1
|
Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:181-204. [PMID: 22994547 DOI: 10.1146/annurev-ento-120811-153700] [Citation(s) in RCA: 583] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The molecular action of juvenile hormone (JH), a regulator of vital importance to insects, was until recently regarded as a mystery. The past few years have seen an explosion of studies of JH signaling, sparked by a finding that a JH-resistance gene, Methoprene-tolerant (Met), plays a critical role in insect metamorphosis. Here, we summarize the recently acquired knowledge on the capacity of Met to bind JH, which has been mapped to a particular ligand-binding domain, thus establishing this bHLH-PAS protein as a novel type of an intracellular hormone receptor. Next, we consider the significance of JH-dependent interactions of Met with other transcription factors and signaling pathways. We examine the regulation and biological roles of genes acting downstream of JH and Met in insect metamorphosis. Finally, we discuss the current gaps in our understanding of JH action and outline directions for future research.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
583 |
2
|
Miura K, Oda M, Makita S, Chinzei Y. Characterization of the Drosophila Methoprene -tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation. FEBS J 2005; 272:1169-78. [PMID: 15720391 DOI: 10.1111/j.1742-4658.2005.04552.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Juvenile hormones (JHs) of insects are sesquiterpenoids that regulate a great diversity of processes in development and reproduction. As yet the molecular modes of action of JH are poorly understood. The Methoprene-tolerant (Met) gene of Drosophila melanogaster has been found to be responsible for resistance to a JH analogue (JHA) insecticide, methoprene. Previous studies on Met have implicated its involvement in JH signaling, although direct evidence is lacking. We have now examined the product of Met (MET) in terms of its binding to JH and ligand-dependent gene regulation. In vitro synthesized MET directly bound to JH III with high affinity (Kd = 5.3 +/- 1.5 nm, mean +/- SD), consistent with the physiological JH concentration. In transient transfection assays using Drosophila S2 cells the yeast GAL4-DNA binding domain fused to MET exerted JH- or JHA-dependent activation of a reporter gene. Activation of the reporter gene was highly JH- or JHA-specific with the order of effectiveness: JH III >> JH II > JH I > methoprene; compounds which are only structurally related to JH or JHA did not induce any activation. Localization of MET in the S2 cells was nuclear irrespective of the presence or absence of JH. These results suggest that MET may function as a JH-dependent transcription factor.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
146 |
3
|
Shemshedini L, Wilson TG. Resistance to juvenile hormone and an insect growth regulator in Drosophila is associated with an altered cytosolic juvenile hormone-binding protein. Proc Natl Acad Sci U S A 1990; 87:2072-6. [PMID: 2107540 PMCID: PMC53628 DOI: 10.1073/pnas.87.6.2072] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Met mutant of Drosophila melanogaster is highly resistant to juvenile hormone III (JH III) or its chemical analog, methoprene, an insect growth regulator. Five major mechanisms of insecticide resistance were examined in Met and susceptible Met+ flies. These two strains showed only minor differences when penetration, excretion, tissue sequestration, or metabolism of [3H]JH III was measured. In contrast, when we examined JH III binding by a cytosolic binding protein from a JH target tissue, Met strains had a 10-fold lower binding affinity than did Met+ strains. Studies using deficiency-bearing chromosomes provide strong evidence that the Met locus controls the binding protein characteristics and may encode the protein. These studies indicate that resistance in Met flies results from reduced binding affinity of a cytosolic binding protein for JH III.
