1
|
Abstract
The culmination of decades of research on humanized mice is leading to advances in our understanding of human haematopoiesis, innate and adaptive immunity, autoimmunity, infectious diseases, cancer biology and regenerative medicine. In this Review, we discuss the development of these new generations of humanized mice, how they will facilitate translational research in several biomedical disciplines and approaches to overcome the remaining limitations of these models.
Collapse
|
Review |
18 |
1008 |
2
|
Tripp CS, Wolf SF, Unanue ER. Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci U S A 1993; 90:3725-9. [PMID: 8097322 PMCID: PMC46374 DOI: 10.1073/pnas.90.8.3725] [Citation(s) in RCA: 561] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Listeriosis in mice with the severe combined immunodeficiency (SCID) mutation is an established model in vivo and in vitro of interferon gamma (IFN-gamma)-dependent macrophage activation by natural killer (NK) cells during the development of natural immunity. We demonstrate that IFN-gamma production from SCID splenocytes is stimulated by interleukin (IL) 12, tumor necrosis factor alpha (TNF-alpha), and IL-2 but is inhibited by IL-10, IL-10, IL-12, and TNF are induced by heat-killed Listeria monocytogenes (hk-LM) from SCID splenocytes and peritoneal macrophages. IL-12 production is necessary for hk-LM to stimulate IFN-gamma production by SCID splenocytes since neutralization of IL-12 totally blocks IFN-gamma production in this system. TNF-alpha and IL-2 act synergistically with IL-12 to augment IFN-gamma production. Also, exogenous IL-2 increases the response of NK cells to hk-LM or to IL-12 and TNF-alpha. In contrast, IL-10 inhibits hk-LM-induced IFN-gamma production at two levels: (i) by inhibiting TNF and IL-12 production from these cultures (presumably from the macrophage) and (ii) by inhibiting the stimulatory effects of IL-12 and TNF-alpha on NK-cell IFN-gamma production. Thus, these data indicate that macrophage production of TNF-alpha and IL-12 stimulates the release of IFN-gamma by NK cells and that IL-10 produced in response to hk-LM inhibits this response at the level of the macrophage and the NK cell.
Collapse
|
research-article |
32 |
561 |
3
|
Rolink A, Melchers F, Andersson J. The SCID but not the RAG-2 gene product is required for S mu-S epsilon heavy chain class switching. Immunity 1996; 5:319-30. [PMID: 8885865 DOI: 10.1016/s1074-7613(00)80258-7] [Citation(s) in RCA: 357] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the capacity of precursor B cells from normal (BDF1) and V(D)J recombinase-deficient (RAG-27) or defective (SCID) mice to be induced by a CD40-specific monoclonal antibody and IL-4 to epsilon H chain gene transcription and to S mu-S epsilon switch recombination. In differentiating precursor B cells from all three strains of mice, the development of similar numbers of CD19+, CD23+, CD40+, and MHC class II+ expressing B lineage cells and similar levels of epsilon H chain gene transcription were induced. Efficient S mu-S epsilon switching occurred in normal and RAG-2-deficient, but not in SCID, precursor B cells. Thus, the transcription of the epsilon H chain is independent of the RAG-2 and the SCID gene product, while the S mu-S epsilon switch recombination requires the SCID gene-encoded DNA-dependent protein kinase, but not the RAG-2 protein.
