determinants. In cross-sectional analyses, the odds ratios of methylated and hydroxymethylated DNA were 1.56 (95% CI: 0.95, 2.57) and 1.76 (95% CI: 1.07, 2.88), respectively, for the comparison of participants above and below the median percentage of dimethylarsinate. The corresponding odds ratios were 1.64 (95% CI: 1.02, 2.65) and 1.16 (95% CI: 0.70, 1.94), respectively, for the comparison of participants above and below the median cadmium level. Arsenic exposure and metabolism were consistently associated with both epigenetic markers in cross-sectional and prospective analyses. The positive correlation of 5-mC and 5-hmC levels was confirmed in an independent study population. CONCLUSIONS Our findings support that both epigenetic measures are related at the population level. The consistent trends in the associations between these two epigenetic modifications and the characteristics evaluated, especially arsenic exposure and metabolism, suggest the need for understanding which of the two measures is a better biomarker for environmental epigenetic effects in future large-scale epidemiologic studies.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
93 |
15
|
Callan AC, Hinwood AL, Ramalingam M, Boyce M, Heyworth J, McCafferty P, Odland JØ. Maternal exposure to metals--concentrations and predictors of exposure. ENVIRONMENTAL RESEARCH 2013; 126:111-7. [PMID: 23896418 DOI: 10.1016/j.envres.2013.07.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 05/18/2023]
Abstract
A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations of metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01-0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01-0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation.
Collapse
|
|
12 |
91 |
16
|
Jacobs JJ, Skipor AK, Campbell PA, Hallab NJ, Urban RM, Amstutz HC. Can metal levels be used to monitor metal-on-metal hip arthroplasties? J Arthroplasty 2004; 19:59-65. [PMID: 15578555 DOI: 10.1016/j.arth.2004.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this review, the prospects for using blood, serum, and/or urine metal levels for monitoring the performance of metal-on-metal hip arthroplasty systems are explored. This approach does have substantial potential for serving this function; however, the methodology is technically challenging and the interpretation of the values requires an extensive database with correlative clinical information. At this time, it is premature to recommend metal concentration analysis on a routine clinical basis for patients with metal-on-metal total hip arthroplasties. Nonetheless, metal concentration analysis remains a powerful research tool in the evaluation of metal-on-metal hip arthroplasty systems.
Collapse
|
Review |
21 |
89 |
17
|
Kim SS, Meeker JD, Carroll R, Zhao S, Mourgas MJ, Richards MJ, Aung M, Cantonwine DE, McElrath TF, Ferguson KK. Urinary trace metals individually and in mixtures in association with preterm birth. ENVIRONMENT INTERNATIONAL 2018; 121:582-590. [PMID: 30300816 PMCID: PMC6233299 DOI: 10.1016/j.envint.2018.09.052] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/29/2018] [Indexed: 05/20/2023]
Abstract
One in ten infants born in the United States is born preterm, or prior to 37 weeks gestation. Exposure to elevated levels of metals, such as lead and arsenic, has been linked to higher risk of preterm birth (PTB), but consequences of lower levels of exposure and less studied metals are unclear. We examined the associations between 17 urinary trace metals individually and in mixtures in relation to PTB. The LIFECODES birth cohort enrolled pregnant women at <15 weeks gestation at Brigham and Women's Hospital in Boston. We selected cases of PTB (n = 99) and unmatched controls (n = 291) and analyzed urine samples for a panel of trace metals (median: 26 weeks gestation). We used logistic regression models to calculate the odds ratio (OR) for PTB and subtypes of PTB based on presentation at delivery. Subtypes included spontaneous and placental PTB. We used elastic net (ENET) regularization to identify individual metals or pairwise interactions that had the strongest associations with PTB, and principal components analysis (PCA) to identify classes of exposures associated with the outcome. We observed increased odds of PTB (OR: 1.41, 95% Confidence Interval [CI]: 1.12, 1.78) in association with an interquartile range difference in urinary copper (Cu). We also observed an increased OR for selenium (OR: 1.33, 95% CI: 0.98, 1.81). ENET selected Cu as the most important trace metal associated with PTB. PCA identified 3 principal components (PCs) that roughly reflected exposure to toxic metals, essential metals, and metals with seafood as a common source of exposure. PCs reflecting essential metals were associated with increased odds of overall and spontaneous PTB. Maternal urinary copper in the third trimester was associated with increased risk of PTB, and statistical analyses for mixtures indicated that after accounting for correlation this metal was the most important statistical predictor of the outcome.