Collapse
|
research-article |
35 |
83 |
4
|
Parthasarathy R, Tan A, Palli SR. bHLH-PAS family transcription factor methoprene-tolerant plays a key role in JH action in preventing the premature development of adult structures during larval-pupal metamorphosis. Mech Dev 2008; 125:601-16. [PMID: 18450431 PMCID: PMC2486318 DOI: 10.1016/j.mod.2008.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/14/2008] [Accepted: 03/15/2008] [Indexed: 11/18/2022]
Abstract
The biological actions of juvenile hormones are well studied; they regulate almost all aspects of an insect's life. However, the molecular actions of these hormones are not well understood. Recent studies in the red flour beetle, Tribolium castaneum, demonstrated the utility of this insect as a model system to study JH action. These studies confirmed that the bHLH-PAS family transcription factor, methoprene-tolerant (TcMet,) plays a key role in JH action during larval stages. In this study, we investigated the role of TcMet in JH action during larval-pupal metamorphosis. The phenotypes of TcMet RNAi insects shared similarity with the phenotypes of some allatectomized lepidopteran larvae that were attempting to undergo precocious larval-pupal metamorphosis. Knocking-down TcMet during the final instar also disrupted larval-pupal ecdysis, resulting in the development of adultoid underneath the larval skin. However, the loss of TcMet did not completely block remodeling of internal tissues such as midgut. T. castaneum larvae injected with TcMet dsRNA demonstrated a resistance to a JH analog (JHA), hydroprene, irrespective of time and route of application. Knocking-down TcMet also caused down regulation of JH-response genes, JHE and Kr-h1 suggesting that TcMet might be involved in the expression of these genes. Based on the phenotype, gene expression, and JHA action studies in TcMet RNAi insects, this study concludes that Met plays a key role in JH action for preventing the premature development of adult structures during larval-pupal metamorphosis.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
83 |
5
|
Godlewski J, Wang S, Wilson TG. Interaction of bHLH-PAS proteins involved in juvenile hormone reception in Drosophila. Biochem Biophys Res Commun 2006; 342:1305-11. [PMID: 16516852 DOI: 10.1016/j.bbrc.2006.02.097] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 02/17/2006] [Indexed: 11/29/2022]
Abstract
The Methoprene-tolerant (Met) bHLH-PAS gene is involved in juvenile hormone (JH) action in Drosophila melanogaster as a likely component of a JH receptor. We expressed Met in Drosophila S2 cells and explored for MET partners using pull-down assays. MET-MET interaction was found to occur. The germ-cell expressed (gce) gene is another D. melanogaster bHLH-PAS gene with high homology to Met, and GCE formed heterodimers with MET. In the presence of JH or either of two JH agonists, MET-MET and MET-GCE formation was drastically reduced. Interaction between GCE and MET having N- or C-terminus truncations, bHLH or PAS-A domain deletions, or a point mutation in the PAS-B domain failed to occur. However, JH-dependent interaction occurred between GCE and MET having point mutations in bHLH or PAS-A. During development, changes in JH titer may alter partner binding by MET and result in different gene expression patterns.
Collapse
|
|
19 |
76 |
6
|
Liu W, Li Y, Zhu L, Zhu F, Lei CL, Wang XP. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 74:50-60. [PMID: 27180724 DOI: 10.1016/j.ibmb.2016.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
In insects, the process whereby juvenile hormone (JH) regulates short-day (SD)-induced reproductive diapause has been previously investigated. However, we still do not understand the mechanism by which JH regulates long-day (LD)-induced reproductive diapause. In this study, we use a cabbage beetle, Colaphellus bowringi, which is a serious pest of cruciferous vegetables in Asia capable of entering reproductive diapause under LD conditions, as a model to test whether JH regulates female reproductive diapause similar to the mechanism of SD-induced diapause. Our results showed that the JH analog (JHA) methoprene significantly induced ovarian development but inhibited lipid accumulation of diapause-destined adults. Meanwhile, the transcripts of the vitellogenin (Vg) genes were upregulated, whereas the expression of the fat synthesis and stress tolerance genes were downregulated. RNA interference of the JH candidate receptor gene methoprene-tolerant (Met) blocked JH-induced ovarian development and Vg transcription, suggesting a positive regulatory function for JH-Met signaling in reproduction. Furthermore, under reproduction-inducing conditions, Met depletion promoted a diapause-like phenotype, including arrested ovarian development and increased lipid storage, and stimulated the expression of diapause-related genes involved in lipid synthesis and stress tolerance, suggesting JH-Met signaling plays an important role in the inhibition of diapause. Accordingly, our data indicate that JH acts through Met to facilitate development of the reproductive system by upregulating Vg expression while inhibiting diapause by suppressing lipid synthesis and stress tolerance in the cabbage beetle. Combined with previous studies in SD-induced reproductive diapause, we conclude that JH may regulate female reproductive diapause using a conserved Met-dependent pathway, regardless of the length of the photoperiod inducing diapause in insects.
Collapse
|
|
9 |
67 |
7
|
Abstract
Chemical evidence is needed in both insect endocrinology and sensory physiology to understand hormone and pheromone action at the molecular level. Radiolabeled pheromones and hormones have been synthesized and used to identify binding and catabolic proteins from insect tissues. Chemically modified analogs, including photoaffinity labels and enzyme inhibitors, are among the tools used to covalently modify the specific acceptor or catalytic sites. Such targeted agents can also provide leads for the design of growth and mating disruptants by allowing manipulation of the physiologically important interactions of the chemical signals with macromolecules.