Collapse
|
|
29 |
357 |
4
|
Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 2005; 24:221-9. [PMID: 16109762 DOI: 10.1634/stemcells.2005-0188] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Differentiated cell types derived from human embryonic stem cells (hESCs) may serve in the future to treat various human diseases. A crucial step toward their successful clinical application is to examine the immune response that might be launched against them after transplantation. We used two experimental platforms to examine the in vivo leukocyte response toward hESCs. First, immunocompetent and immunodeficient mouse strains were used to identify T cells as the major component that causes xenorejection of hESCs. Second, mice that were conditioned to carry peripheral blood leukocytes from human origin were used to test the human leukocyte alloresponse toward undifferentiated and differentiated hESCs. Using this model, we have detected only a minute immune response toward undifferentiated as well as differentiated hESCs over the course of 1 month, although control adult grafts were repeatedly infiltrated with lymphocytes and destroyed. Our data show that the cells evade immune destruction due to a low immunostimulatory potential. Nevertheless, a human cytotoxic T lymphocyte clone that was specifically prepared to recognize two hESC lines could lyse the cells after major histocompatibility complex class I (MHC-I) induction. Although MHC-I levels in hESCs are sufficient for rejection by cytotoxic T cells, our data suggest that the immunostimulatory capacity of the cells is very low. Thus, immunosuppressive regimens for hESC-based therapeutics could be highly reduced compared with conventional organ transplantation because direct allorejection processes of hESCs and their derivatives are considerably weaker.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
279 |
5
|
Bancroft GJ, Schreiber RD, Unanue ER. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the scid mouse. Immunol Rev 1991; 124:5-24. [PMID: 1804781 DOI: 10.1111/j.1600-065x.1991.tb00613.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
Review |
34 |
230 |
6
|
Baker PJ, Evans RT, Roopenian DC. Oral infection with Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. Arch Oral Biol 1994; 39:1035-40. [PMID: 7717884 DOI: 10.1016/0003-9969(94)90055-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The suitability of a mouse model for host response in the induction of alveolar bone loss by Porphyromonas gingivalis was explored. The mouths of immunocompetent and severe combined immunodeficient (SCID) mice were infected with P. gingivalis ATCC 53977. P. gingivalis was not isolated from the mouths of these mice before infection, but was present at least 42 days after infection. P. gingivalis-specific IgG was present in sera from the infected, immunocompetent mice at the end of these experiments (42 days). Specific IgG was not present in sham-infected or uninfected immunocompetent mice, nor in any immunodeficient mice. Specific IgM was not present in any sera at 42 days. Infected, immunocompetent mice of two strains showed significant bone loss in comparison to sham-infected or uninfected immunocompetent mice (p < 0.05). Infected SCID mice, which are genetically lacking both B and T lymphocytes, also showed significant bone loss compared with sham-infected or uninfected SCID mice (p < 0.05). However, the degree of bone loss was greater in immunocompetent than immunodeficient mice: the relative amount of bone in infected mice was 77% of that in sham-infected immunocompetent mice, and 86% of sham values in SCID mice (p = 0.025). Thus oral infection of mice is a feasible model for studying the effects of host response on P. gingivalis-induced alveolar bone loss. Because bone loss was induced both in immunocompetent and SCID mice but was greater in immunocompetent mice, it appears that neither B nor T cells are absolutely necessary for bone resorption in response to P. gingivalis infection but they may significantly modulate the degree of resorption.
Collapse
|
Comparative Study |
31 |
230 |
7
|
Abstract
Ischemia reperfusion injury (IRI) is a common and important clinical problem in many different organ systems, including kidney, brain, heart, liver, lung, and intestine. IRI occurs during all deceased donor organ transplants. IRI is a highly complex cascade of events that includes interactions between vascular endothelium, interstitial compartments, circulating cells, and numerous biochemical entities. It is well established that the innate immune system, such as complement, neutrophils, cytokines, chemokines, and macrophages participate in IRI. Recent data demonstrates an important role for lymphocytes, particularly T cells but also B cells in IRI. Lymphocytes not only participate in augmenting injury responses after IRI, but could also be playing a protective role depending on the cell type and stage of injury. Furthermore, lymphocytes appear to be participating in the healing response from IRI. These new data open the possibility for lymphocyte targeted therapeutics to improve the short and long term outcomes from IRI.