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
89 |
18
|
Yang F, Yi X, Guo J, Xu S, Xiao Y, Huang X, Duan Y, Luo D, Xiao S, Huang Z, Yuan H, He M, Shen M, Chen X. Association of plasma and urine metals levels with kidney function: A population-based cross-sectional study in China. CHEMOSPHERE 2019; 226:321-328. [PMID: 30939371 DOI: 10.1016/j.chemosphere.2019.03.171] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 05/24/2023]
Abstract
OBJECTIVES Although environmental exposure to multiple metals is common, epidemiological studies on the associations of exposure to 23 metals with kidney function have not been analyzed. We aimed to investigate the associations of 23 metals levels with renal function. METHODS We conducted a cross-sectional study in four rural regions of Hunan province. Plasma and urine metals levels were determined by inductively coupled plasma mass spectrometer (ICP-MS). Two-level logistic regression was used to investigate the associations of metals levels with estimated glomerular filtration rate (eGFR) with adjustment for confounding factors. We conducted a sensitivity analysis of the results using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. RESULTS A total of 3553 participants completed the investigation. Five metals (plasma arsenic and molybdenum; urine copper, rubidium, and strontium) were identified to be significantly associated with renal function. Participants in the highest quartile of plasma arsenic and molybdenum were at 17.95 (95% CI: 6.35-50.76) and 24.23 (95% CI: 7.42-79.19) fold risk of abnormal eGFR, respectively, compared with the lowest quartile. The highest quartiles of urine copper, rubidium, and strontium were associated with 3.70 (95% CI:1.92-7.14), 0.16 (95% CI:0.07-0.37) and 0.08 (95% CI: 0.03-0.21) fold risk of abnormal eGFR. The sensitivity analysis revealed that plasma arsenic, molybdenum and urine copper, rubidium and strontium levels retained similar associations with abnormal eGFR. CONCLUSION Plasma arsenic and molybdenum, and urine copper are risk factors for abnormal renal function, while urine rubidium and strontium are protective factors for renal function.
Collapse
|
|
6 |
84 |
19
|
Genuis SJ, Birkholz D, Rodushkin I, Beesoon S. Blood, urine, and sweat (BUS) study: monitoring and elimination of bioaccumulated toxic elements. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 61:344-357. [PMID: 21057782 DOI: 10.1007/s00244-010-9611-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/27/2010] [Indexed: 05/30/2023]
Abstract
There is limited understanding of the toxicokinetics of bioaccumulated toxic elements and their methods of excretion from the human body. This study was designed to assess the concentration of various toxic elements in three body fluids: blood, urine and sweat. Blood, urine, and sweat were collected from 20 individuals (10 healthy participants and 10 participants with various health problems) and analyzed for approximately 120 various compounds, including toxic elements. Toxic elements were found to differing degrees in each of blood, urine, and sweat. Serum levels for most metals and metalloids were comparable with those found in other studies in the scientific literature. Many toxic elements appeared to be preferentially excreted through sweat. Presumably stored in tissues, some toxic elements readily identified in the perspiration of some participants were not found in their serum. Induced sweating appears to be a potential method for elimination of many toxic elements from the human body. Biomonitoring for toxic elements through blood and/or urine testing may underestimate the total body burden of such toxicants. Sweat analysis should be considered as an additional method for monitoring bioaccumulation of toxic elements in humans.