Collapse
|
|
38 |
63 |
8
|
Grozinger CM, Robinson GE. Endocrine modulation of a pheromone-responsive gene in the honey bee brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:461-70. [PMID: 17192826 DOI: 10.1007/s00359-006-0202-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/27/2006] [Accepted: 12/01/2006] [Indexed: 11/25/2022]
Abstract
Pheromones cause dramatic changes in behavior and physiology, and are critical for honey bee colony organization. Queen mandibular pheromone (QMP) regulates multiple behaviors in worker bees (Slessor et al. in J Chem Ecol 31(11):2731-2745, 2005). We also identified genes whose brain expression levels were altered by exposure to QMP (Grozinger et al. in Proc Natl Acad Sci USA 100(Suppl 2):14519-14525, 2003). Krüppel-homolog 1 (Kr-h1) RNA levels were significantly downregulated by QMP, and were higher in foragers than in nurses (Whitfield et al. in Science 302(5643):296-299, 2003). Here we report on results of behavioral and pharmacological experiments that characterize factors regulating expression of Kr-h1. Foragers have higher brain levels of Kr-h1 than in-hive bees, regardless of age and pheromone exposure. Furthermore, forager Kr-h1 levels were not affected by QMP. Since the onset of foraging is caused, in part, by increasing juvenile hormone blood titers and brain octopamine levels, we investigated the effects of octopamine and methoprene (a juvenile hormone analog) on Kr-h1 expression. Methoprene produced a marginal (not significant) increase in Kr-h1 expression, but Kr-h1 brain levels in methoprene-treated bees were no longer downregulated by QMP. Octopamine did not modulate Kr-h1 expression. Our results demonstrate that the gene expression response to QMP is not hard-wired in the brain but is instead dependent on worker behavioral state.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
55 |
9
|
Baumann A, Fujiwara Y, Wilson TG. Evolutionary divergence of the paralogs Methoprene tolerant (Met) and germ cell expressed (gce) within the genus Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1445-1455. [PMID: 20457161 DOI: 10.1016/j.jinsphys.2010.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Juvenile hormone (JH) signaling underpins both regulatory and developmental pathways in insects. However, the JH receptor is poorly understood. Methoprene tolerant (Met) and germ cell expressed (gce) have been implicated in JH signaling in Drosophila. We investigated the evolution of Met and gce across 12 Drosophila species and found that these paralogs are conserved across at least 63 million years of dipteran evolution. Distinct patterns of selection found using estimates of dN/dS ratios across Drosophila Met and gce coding sequences, along with their incongruent temporal expression profiles in embryonic Drosophila melanogaster, illustrate avenues through which these genes have diverged within the Diptera. Additionally, we demonstrate that the annotated gene CG15032 is the 5' terminus of gce. In mosquitoes and beetles, a single Met-like homolog displays structural similarity to both Met and gce, and the intron locations are conserved with those of gce. We found that Tribolium and mosquito Met orthologs are assembled from Met- and gce-specific domains in a modular fashion. Our results suggest that Drosophila Met and gce experienced divergent evolutionary pressures following the duplication of an ancestral gce-like gene found in less derived holometabolous insects.
Collapse
|
|
15 |
49 |
10
|
Dubrovsky EB, Dubrovskaya VA, Berger EM. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev Biol 2004; 268:258-70. [PMID: 15063166 DOI: 10.1016/j.ydbio.2004.01.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/05/2004] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
Ecdysone and juvenile hormone (JH) are important regulators of insect growth and development. While ecdysone initiates a transition from one developmental stage to another, JH determines the nature of the transition. How these two hormones interact at the molecular level is not known. Here we report the JH inducibility of the E75A nuclear receptor encoded by the E75 early ecdysone-inducible gene. In Drosophila S2 cells, E75A transcription is specifically activated by JH at concentrations well within the physiological range found in larvae and adults. The induction is rapid and does not require a concurrent protein synthesis, and thus represents a primary hormone response. Consistent with JH regulation, E75A mRNA levels are reduced in ovaries of apterous(4) mutant adults defective in JH secretion. Expression is rescued by topical methoprene application. We further provide evidence that ectopic E75A is sufficient to perform several functions in the JH signaling pathway. First, it can down-regulate its own transcription. Second, E75A can potentiate the JH inducibility of a secondary response gene, JhI-21. Finally, in the presence of JH, E75A can repress ecdysone activation of early genes including Broad-Complex. Based on these data, we propose a model for the role of E75A in the ecdysone-JH regulatory interplay.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
49 |
11
|
Jindra M, Bittova L. The juvenile hormone receptor as a target of juvenoid "insect growth regulators". ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21615. [PMID: 31502704 DOI: 10.1002/arch.21615] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Synthetic compounds that mimic the action of juvenile hormones (JHs) are founding members of a class of insecticides called insect growth regulators (IGRs). Like JHs, these juvenoids block metamorphosis of insect larvae to reproductive adults. Many biologically active juvenoids deviate in their chemical structure considerably from the sesquiterpenoid JHs, raising questions about the mode of action of such JH mimics. Despite the early deployment of juvenoid IGRs in the mid-1970s, their molecular effect could not be understood until recent discoveries of JH signaling through an intracellular JH receptor, namely the ligand-binding transcription factor Methoprene-tolerant (Met). Here, we briefly overview evidence defining three widely employed and chemically distinct juvenoid IGRs (methoprene, pyriproxyfen, and fenoxycarb), as agonist ligands of the JH receptor. We stress that knowledge of the target molecule is critical for using these compounds both as insecticides and as research tools.