Collapse
|
Review |
16 |
179 |
8
|
Pietra BA, Wiseman A, Bolwerk A, Rizeq M, Gill RG. CD4 T cell-mediated cardiac allograft rejection requires donor but not host MHC class II. J Clin Invest 2000; 106:1003-10. [PMID: 11032860 PMCID: PMC314344 DOI: 10.1172/jci10467] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Numerous studies indicate that CD4 T cells are required for acute cardiac allograft rejection. However, the precise role for CD4 T cells in this response has remained ambiguous owing to the multipotential properties of this T-cell subpopulation. In the current study, we demonstrate the capacity of CD4 T cells to serve as direct effector cells of cardiac allograft rejection. We show that CD4 T cells are both necessary and sufficient for acute graft rejection, as indicated by adoptive transfer experiments in immune-deficient SCID and rag1(-/-) recipients. We have analyzed the contribution of direct (donor MHC class II restricted) and indirect (host MHC class II restricted) antigen recognition in CD4-mediated rejection. Acute CD4 T cell-mediated rejection required MHC class II expression by the allograft, indicating the importance of direct graft recognition. In contrast, reciprocal experiments indicate that CD4 T cells can acutely reject allogeneic cardiac allografts established in rag1(-/-) hosts that were also MHC class II deficient. This latter result indicates that indirect presentation of donor antigens by host MHC class II is not required for acute CD4-mediated rejection. Taken together, these results indicate that CD4 T cells can serve as effector cells for primary acute cardiac allograft rejection, predominantly via direct donor antigen recognition and independent of indirect reactivity.
Collapse
|
research-article |
25 |
141 |
9
|
Abstract
PURPOSE OF REVIEW Update on humanized mouse models and their use in biomedical research. RECENT FINDINGS The recent description of immunodeficient mice bearing a mutated IL-2 receptor gamma chain (IL2rgamma) facilitated greatly the engraftment and function of human hematolymphoid cells and other cells and tissues. These mice permit the development of human immune systems, including functional T and B cells, following engraftment of hematopoietic stem cells (HSCs). The engrafted functional human immune systems are capable of T and B cell-dependent immune responses, antibody production, antiviral responses, and allograft rejection. Immunodeficient IL2rgamma(null) mice also support heightened engraftment of primary human cancers and malignant progenitor cells, permitting in-vivo investigation of pathogenesis and function. In addition, human-specific infectious agents for which animal models were previously unavailable can now be studied in vivo using these new-generation humanized mice. SUMMARY Immunodeficient mice bearing an IL2rgamma(null) mutated gene can be engrafted with functional human cells and tissues, including human immune systems, following engraftment with human hematolymphoid cells. These mice are now used as in-vivo models to study human hematopoiesis, immunity, regeneration, stem cell function, cancer, and human-specific infectious agents without putting patients at risk.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
137 |
10
|
Abstract
The work reviewed in this article separates T cell development into four phases. First is an expansion phase prior to TCR rearrangement, which appears to be correlated with programming of at least some response genes for inducibility. This phase can occur to some extent outside of the thymus. However, the profound T cell deficit of nude mice indicates that the thymus is by far the most potent site for inducing the expansion per se, even if other sites can induce some response acquisition. Second is a controlled phase of TCR gene rearrangement. The details of the regulatory mechanism that selects particular loci for rearrangement are still not known. It seems that the rearrangement of the TCR gamma loci in the gamma delta lineage may not always take place at a developmental stage strictly equivalent to the rearrangement of TCR beta in the alpha beta lineage, and it is not clear just how early the two lineages diverge. In the TCR alpha beta lineage, however, the final gene rearrangement events are accompanied by rapid proliferation and an interruption in cellular response gene inducibility. The loss of conventional responsiveness is probably caused by alterations at the level of signaling, and may be a manifestation of the physiological state that is a precondition for selection. Third is the complex process of selection. Whereas peripheral T cells can undergo forms of positive selection (by antigen-driven clonal expansion) and negative selection (by abortive stimulation leading to anergy or death), neither is exactly the same phenomenon that occurs in the thymic cortex. Negative selection in the cortex appears to be a suicidal inversion of antigen responsiveness: instead of turning on IL-2 expression, the activated cell destroys its own chromatin. The genes that need to be induced for this response are not yet identified, but it is unquestionably a form of activation. It is interesting that in humans and rats, cortical thymocytes undergoing negative selection can still induce IL-2R alpha expression and even be rescued in vitro, if exogenous IL-2 is provided. Perhaps murine thymocytes are denied this form of rescue because they shut off IL-2R beta chain expression at an earlier stage or because they may be uncommonly Bcl-2 deficient (cf. Sentman et al., 1991; Strasser et al., 1991). Even so, medullary thymocytes remain at least partially susceptible to negative selection even as they continue to mature.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD3 Complex
- Cell Death
- Cell Differentiation
- Cell Division
- Cell Movement
- Chick Embryo
- Gene Expression Regulation
- Gene Rearrangement, T-Lymphocyte
- Hematopoietic Stem Cells/cytology
- Humans
- Immune Tolerance
- Immunity, Cellular
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Lymphocyte Activation
- Lymphokines/biosynthesis
- Lymphokines/physiology
- Mice
- Mice, Nude/immunology
- Mice, SCID/genetics
- Mice, SCID/immunology
- Models, Biological
- Proto-Oncogene Proteins/physiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/growth & development
- Transcription Factors/physiology
Collapse
|
Review |
33 |
132 |
11
|
Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL, Mathew A. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One 2009; 4:e7251. [PMID: 19802382 PMCID: PMC2749937 DOI: 10.1371/journal.pone.0007251] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 11/24/2022] Open
Abstract
Background The lack of a suitable animal model to study viral and immunological mechanisms of human dengue disease has been a deterrent to dengue research. Methodology/Principal Findings We sought to establish an animal model for dengue virus (DENV) infection and immunity using non-obese diabetic/severe combined immunodeficiency interleukin-2 receptor γ-chain knockout (NOD-scid IL2rγnull) mice engrafted with human hematopoietic stem cells. Human CD45+ cells in the bone marrow of engrafted mice were susceptible to in vitro infection using low passage clinical and established strains of DENV. Engrafted mice were infected with DENV type 2 by different routes and at multiple time points post infection, we detected DENV antigen and RNA in the sera, bone marrow, spleen and liver of infected engrafted mice. Anti-dengue IgM antibodies directed against the envelope protein of DENV peaked in the sera of mice at 1 week post infection. Human T cells that developed following engraftment of HLA-A2 transgenic NOD-scid IL2rγnull mice with HLA-A2+ human cord blood hematopoietic stem cells, were able to secrete IFN-γ, IL-2 and TNF-α in response to stimulation with three previously identified A2 restricted dengue peptides NS4b 2353(111–119), NS4b 2423(181–189), and NS4a 2148(56–64). Conclusions/Significance This is the first study to demonstrate infection of human cells and functional DENV-specific T cell responses in DENV-infected humanized mice. Overall, these mice should be a valuable tool to study the role of prior immunity on subsequent DENV infections.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
113 |
12
|
Hurez V, Kaveri SV, Kazatchkine MD. Expression and control of the natural autoreactive IgG repertoire in normal human serum. Eur J Immunol 1993; 23:783-9. [PMID: 8458369 DOI: 10.1002/eji.1830230402] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have investigated the autoreactive repertoire expressed by serum IgG of healthy individuals of various age groups using a large panel of self antigens. Natural IgG autoantibodies against all self antigens of the panel were found in the purified IgG fraction of the serum of all donors that were tested. The mean binding activity to self antigens of IgG of pregnant women was higher than that of IgG purified from the serum of infants, young adults and aged individuals. No increase in IgG autoreactivity was observed with aging neither in the purified IgG fraction of serum nor in whole serum. Whereas autoantibody activity was easily detectable in purified IgG, it was low in serum. No difference was observed, however, between the binding activity of purified IgG and of IgG in serum in the case of foreign antigens nor in the case of anti-thyroglobulin autoantibodies of patients with hashimoto's thyroiditis. Purified IgM from normal serum bound to F(ab')2 fragments of autologous IgG in a dose-dependent fashion and inhibited the binding of autologous IgG to self antigens. Our results thus indicate that autologous IgM contributes to regulate expression of the natural IgG autoreactive repertoire through V region-dependent interactions, resulting in low levels of IgG autoreactivity in serum under physiological conditions.
