1
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 2005; 435:834-838. [PMID: 15944708 DOI: 10.1038/nature03702] [Citation(s) in RCA: 7362] [Impact Index Per Article: 368.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 05/05/2005] [Indexed: 02/06/2023]
Abstract
Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.
Collapse
|
|
20 |
7362 |
2
|
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33:e179. [PMID: 16314309 PMCID: PMC1292995 DOI: 10.1093/nar/gni178] [Citation(s) in RCA: 3897] [Impact Index Per Article: 194.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A novel microRNA (miRNA) quantification method has been developed using stem–loop RT followed by TaqMan PCR analysis. Stem–loop RT primers are better than conventional ones in terms of RT efficiency and specificity. TaqMan miRNA assays are specific for mature miRNAs and discriminate among related miRNAs that differ by as little as one nucleotide. Furthermore, they are not affected by genomic DNA contamination. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most miRNAs. In fact, the high sensitivity, specificity and precision of this method allows for direct analysis of a single cell without nucleic acid purification. Like standard TaqMan gene expression assays, TaqMan miRNA assays exhibit a dynamic range of seven orders of magnitude. Quantification of five miRNAs in seven mouse tissues showed variation from less than 10 to more than 30 000 copies per cell. This method enables fast, accurate and sensitive miRNA expression profiling and can identify and monitor potential biomarkers specific to tissues or diseases. Stem–loop RT–PCR can be used for the quantification of other small RNA molecules such as short interfering RNAs (siRNAs). Furthermore, the concept of stem–loop RT primer design could be applied in small RNA cloning and multiplex assays for better specificity and efficiency.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
3897 |
3
|
Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9:189-98. [PMID: 16530703 DOI: 10.1016/j.ccr.2006.01.025] [Citation(s) in RCA: 2361] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/28/2005] [Accepted: 01/23/2006] [Indexed: 12/11/2022]
Abstract
MicroRNA (miRNA) expression profiles for lung cancers were examined to investigate miRNA's involvement in lung carcinogenesis. miRNA microarray analysis identified statistical unique profiles, which could discriminate lung cancers from noncancerous lung tissues as well as molecular signatures that differ in tumor histology. miRNA expression profiles correlated with survival of lung adenocarcinomas, including those classified as disease stage I. High hsa-mir-155 and low hsa-let-7a-2 expression correlated with poor survival by univariate analysis as well as multivariate analysis for hsa-mir-155. The miRNA expression signature on outcome was confirmed by real-time RT-PCR analysis of precursor miRNAs and cross-validated with an independent set of adenocarcinomas. These results indicate that miRNA expression profiles are diagnostic and prognostic markers of lung cancer.
Collapse
|
Comparative Study |
19 |
2361 |
4
|
Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353:1793-801. [PMID: 16251535 DOI: 10.1056/nejmoa050995] [Citation(s) in RCA: 1794] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND MicroRNA expression profiles can be used to distinguish normal B cells from malignant B cells in patients with chronic lymphocytic leukemia (CLL). We investigated whether microRNA profiles are associated with known prognostic factors in CLL. METHODS We evaluated the microRNA expression profiles of 94 samples of CLL cells for which the level of expression of 70-kD zeta-associated protein (ZAP-70), the mutational status of the rearranged immunoglobulin heavy-chain variable-region (IgV(H) ) gene, and the time from diagnosis to initial treatment were known. We also investigated the genomic sequence of 42 microRNA genes to identify abnormalities. RESULTS A unique microRNA expression signature composed of 13 genes (of 190 analyzed) differentiated cases of CLL with low levels of ZAP-70 expression from those with high levels and cases with unmutated IgV(H) from those with mutated IgV(H) . The same microRNA signature was also associated with the presence or absence of disease progression. We also identified a germ-line mutation in the miR-16-1-miR-15a primary precursor, which caused low levels of microRNA expression in vitro and in vivo and was associated with deletion of the normal allele. Germ-line or somatic mutations were found in 5 of 42 sequenced microRNAs in 11 of 75 patients with CLL, but no such mutations were found in 160 subjects without cancer (P<0.001). CONCLUSIONS A unique microRNA signature is associated with prognostic factors and disease progression in CLL. Mutations in microRNA transcripts are common and may have functional importance.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
1794 |
5
|
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37:766-70. [PMID: 15965474 DOI: 10.1038/ng1590] [Citation(s) in RCA: 1382] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 05/31/2005] [Indexed: 02/06/2023]
Abstract
MicroRNAs are noncoding RNAs of approximately 22 nucleotides that suppress translation of target genes by binding to their mRNA and thus have a central role in gene regulation in health and disease. To date, 222 human microRNAs have been identified, 86 by random cloning and sequencing, 43 by computational approaches and the rest as putative microRNAs homologous to microRNAs in other species. To prove our hypothesis that the total number of microRNAs may be much larger and that several have emerged only in primates, we developed an integrative approach combining bioinformatic predictions with microarray analysis and sequence-directed cloning. Here we report the use of this approach to clone and sequence 89 new human microRNAs (nearly doubling the current number of sequenced human microRNAs), 53 of which are not conserved beyond primates. These findings suggest that the total number of human microRNAs is at least 800.