Collapse
|
Review |
5 |
48 |
12
|
Lozano J, Belles X. Role of Methoprene-tolerant (Met) in adult morphogenesis and in adult ecdysis of Blattella germanica. PLoS One 2014; 9:e103614. [PMID: 25072526 PMCID: PMC4114754 DOI: 10.1371/journal.pone.0103614] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
Juvenile Hormone (JH) represses metamorphosis of young instars in insects. One of the main players in hormonal signalling is Methoprene-tolerant (Met), which plays the role of JH receptor. Using the Polyneopteran insect Blattella germanica as the model and RNAi for transcript depletion, we have confirmed that Met transduces the antimetamorphic signal of JH in young nymphs and plays a role in the last nymphal instar moult in this species. Previously, the function of Met as the JH receptor had been demonstrated in the Eumetabola clade, with experiments in Holometabola (in the beetle Tribolium castaneum) and in their sister group Paraneoptera (in the bug Pyrrhocoris apterus). Our result shows that the function of Met as JH receptor is also conserved in the more basal Polyneoptera. The function of Met as JH transducer might thus predate the evolutionary innovation of metamorphosis. Moreover, expression of Met was also found in last nymphal instar of B. germanica, when JH is absent. Depletion of Met in this stage provoked deficiencies in wing growth and ecdysis problems in the imaginal moult. Down-regulation of the ecdysone-inducible gene E75A and Insulin-Like-Peptide 1 in these Met-depleted specimens suggest that Met is involved in the ecdysone and insulin signalling pathways in last nymphal instar, when JH is virtually absent.
Collapse
|
research-article |
11 |
46 |
13
|
Hernández-Martínez S, Mayoral JG, Li Y, Noriega FG. Role of juvenile hormone and allatotropin on nutrient allocation, ovarian development and survivorship in mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:230-4. [PMID: 17070832 PMCID: PMC2647715 DOI: 10.1016/j.jinsphys.2006.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/19/2006] [Accepted: 08/04/2006] [Indexed: 05/12/2023]
Abstract
Teneral reserves are utilized to initiate previtellogenic ovarian development in mosquitoes. Females having emerged with low teneral reserves have reduced juvenile hormone (JH) synthesis and previtellogenic development. We investigated what role JH, allatotropin (AT) and other head-factors play in the regulation of previtellogenic ovarian development and adult survivorship. Factors from the head are essential for corpora allata (CA) activation and reproductive maturation. We have shown that decapitation of females within 9-12h after adult ecdysis prevented normal development of the previtellogenic follicles; however maximum previtellogenic ovarian development could be induced in decapitated females by topically applying a JH analog. When females were decapitated 12 or more hours after emergence nutritional resources had been committed to ovarian development and survivorship was significantly reduced. To study if allatotropin levels correlated with teneral reserves, we measured AT titers in the heads of two adult phenotypes (large and small females) generated by raising larvae under different nutritional diets. In large mosquitoes AT levels increased to a maximum of 45 fmol in day 4; in contrast, the levels of allatotropin in the heads of small mosquitoes remained below 9 fmol during the 7 days evaluated. These results suggest that only when nutrients are appropriate, factors released from the brain induce the CA to synthesize enough JH to activate reproductive maturation.