Collapse
|
|
32 |
109 |
13
|
Abstract
Severe combined immunodeficiency (SCID) mice can be stably grafted with human peripheral blood lymphocytes, creating hu-PBL-SCID chimeras; essentially, these are mice with a human immune system. Here, Magdalena Tary-Lehmann, Andrew Saxon and Paul Lehmann discuss the immunobiology of these chimeras. The authors propose that hu-PBL-SCID chimerism evolves in two phases. During the first three weeks after grafting, many of the injected cells survive and the human immune system is functional. Subsequently, anti-mouse-reactive clones are selected and the immune system becomes nonfunctional. The implications of this scenario for the utilization of the hu-PBL-SCID model are discussed.
Collapse
|
Review |
30 |
105 |
14
|
Růzek D, Salát J, Palus M, Gritsun TS, Gould EA, Dyková I, Skallová A, Jelínek J, Kopecký J, Grubhoffer L. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology 2008; 384:1-6. [PMID: 19070884 DOI: 10.1016/j.virol.2008.11.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/18/2008] [Accepted: 11/13/2008] [Indexed: 11/18/2022]
Abstract
Epidemics of tick-borne encephalitis involving thousands of humans occur annually in the forested regions of Europe and Asia. Despite the importance of this disease, the underlying basis for the development of encephalitis remains undefined. Here, we prove the key role of CD8(+) T-cells in the immunopathology of tick-borne encephalitis, as demonstrated by prolonged survival of SCID or CD8(-/-) mice, following infection, when compared with immunocompetent mice or mice with adoptively transferred CD8(+) T-cells. The results imply that tick-borne encephalitis is an immunopathological disease and that the inflammatory reaction significantly contributes to the fatal outcome of the infection.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
101 |
15
|
Péault B, Weissman IL, Baum C, McCune JM, Tsukamoto A. Lymphoid reconstitution of the human fetal thymus in SCID mice with CD34+ precursor cells. J Exp Med 1991; 174:1283-6. [PMID: 1719121 PMCID: PMC2119005 DOI: 10.1084/jem.174.5.1283] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The search for human hematopoietic stem cells has been hampered by the lack of appropriate assay systems. Demonstration of the ability of precursor cell candidates to give rise to T cells is of significant difficulty since dissociated in vitro cultured thymus stroma cells lose their ability to sustain thymocyte maturation. To define further the differentiative capacities of the rare human fetal liver and bone marrow cells that express the CD34 surface antigen and exhibit in vitro myeloid and pre-B cell activities, we have microinjected them into HLA-mismatched fetal thymus fragments, partially depleted of hematopoietic cells by low temperature culture. In vitro colonized thymuses have then been allowed to develop upon engraftment into immunodeficient SCID mice. Using this modification of the SCID-hu system, we show that low numbers of fetal CD34+ progenitor cells can repopulate the lymphoid compartment in the human thymus.
Collapse
|
research-article |
34 |
100 |
16
|
Zhu C, Roth DB. Characterization of coding ends in thymocytes of scid mice: implications for the mechanism of V(D)J recombination. Immunity 1995; 2:101-12. [PMID: 7600297 DOI: 10.1016/1074-7613(95)90082-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously identified possible intermediates in V(D)J recombination at the TCR delta locus and characterized molecules with signal ends and with covalently sealed (hairpin) coding ends in thymocytes of scid mice by Southern blotting. Here, we use a sensitive ligation-mediated PCR assay to demonstrate that all coding ends detected in scid thymocytes are covalently sealed. Neither coding nor signal ends exhibit loss or addition of nucleotides. These data imply that hairpin formation is coupled to the initial cleavage at the signal/coding border, and that the cleavage step in V(D)J recombination is conservative. In scid/+ or wild-type thymocytes, hairpin coding ends are at least 1000-fold less abundant than signal ends. These results provide insight into the mechanism of V(D)J recombination.