Collapse
|
|
14 |
80 |
20
|
Hoyer B, Florence TM. Application of polymer-coated glassy carbon electrodes to the direct determination of trace metals in body fluids by anodic stripping voltammetry. Anal Chem 1987; 59:2839-42. [PMID: 3434811 DOI: 10.1021/ac00151a003] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
|
38 |
79 |
21
|
|
|
37 |
78 |
22
|
Trejo-Acevedo A, Díaz-Barriga F, Carrizales L, Domínguez G, Costilla R, Ize-Lema I, Yarto-Ramírez M, Gavilán-García A, Jesús Mejía-Saavedra J, Pérez-Maldonado IN. Exposure assessment of persistent organic pollutants and metals in Mexican children. CHEMOSPHERE 2009; 74:974-80. [PMID: 19091374 DOI: 10.1016/j.chemosphere.2008.10.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/22/2008] [Accepted: 10/05/2008] [Indexed: 05/04/2023]
Abstract
Environmental policies in Mexico have contributed to the reduction in the production or use of some persistent organic pollutants (POPs) and metals. However, monitoring of POPs concentrations in humans living in hot spots is lacking. Therefore, the objective of this study was to conduct a screening for POPs and metals first in Mexican children living in high-risk areas. During the year 2004, we analyzed a total of 229 healthy children (aged 6-12 years old) who resided in communities located in nine Mexican states. Organochlorine insecticides, PCBs and metals were quantified in plasma and urine samples. We detected p'p-DDE in all the children; moreover, p'p-DDT, lindane and hexachlorobenzene were detected respectively in 14%, 85% and 10% of the children studied. Measurable levels of PCBs were recorded in only one community, where six of 14 PCB congeners assayed were detected (numbers 52, 118, 138, 153, 170 and 180). All the children had detectable levels of lead in their blood (mean level, 4.6 microg dL(-1)); furthermore, 57% of the children studied had levels higher than 5.0 microg/dL. The mean level of urinary arsenic (UAs) for all the children was 22.35 microg g(-1) creatinine and 15% of those children had concentrations of UAs above 50 microg g(-1) creatinine. For cadmium, the mean urinary level was 0.78 microg g(-1) creatinine, and only one percent of the children had values above 2.0 microg g(-1) creatinine. The results cannot be generalized since the communities selected are not representative of the Mexican population; however, they indicate that Mexican children are exposed to chemicals and some at risk levels.
Collapse
|
|
16 |
76 |
23
|
Abstract
Metal-on-metal bearings have wear rates that are 20 to 100 times lower than metal-on-conventional polyethylene. The amount of wear generally is the same order of magnitude for the head and the cup. There is an initial run-in period of higher wear followed by lower, steady-state wear. Wear rate is a function of the interplay of material(s), macrogeometry, microgeometry, and the resultant type and amount of lubrication. The wear resistance and clinical performance of a metal-on-metal bearing are more sensitive to macrogeometry and lubrication than a metal-on-polyethylene bearing. Metal wear particles are nanometers in linear dimension. They are much smaller and more numerous than the submicron polyethylene wear particles, but the volume of periprosthetic inflammatory tissue is less. Osteolysis seems to be relatively rare. Little is known about the systemic distribution of metal particles and ions. The significance of systemic distribution also is not known. The levels of serum and urine Co and Cr ions are elevated in patients with metal-on-metal bearings, but the long-term, steady-state levels are not much higher than those from corrosion of modular femoral components. Because of the elevated levels of Co and Cr ions, there is a greater risk of delayed type hypersensitivity. There also is concern about the potential for malignant degeneration secondary to prolonged exposure to these elements. The available data are insufficient to address this concern. Rigorous long-term studies are needed. It will take decades of close clinical observation to determine if the benefits of metal-on-metal bearings outweigh the associated risks.