Collapse
|
Comparative Study |
18 |
41 |
14
|
Singtripop T, Wanichacheewa S, Sakurai S. Juvenile hormone-mediated termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:847-854. [PMID: 10876129 DOI: 10.1016/s0965-1748(00)00057-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Larvae of the bamboo borer, Omphisa fuscidentalis are in diapause for more than nine months (Singtripop, T., Wanichaneewa, S., Tsuzuki, S., Sakurai, S. 1999. Larval growth and diapause in a tropical moth, Omphisa fuscidentalis Hampson. Zool. Sci. 16, 725-733). To examine the endocrine mechanisms underlying this larval diapause, we assayed the responsiveness of the diapausing larvae to 20-hydroxyecdysone (20E) and a juvenile hormone analogue (JHA: S-methoprene). 20E injection caused the larvae to halt movement, followed by deposition of a pupal cuticle. Topical application of JHA induced pupation in a dose-dependent manner. JHA also induced pupation of the larvae whose brains were removed before JHA application. In those larvae, the prothoracic glands became active and competent to respond to brain extracts within seven days after JHA treatment, and the hemolymph ecdysteroid concentration began to increase 12 days after JHA application. These results indicate that JHA stimulates the prothoracic glands of diapausing Omphisa larvae, terminating larval diapause, in contrast with previous findings that JH inhibits the brain-prothoracic gland axis and thus maintains the larval diapause. Current results therefore suggest a novel regulatory mechanism for larval diapause in this species.
Collapse
|
|
25 |
33 |
15
|
Zheng WW, Yang DT, Wang JX, Song QS, Gilbert LI, Zhao XF. Hsc70 binds to ultraspiracle resulting in the upregulation of 20-hydroxyecdsone-responsive genes in Helicoverpa armigera. Mol Cell Endocrinol 2010; 315:282-91. [PMID: 19897013 DOI: 10.1016/j.mce.2009.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
To probe the specific functions of the chaperone protein Hsc70 in 20-hydroxyecdysone signaling, we report on the roles of the Hsc70 from Helicoverpa armigera. RT-PCR analysis revealed that the genes for HaEcRB1 and HaUSP1 were upregulated in 5th molting and metamorphic molting larvae, whereas HaHsc70 maintained a constitutive expression level throughout larval development. Silencing HaEcRB1, HaUSP1 or HaHsc70 by RNAi inhibited the expression of a set of 20E-responsive genes. Immunocytochemical assay demonstrated that HaHsc70 is located predominantly in the cytoplasm of unstimulated cells and partially translocated to the nucleus after stimulation by 20E. Knockdown of HaHsc70 by RNAi decreased the amount of both HaEcRB1 and HaUSP1 in the nucleus. HaHsc70 was capable of binding to HaUSP1 in pull-down assays. These data suggest that Hsc70 participates in the 20E signal transduction pathway via binding to USP1 and mediating the expression of EcRB1, USP1 and then a set of 20E-responsive genes.
Collapse
|
|
15 |
29 |
16
|
Urbanová V, Bazalová O, Vaněčková H, Dolezel D. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:184-190. [PMID: 26826599 DOI: 10.1016/j.ibmb.2016.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Adult reproductive diapause is characterized by lower behavioral activity, ceased reproduction and absence of juvenile hormone (JH). The role of JH receptor Methoprene-tolerant (Met) in female reproduction is well established; however, its function in male reproductive development and behavior is unclear. In the bean bug, Riptortus pedestris, circadian genes are essential for mediating photoperiodically-dependent growth of the male accessory glands (MAGs). The present study explores the role of circadian genes and JH receptor in male diapause in the linden bug, Pyrrhocoris apterus. These data indicate that circadian factors Clock, Cycle and Cry2 are responsible for photoperiod measurement, whereas Met and its partner protein Taiman participate in JH reception. Surprisingly, knockdown of the JH receptor neither lowered locomotor activity nor reduced mating behavior of males. These data suggest existence of a parallel, JH-independent or JH-upstream photoperiodic regulation of reproductive behavior.
Collapse
|
|
9 |
28 |
17
|
Ampasala DR, Zheng S, Zhang D, Ladd T, Doucet D, Krell PJ, Retnakaran A, Feng Q. An epidermis-specific chitin synthase CDNA in Choristoneura fumiferana: cloning, characterization, developmental and hormonal-regulated expression. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:83-96. [PMID: 21181720 DOI: 10.1002/arch.20404] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chitin synthase catalyzes chitin synthesis in the exoskeleton, tracheal system and gut during insect development. A chitin synthase 1 (CfCHS1) cDNA was identified and cloned from the spruce budworm, Choristoneura fumiferana. The CfCHS1 cDNA is 5,300 bp in length and codes a 1,564-amino acid protein with a molecular mass of 178 kDa. The deduced protein contains 16 transmembrane helixes in its domains A and C. The single copy CfCHS1 gene expressed during each of the larval molts from the 3rd to the 6th instar. The gene expressed highly and periodically in the epidermis during each of molts, whereas no transcripts were detected in the midgut and fat body. 20-hydroxyecdysone and the ecdysone agonist RH5992 suppressed CfCHS1 expression, whereas the juvenile hormone analog methoprene induced CfCHS1 expression. These results implicate that CfCHS1 is involved in the chitin synthase and new chitin formation during molting in the insect.