Collapse
|
|
30 |
95 |
17
|
Tary-Lehmann M, Lehmann PV, Schols D, Roncarolo MG, Saxon A. Anti-SCID mouse reactivity shapes the human CD4+ T cell repertoire in hu-PBL-SCID chimeras. J Exp Med 1994; 180:1817-27. [PMID: 7964463 PMCID: PMC2191753 DOI: 10.1084/jem.180.5.1817] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Injecting human peripheral blood mononuclear cells into severe combined immunodeficient (SCID) mice results in long-term engraftment of human lymphocytes, of which > 98% are phenotypically mature, activated T cells. Here we have characterized the human T cells that populate such hu-PBL-SCID chimeras. We report that these human T cells do not mobilize Ca2+ after CD3 stimulation, i.e., their T cell receptor (TCR)-mediated signal transduction is deficient. Chimera-derived human T cells do not secrete lymphokines or undergo blastogenesis after CD3 stimulation, but proliferate in response to interleukin 2 (IL-2), defining the chimera derived human T cells as anergic. Anergy was seen in both the CD4+ and the CD8+ subpopulations. We established human T cell lines from chimeras. These T cells retained their anergic state for 1-2 mo in culture, after which they simultaneously regained the ability to mobilize Ca2+, secrete lymphokines, and to undergo blastogenesis following stimulation via the TCR. Once regaining proliferative responsiveness to CD3 stimulation, these CD4+ T cell lines displayed anti-SCID mouse reactivity and showed no specificity for recall antigens. All CD3-responsive CD4+ T cell clones obtained from such lines were SCID mouse specific, recognizing native major histocompatibility complex class II products on the murine cells. In contrast, chimera-derived human CD8+ cell lines and clones did not display detectable anti-mouse reactivity. The data show that the human T cell system in long term hu-PBL-SCID chimeras is nonfunctional due to both anergy and the limitation of the CD4+ repertoire to xenoreactive clones. The data suggest that long-term hu-PBL-SCID chimerism represents an atypical graft-versus-host reaction in which the human effector T cells become anergic in the murine environment.
Collapse
|
research-article |
31 |
94 |
18
|
Torbett BE, Picchio G, Mosier DE. hu-PBL-SCID mice: a model for human immune function, AIDS, and lymphomagenesis. Immunol Rev 1991; 124:139-64. [PMID: 1666627 DOI: 10.1111/j.1600-065x.1991.tb00620.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
Review |
34 |
89 |
19
|
Yu Q, Horak K, Larson DF. Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling. Hypertension 2006; 48:98-104. [PMID: 16735642 DOI: 10.1161/01.hyp.0000227247.27111.b2] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiac remodeling in response to pressure overload involves reorganization of the myocytes and extracellular matrix (ECM). Neurohormonal pathways have been described as effector pathways in left ventricular ECM reorganization in response to pressure overload; we now are assessing the role of the T lymphocyte in this process. Mice with defined differences in T-lymphocyte function (C57BL/6 SCID, C57BL/6 WT, and BALB/c) were treated with 50 mg/L of N(G)-nitro-l-arginine methyl ester in their drinking water for 30 days. The immune function of C57BL/6 WT mice was T-helper type 1 (TH1), BALB/c was TH2, and C57BL/6 SCID was null. The arterial blood pressure increased by 30% in all of the strains of mice. However, ventricular stiffness significantly decreased in the C57 SCID, significantly increased in the BALB/c, and did not change in the C57 WT. The characterization of matrix metalloproteinase induction and activation on day 30 was associated with T-lymphocyte function. The total cardiac fibrillar collagen, percentage of fibrillar collagen cross-linking, and the activity of the cross-linking enzyme lysyl oxidase-like-3 (LOXL-3) significantly decreased in the C57 SCID, significantly increased in the BALB/c, and did not change in the C57 WT. This study revealed that the LOXL-3 pathway, namely, gene expression, enzymatic activities, and LOXL-3-mediated collagen cross-linking, was associated with ventricular stiffness and incongruence with lymphocyte function. These data support the concept that the T lymphocytes may play a fundamental regulatory role in cardiac ECM composition through modulation of collagen synthesis, degradation, and cross-linking.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
89 |
20
|
Abstract
During the past year significant advances have been made in our understanding of the factors contributing to the differentiation of CD4 T helper cell subsets. These have been driven, in part, by the realization that signals (cytokines) from the innate immune response are critical in T cell subset differentiation. In addition, several studies have also elucidated how the antigen-presenting cell, the antigenic epitope and the antigen concentration may contribute to the selective development of a particular T helper cell subset.