Collapse
|
Review |
20 |
75 |
24
|
Taylor EN, Curhan GC. Differences in 24-hour urine composition between black and white women. J Am Soc Nephrol 2007; 18:654-9. [PMID: 17215441 DOI: 10.1681/asn.2006080854] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Black women are less likely to develop kidney stones and have greater bone mass than white women. However, little is known about racial differences in urine composition. Urine pH, volume, and 24-h urinary excretion of calcium, citrate, oxalate, uric acid, sodium, potassium, magnesium, phosphate, sulfate, and creatinine of 146 black women were compared with 330 white women in the Nurses' Health Study. All participants were postmenopausal non-stone formers. ANOVA was used to compare mean urinary values. Linear regression models were adjusted for age, body mass index, dietary intake, and urinary factors. On average, black women excreted 65 mg less urinary calcium (P < 0.001), 4 mg more oxalate (P < 0.001), 9 mEq less potassium (P < 0.001), 11 mg less magnesium (P = 0.003), 120 mg less phosphate (P < 0.001), and 3 mmol less sulfate (P < 0.001) per day than did white women. The urine pH of black women was 0.11 units higher (P = 0.03) and urine volume was 0.24 L less (P = 0.001). The urinary relative supersaturations of calcium oxalate (P = 0.03) and brushite (P = 0.002) were lower in black women. No other significant differences were observed. Differences in urinary calcium and pH persisted after multivariate adjustment and after exclusion of participants who were taking thiazide diuretics or those with diabetes. In conclusion, black women excrete less urinary calcium and have a higher urinary pH than do white women. These differences are not explained by differences in age, body mass index, or diet and may account for the lower incidence of both nephrolithiasis and osteoporosis in black women.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
73 |
25
|
Zhao D, Aravindakshan A, Hilpert M, Olmedo P, Rule AM, Navas-Acien A, Aherrera A. Metal/Metalloid Levels in Electronic Cigarette Liquids, Aerosols, and Human Biosamples: A Systematic Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:36001. [PMID: 32186411 PMCID: PMC7137911 DOI: 10.1289/ehp5686] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/09/2020] [Accepted: 02/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Electronic cigarettes (e-cigarettes) have become popular, in part because they are perceived as a safer alternative to tobacco cigarettes. An increasing number of studies, however, have found toxic metals/metalloids in e-cigarette emissions. OBJECTIVE We summarized the evidence on metal/metalloid levels in e-cigarette liquid (e-liquid), aerosols, and biosamples of e-cigarette users across e-cigarette device systems to evaluate metal/metalloid exposure levels for e-cigarette users and the potential implications on health outcomes. METHODS We searched PubMed/TOXLINE, Embase®, and Web of Science for studies on metals/metalloids in e-liquid, e-cigarette aerosols, and biosamples of e-cigarette users. For metal/metalloid levels in e-liquid and aerosol samples, we collected the mean and standard deviation (SD) if these values were reported, derived mean and SD by using automated software to infer them if data were reported in a figure, or calculated the overall mean (mean ± SD) if data were reported only for separate groups. Metal/metalloid levels in e-liquids and aerosols were converted and reported in micrograms per kilogram and nanograms per puff, respectively, for easy comparison. RESULTS We identified 24 studies on metals/metalloids in e-liquid, e-cigarette aerosols, and human biosamples of e-cigarette users. Metal/metalloid levels, including aluminum, antimony, arsenic, cadmium, cobalt, chromium, copper, iron, lead, manganese, nickel, selenium, tin, and zinc, were present in e-cigarette samples in the studies reviewed. Twelve studies reported metal/metalloid levels in e-liquids (bottles, cartridges, open wick, and tank), 12 studies reported metal/metalloid levels in e-cigarette aerosols (from cig-a-like and tank devices), and 4 studies reported metal/metalloid levels in human biosamples (urine, saliva, serum, and blood) of e-cigarette users. Metal/metalloid levels showed substantial heterogeneity depending on sample type, source of e-liquid, and device type. Metal/metalloid levels in e-liquid from cartridges or tank/open wicks were higher than those from bottles, possibly due to coil contact. Most metal/metalloid levels found in biosamples of e-cigarette users were similar or higher than levels found in biosamples of conventional cigarette users, and even higher than those found in biosamples of cigar users. CONCLUSION E-cigarettes are a potential source of exposure to metals/metalloids. Differences in collection methods and puffing regimes likely contribute to the variability in metal/metalloid levels across studies, making comparison across studies difficult. Standardized protocols for the quantification of metal/metalloid levels from e-cigarette samples are needed. https://doi.org/10.1289/EHP5686.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
71 |