Collapse
|
|
14 |
26 |
18
|
Chang MM, Wang YH, Yang QT, Wang XL, Wang M, Raikhel AS, Zou Z. Regulation of antimicrobial peptides by juvenile hormone and its receptor, Methoprene-tolerant, in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103509. [PMID: 33264664 DOI: 10.1016/j.ibmb.2020.103509] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The trade-off between reproduction and immunity has been established for a number of insect species. However, the regulatory mechanisms governing this event is not well understood. In the mosquito Aedes aegypti, the vector of dangerous human arboviral diseases, juvenile hormone (JH) is required for the female post-eclosion development and reproductive maturation. In this study, we have revealed the JH negative effect on the expression of immunity-related genes, such as antimicrobial peptides (AMPs), during the post-eclosion phase of the female mosquito gonadotrophic reproductive cycle. Mosquitoes treated with JH became more sensitive to microbial infection. Mosquitoes subjected to the RNA interference knockdown (RNAi) of the JH receptor, Methoprene-tolerant (Met), showed increased expression of several AMP genes. Met binds to the E-box-like recognition motifs in the regulatory region of the diptericin (Dpt) gene, indicating that JH can suppress the Dpt gene expression through its receptor Met. Hence, JH is involved in the modulation of immune responses during the post-eclosion phase of reproduction. The RNAi knockdown of the peptidoglycan recognition protein (PGRP-LC) led to a significant reduction of the Dpt transcript level, indicating the PGRP-LC activating role on this AMP gene. Thus, Dpt appeared to be under the dual regulation of both the JH and the immune deficiency (IMD) signaling pathways. Our study provides a better understanding of how JH regulates insect immunity in adult mosquitoes.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
23 |
19
|
Bitra K, Palli SR. Interaction of proteins involved in ecdysone and juvenile hormone signal transduction. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 70:90-105. [PMID: 18980211 DOI: 10.1002/arch.20281] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ecdysteroids and juvenile hormones (JH) regulate a variety of developmental, physiological, behavioral, and metabolic processes. Ecdysteroids function through a heterodimeric complex of two nuclear receptors, ecdysone receptor (EcR) and ultraspiracle (USP). An 85 kDa protein identified in Drosophila melanogaster methoprene-tolerant (Met) mutant binds to JH III with high affinity, and the mutant flies are resistant to juvenile hormone analog (JHA), methoprene. Reporter assays using the yeast two-hybrid system were performed in order to study the molecular interactions between EcR, USP and Met. As expected, EcR fused to the B42 activation domain and USP fused to the LexA DNA binding domain interacted with each other and supported induction of the reporter gene in the presence of stable ecdysteroid analog, RG-102240 or steroids, muristerone A and ponasterone A. The USP:USP homodimers supported expression of the reporter gene in the absence of ligand, and there was no significant increase in the reporter activity after addition of a JHA, methoprene. Similarly, Met:Met homodimers as well as Met:EcR and Met:USP heterodimers induced reporter activity in the absence of ligand and addition of ecdysteroid or JH analogs did not increase the reporter activity regulated by either homodimers or heterodimers of Met protein. Two-hybrid assays in insect cells and in vitro pull-down assays confirmed the interaction of Met with EcR and USP. These data suggest that the proteins that are involved in signal transduction of ecdysteroids (EcR and USP) and juvenile hormones (Met) interact to mediate cross-talk between these two important hormones. Arch. Insect Biochem. Physiol. 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
|
|
16 |
23 |
20
|
Miyakawa H, Watanabe M, Araki M, Ogino Y, Miyagawa S, Iguchi T. Juvenile hormone-independent function of Krüppel homolog 1 in early development of water flea Daphnia pulex. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:12-18. [PMID: 29253529 DOI: 10.1016/j.ibmb.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Elaborate regulation of insect metamorphosis is the consequence of physiological cooperation among multiple endocrine factors such as juvenile hormones (JHs) and ecdysteroids. Hormone-induced transcription factors play important roles in substantive interactions between hormonal signaling pathways. In insects, zinc finger transcription factor Krüppel homolog 1 (Kr-h1) is a key gene of the endocrine signaling pathway in which it is directly upregulated by JH receptor Methoprene-tolerant (Met) in the presence of JH and then regulates multiple downstream factors, including components of the ecdysteroid signaling pathway. Although JH also plays a role in various biological phenomena in other arthropod species, little is known about the molecular basis of the JH signaling pathway. Here we cloned Kr-h1 from a branchiopod crustacean, Daphnia pulex, (DappuKr-h1) and analyzed its expression profile and developmental function together with consideration of its relationship to the JH signaling pathway. We suggest that DappuKr-h1 lacks JH responsiveness and regulatory relationship with the JH receptor. Moreover our loss-of-function analysis revealed that maternal mRNA of DappuKr-h1 plays a critical role in early development independent from the JH signaling pathway. These findings provide insights about whether and how the JH signaling pathway influenced evolution, leading to greater diversity in phylum Arthropoda.