Collapse
|
|
32 |
81 |
21
|
Rogers HW, Sheehan KC, Brunt LM, Dower SK, Unanue ER, Schreiber RD. Interleukin 1 participates in the development of anti-Listeria responses in normal and SCID mice. Proc Natl Acad Sci U S A 1992; 89:1011-5. [PMID: 1531270 PMCID: PMC48375 DOI: 10.1073/pnas.89.3.1011] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Using T- and B-cell deficient C.B-17 mice with the scid mutation, we have previously documented the existence of a T-cell-independent but interferon gamma-dependent pathway of macrophage activation that confers upon the host partial resistance to the facultative intracellular bacterium Listeria monocytogenes. This pathway is operative in both normal and SCID mice and consists of at least four components: interferon gamma, tumor necrosis factor, macrophages, and natural killer cells. Here we demonstrate that interleukin 1 also participates in this pathway but at a different site of action. Using monoclonal antibodies that neutralize the biologic activities of interleukin 1 alpha and interleukin 1 beta, we document that interleukin 1 participates neither directly in the induction of interferon gamma from isolated SCID natural killer cells nor in the antigen-specific activation of CD4+ T cells derived from Listeria-immune C.B-17 mice. In contrast, injection of a mixture of anti-interleukin 1 alpha, anti-interleukin 1 beta, and a newly derived monoclonal antibody specific for the murine type I interleukin-1 receptor into either SCID or normal C.B-17 mice blocked the in vivo elaboration of class II major histocompatibility complex-positive macrophages after infection of the animals with Listeria. Moreover, SCID mice treated with the anti-interleukin-1 mixture failed to control the growth of Listeria in vivo and eventually succumbed to the infection. These results document that endogenously produced interleukin 1 plays an obligate role in the Listeria-dependent induction of activated macrophages in vivo and demonstrate that the action of interleukin 1 is distinct from the generation of natural killer cell-derived interferon gamma.
Collapse
|
research-article |
33 |
80 |
22
|
Harp JA, Chen W, Harmsen AG. Resistance of severe combined immunodeficient mice to infection with Cryptosporidium parvum: the importance of intestinal microflora. Infect Immun 1992; 60:3509-12. [PMID: 1500156 PMCID: PMC257352 DOI: 10.1128/iai.60.9.3509-3512.1992] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cryptosporidium parvum is a protozoan parasite which colonizes intestinal epithelium, causing transient diarrheal illness in immunocompetent hosts and severe chronic disease in immunocompromised hosts. We examined the resistance of severe combined immunodeficient mice, either bearing intestinal flora or germfree, to intestinal infection with C. parvum. Infection was not readily detected in flora-bearing adult severe combined immunodeficient mice until 5 to 7 weeks following oral challenge with C. parvum. In contrast, germfree adult severe combined immunodeficient mice were heavily infected 3 weeks following challenge. These data support the hypothesis that resistance of adult mice to C. parvum infection does not require a specific immune response but can be mediated by nonspecific mechanisms associated with the presence of intestinal flora.