Collapse
|
|
7 |
19 |
21
|
Degitz SJ, Durhan EJ, Tietge JE, Kosian PA, Holcombe GW, Ankley GT. Developmental toxicity of methoprene and several degradation products in Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2003; 64:97-105. [PMID: 12763670 DOI: 10.1016/s0166-445x(03)00022-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Methoprene is an insect juvenile growth hormone mimic, which inhibits pupation and is used for the control of emergent insect pests such as mosquitoes. Researchers have hypothesized that methoprene use in US may be a contributing factor to the recent increase in malformed amphibians. However, little is known concerning the developmental toxicity of methoprene and its degradation products in amphibians. In these studies, the aqueous stability and developmental toxicity of methoprene and several degradation products (methoprene acid, methoprene epoxide, 7-methoxycitronellal, and 7-methoxycitronellic acid) were examined. Xenopus laevis embryos (stage 8) were exposed to the test chemicals for 96 h. Assays were conducted under static renewal (24 h) conditions and chemical concentrations in water were measured at the beginning and end of the renewal periods. Methoprene exposure did not result in developmental toxicity at concentrations up to 2 mg/l, which is slightly higher than its water solubility. Methoprene acid, a relatively minor degradation product, produced developmental toxicity when concentrations exceeded 1.25 mg/l. Methoprene epoxide and 7-methoxycitronellal caused developmental toxicity at concentrations of 2.5 mg/l and higher. 7-Methoxycitronellic acid was not developmentally toxic at a test concentration as high as 30 mg/l. The five test chemicals had differential stability in aqueous solution that was in some instances affected by the presence of test organisms. These data indicate that methoprene and its degradation products are not potent development toxicants in X. laevis. This, in combination with the fact that field applications of sustained-release formulations of methoprene result in methoprene concentrations that do not typically exceed 0.01 mg/l, suggests that concerns for methoprene-mediated developmental toxicity to amphibians may be unwarranted.
Collapse
|
|
22 |
18 |
22
|
Zhao WL, Liu CY, Liu W, Wang D, Wang JX, Zhao XF. Methoprene-tolerant 1 regulates gene transcription to maintain insect larval status. J Mol Endocrinol 2014; 53:93-104. [PMID: 24872508 DOI: 10.1530/jme-14-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insect molting and metamorphosis are regulated by two hormones: 20-hydroxyecdysone (20E) and juvenile hormone (JH). The hormone 20E regulates gene transcription via the nuclear receptor EcR to promote metamorphosis, whereas JH regulates gene transcription via its intracellular receptor methoprene-tolerant (Met) to prevent larval-pupal transition. However, the function and mechanism of Met in various insect developments are not well understood. We propose that Met1 plays a key role in maintaining larval status not only by promoting JH-responsive gene transcription but also by repressing 20E-responsive gene transcription in the Lepidopteran insect Helicoverpa armigera. Met1 protein is increased during feeding stage and decreased during molting and metamorphic stages. Met1 is upregulated by JH III and a low concentration of 20E independently, but is downregulated by a high concentration of 20E. Knockdown of Met1 in larvae causes precocious pupation, decrease in JH pathway gene expression, and increase in 20E pathway gene expression. Met1 interacts with heat shock protein 90 and binds to JH response element to regulate Krüppel homolog 1 transcription in JH III induction. Met1 interacts with ultraspiracle protein 1 (USP1) to repress 20E transcription complex EcRB1/USP1 formation and binding to ecdysone response element. These data indicate that JH via Met1 regulates JH pathway gene expression and represses 20E pathway gene expression to maintain the larval status.
Collapse
|
|
11 |
18 |
23
|
Naruse S, Washidu Y, Miura K, Shinoda T, Minakuchi C. Methoprene-tolerant is essential for embryonic development of the red flour beetle Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104017. [PMID: 31972216 DOI: 10.1016/j.jinsphys.2020.104017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Insect juvenile hormone (JH) is well known to regulate post-embryonic development and reproduction in concert with ecdysteroids in a variety of insect species. In contrast, our knowledge on the role of JH in embryonic development is limited and inconsistent. Preceding studies indicate that JH biosynthesis or JH signaling genes are dispensable in holometabolous Drosophila melanogaster and Bombyx mori, while essential in hemimetabolous Blattella germanica. In the red flour beetle Tribolium castaneum, we performed functional analyses of key factors in JH signaling, i.e. the JH receptor Methoprene-tolerant (Met) and the early JH-response gene Krüppel homolog 1 (Kr-h1) using parental RNA interference. Knockdown of Met resulted in a significant reduction in hatching rates and survival rates in the first and second larval instars. Meanwhile, knockdown of Kr-h1 caused no significant effect on hatching or survival. The unhatched embryos under Met knockdown developed up to the late embryonic stage, but their body shape was flat and tubby compared with the controls. Attempts to suppress JH biosynthesis by parental RNA interference of JH biosynthetic enzymes were unsuccessful due to insufficient knockdown efficiency. These results suggested that Met but not Kr-h1 is essential for the embryonic development of T. castaneum, although involvement of JH still remains to be examined. Taken together, the function of Met in embryonic development seems to be diverse among insect species.
Collapse
|
|
5 |
16 |
24
|
Schoff PK, Ankley GT. Effects of methoprene, its metabolites, and breakdown products on retinoid-activated pathways in transfected cell lines. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2004; 23:1305-1310. [PMID: 15180384 DOI: 10.1897/03-117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Methoprene (isopropyl (2E,4E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate) is an insect juvenile hormone agonist that blocks metamorphosis in some insects. Recent evidence suggests that a metabolite, methoprene acid, activates vertebrate retinoid X receptors (RXRs), and may interfere with retinoic acid-regulated developmental processes. Methoprene, methoxy-methoprene acid, and two major breakdown products were tested for their ability to interfere with retinoid-regulated pathways when using transfected cells. The CV-1 cells were transiently transfected with genes encoding RXRs and response elements attached to luciferase reporters, and retinoic acid-sensitive F9 cells were stably transfected with retinoic acid receptor (RAR)/RXR response elements attached a lacZ reporter (Sil-REM/beta-gal-NEO). Experiments confirmed that methoxy-methoprene acid acted as a ligand for RXRs and was capable of activating transcription through RAR/RXR response elements. However, neither methoprene nor the breakdown products, 7-methoxycitronellal and 7-methoxycitronellic acid, activated transcription in transfected CV-1 or F9 cells. Methoprene and methoxy-methoprene acid may interfere with the conversion of all-trans-retinol and all-trans-retinaldehyde to all-trans-retinoic acid in the F9-derived cell line. Methoprene was as effective as the retinol dehydrogenase inhibitor citral in blocking the retinol-induced transcription of RAR/RXR-regulated reporter genes, whereas methoxy-methoprene acid blocked transcription stimulated by retinaldehyde.
Collapse
|
Comparative Study |
21 |
13 |
25
|
Zhao B, Hou Y, Wang J, Kokoza VA, Saha TT, Wang XL, Lin L, Zou Z, Raikhel AS. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 77:69-77. [PMID: 27530057 PMCID: PMC5028310 DOI: 10.1016/j.ibmb.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 05/16/2023]
Abstract
In anautogenous mosquitoes, juvenile hormone III (JH) plays an essential role in female post-eclosion (PE) development, preparing them for subsequent blood feeding and egg growth. We re-examined the JH titer during the reproductive cycle of female Aedes aegypti mosquitoes. Using liquid chromatography coupled with triple tandem mass spectrometry (LC-MS/MS/MS), we have shown that it reaches its peak at 48-54 h PE in the female hemolymph and at 72 h PE in whole body extracts. This method represents an effective assay for determination of JH titers. The 2.1-kb 5' promoter region of the Early Trypsin (ET) gene, which is specifically expressed in the female midgut under the control of JH during the PE phase, was utilized to genetically engineer the Ae. aegypti mosquito line with the ET-Gal4 activator. We then established the ET-GAL4>UAS-enhanced green fluorescent protein (EGFP) system in Ae. aegypti. In ET-Gal4>UAS-EGFP female mosquitoes, the intensity of the midgut-specific EGFP signal was observed to correspond to the ET gene transcript level and follow the JH titer during the PE phase. The EGFP signal and the EGFP transcript level were significantly diminished in midguts of transgenic female mosquitoes after RNA interference depletion of the JH receptor Methoprene-tolerant (Met), providing evidence of the control of ET gene expression by Met. Topical JH application caused premature enhancement of the EGFP signal and the EGFP transcript level in midguts of newly eclosed ET-Gal4>UAS-EGFP female mosquitoes, in which endogenous JH titer is still low. Hence, this novel ET-Gal4>UAS system permits JH-dependent gene overexpression in the midgut of Ae. aegypti female mosquitoes prior to a blood meal.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
13 |