Collapse
|
research-article |
33 |
71 |
23
|
Walters KA, Joyce MA, Thompson JC, Smith MW, Yeh MM, Proll S, Zhu LF, Gao TJ, Kneteman NM, Tyrrell DL, Katze MG. Host-specific response to HCV infection in the chimeric SCID-beige/Alb-uPA mouse model: role of the innate antiviral immune response. PLoS Pathog 2006; 2:e59. [PMID: 16789836 PMCID: PMC1480599 DOI: 10.1371/journal.ppat.0020059] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 05/04/2006] [Indexed: 12/14/2022] Open
Abstract
The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
70 |
24
|
Hunter CA, Abrams JS, Beaman MH, Remington JS. Cytokine mRNA in the central nervous system of SCID mice infected with Toxoplasma gondii: importance of T-cell-independent regulation of resistance to T. gondii. Infect Immun 1993; 61:4038-44. [PMID: 8406791 PMCID: PMC281121 DOI: 10.1128/iai.61.10.4038-4044.1993] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Levels of cytokine mRNA were studied in the central nervous system (CNS) of SCID mice infected with Toxoplasma gondii. This infection led to 100% mortality by day 23 postinfection. Inflammation was observed in the lungs on day 7 and in the heart, liver, and kidneys on days 14 and 18 of infection. In the CNS, necrotic, acellular lesions that contained numerous parasites, accompanied by a localized astrocyte activation, were evident on day 14. Polymerase chain reaction-assisted amplification of RNA revealed that, although transcripts for interleukin-1 alpha (IL-1 alpha) and IL-1 beta were present in the brains of uninfected mice, increased levels of these transcripts were detected on day 7 of infection. Transcripts for macrophage inflammatory protein 1 and transforming growth factor beta were also detected in brains of infected mice at this time point. On days 14 and 18, levels of these transcripts had increased and transcripts for IL-6, IL-10, gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were also detected. Transcripts for IL-2 or IL-4 were not detected at any of the time points. Detection of locally produced cytokine transcripts may reflect involvement of the cytokines in the immunopathogenesis of this infection or involvement in mediating antitoxoplasma activity. To assess the possible role of endogenous IFN-gamma, TNF-alpha, IL-10, IL-6, and GM-CSF, cytokine-neutralizing monoclonal antibodies were administered to infected SCID mice. Neutralization of IFN-gamma or TNF-alpha led to earlier mortality than that in controls. In contrast, treatment with antibody to IL-10 and IL-6 increased survival time. Treatment with anti-GM-CSF did not alter the time to death. These results indicate that TNF-alpha and IFN-gamma are both involved in T-cell-independent mechanisms of resistance to T. gondii in SCID mice and that IL-10 and IL-6 may downregulate the immune response to this pathogen.
Collapse
|
research-article |
32 |
67 |
25
|
Hudson WA, Li Q, Le C, Kersey JH. Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia 1998; 12:2029-33. [PMID: 9844934 DOI: 10.1038/sj.leu.2401236] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While it is known that mice with genetic immune defects are useful for establishing durable engraftment of human tumor xenografts, the relative role of components of host innate and adoptive immunity in engraftment has not been determined. We directly compared the ability of four strains of genetically immunodeficient mice (NOD/SCID, SCID, Nude and Rag-1-deficient) to successfully engraft and support the human cell lines Daudi, Raji, Namalwa and Molt-4 as subcutaneous tumors. We additionally examined the effect of further immunosuppression of the mice by whole body irradiation at a dose of 600 cGy for Nude and Rag-1 and 300 cGy for SCID mice and by administration of anti-natural killer (asialo-GM1) antibody on tumor growth. Mice with each of the defects supported xenografts to varying degrees. We found differences in growth characteristics in the cell lines tested, with Namalwa consistently producing the largest tumors. With all cell lines studied, optimal growth was achieved using NOD/SCID mice. Overall, tumor growth was somewhat enhanced by pretreatment with radiation with little additional benefit from the addition of anti-asialo-GM1 antibody. The importance of multiple components of the innate and adoptive immune system in xenotransplantation were best demonstrated when results in untreated NOD/SCID mice were compared to SCID, nude and RAG-1-deficient mice. The NOD/SCID mouse with or without additional immunosuppression provides the optimal model for the study of the biology and treatment of human leukemias and lymphomas.
Collapse
|
Comparative Study |
27 |
66 |