Collapse
|
Journal Article |
20 |
1382 |
6
|
Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DLW, Au GKH, Liu CG, Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299:425-36. [PMID: 18230780 PMCID: PMC2614237 DOI: 10.1001/jama.299.4.425] [Citation(s) in RCA: 1193] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT MicroRNAs have potential as diagnostic biomarkers and therapeutic targets in cancer. No study has evaluated the association between microRNA expression patterns and colon cancer prognosis or therapeutic outcome. OBJECTIVE To identify microRNA expression patterns associated with colon adenocarcinomas, prognosis, or therapeutic outcome. DESIGN, SETTING, AND PATIENTS MicroRNA microarray expression profiling of tumors and paired nontumorous tissues was performed on a US test cohort of 84 patients with incident colon adenocarcinoma, recruited between 1993 and 2002. We evaluated associations with tumor status, TNM staging, survival prognosis, and response to adjuvant chemotherapy. Associations were validated in a second, independent Chinese cohort of 113 patients recruited between 1991 and 2000, using quantitative reverse transcription polymerase chain reaction assays. The final date of follow-up was December 31, 2005, for the Maryland cohort and August 16, 2004, for the Hong Kong cohort. MAIN OUTCOME MEASURES MicroRNAs that were differentially expressed in tumors and microRNA expression patterns associated with survival using cancer-specific death as the end point. RESULTS Thirty-seven microRNAs were differentially expressed in tumors from the test cohort. Selected for validation were miR-20a, miR-21, miR-106a, miR-181b, and miR-203, and all 5 were enriched in tumors from the validation cohort (P < .001). Higher miR-21 expression was present in adenomas (P = .006) and in tumors with more advanced TNM staging (P < .001). In situ hybridization demonstrated miR-21 to be expressed at high levels in colonic carcinoma cells. The 5-year cancer-specific survival rate was 57.5% for the Maryland cohort and was 49.5% for the Hong Kong cohort. High miR-21 expression was associated with poor survival in both the training (hazard ratio, 2.5; 95% confidence interval, 1.2-5.2) and validation cohorts (hazard ratio, 2.4; 95% confidence interval, 1.4-3.9), independent of clinical covariates, including TNM staging, and was associated with a poor therapeutic outcome. CONCLUSIONS Expression patterns of microRNAs are systematically altered in colon adenocarcinomas. High miR-21 expression is associated with poor survival and poor therapeutic outcome.
Collapse
|
Research Support, N.I.H., Intramural |
17 |
1193 |
7
|
Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 2005; 102:3627-32. [PMID: 15738415 PMCID: PMC552785 DOI: 10.1073/pnas.0500613102] [Citation(s) in RCA: 1042] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We show that the microRNA miR-155 can be processed from sequences present in BIC RNA, a spliced and polyadenylated but non-protein-coding RNA that accumulates in lymphoma cells. The precursor of miR-155 is likely a transient spliced or unspliced nuclear BIC transcript rather than accumulated BIC RNA, which is primarily cytoplasmic. By using a sensitive and quantitative assay, we find that clinical isolates of several types of B cell lymphomas, including diffuse large B cell lymphoma (DLBCL), have 10- to 30-fold higher copy numbers of miR-155 than do normal circulating B cells. Similarly, the quantities of BIC RNA are elevated in lymphoma cells, but ratios of the amounts of the two RNAs are not constant, suggesting that the level of miR-155 is controlled by transcription and processing. Significantly higher levels of miR-155 are present in DLBCLs with an activated B cell phenotype than with the germinal center phenotype. Because patients with activated B cell-type DLBCL have a poorer clinical prognosis, quantification of this microRNA may be diagnostically useful.
Collapse
|
research-article |
20 |
1042 |
8
|
Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W. Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells. Science 2005; 309:1573-6. [PMID: 16081698 DOI: 10.1126/science.1115079] [Citation(s) in RCA: 1024] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNA molecules regulating gene expression in multicellular eukaryotes. In metazoa, miRNAs act by imperfectly base-pairing with the 3' untranslated region of target messenger RNAs (mRNAs) and repressing protein accumulation by an unknown mechanism. We demonstrate that endogenous let-7 microribonucleoproteins (miRNPs) or the tethering of Argonaute (Ago) proteins to reporter mRNAs in human cells inhibit translation initiation. M(7)G-cap-independent translation is not subject to repression, suggesting that miRNPs interfere with recognition of the cap. Repressed mRNAs, Ago proteins, and miRNAs were all found to accumulate in processing bodies. We propose that localization of mRNAs to these structures is a consequence of translational repression.
Collapse
|
|
20 |
1024 |
9
|
Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004; 101:11755-60. [PMID: 15284443 PMCID: PMC511048 DOI: 10.1073/pnas.0404432101] [Citation(s) in RCA: 963] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the expression levels or function of micro-RNAs (miRNAs) in normal and neoplastic cells, although it is becoming clear that miRNAs play important roles in the regulation of gene expression during development [Ambros, V. (2003) Cell 113, 673-676; McManus, M. T. (2003) Semin. Cancer Biol. 13, 253-258]. We now report the genomewide expression profiling of miRNAs in human B cell chronic lymphocytic leukemia (CLL) by using a microarray containing hundreds of human precursor and mature miRNA oligonucleotide probes. This approach allowed us to identify significant differences in miRNome expression between CLL samples and normal CD5+ B cells; data were confirmed by Northern blot analyses and real-time RT-PCR. At least two distinct clusters of CLL samples can be identified that were associated with the presence or absence of Zap-70 expression, a predictor of early disease progression. Two miRNA signatures were associated with the presence or absence of mutations in the expressed Ig variableregion genes or with deletions at 13q14, respectively. These data suggest that miRNA expression patterns have relevance to the biological and clinical behavior of this leukemia.
Collapse
MESH Headings
- B-Lymphocytes
- Chromosome Deletion
- Chromosomes, Human, Pair 13
- Gene Expression Profiling/methods
- Genes, Immunoglobulin
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MicroRNAs/analysis
- Mutation
- Oligonucleotide Probes
- Polymerase Chain Reaction
- Prognosis
- Protein-Tyrosine Kinases/analysis
- Protein-Tyrosine Kinases/genetics
- RNA, Neoplasm/analysis
- ZAP-70 Protein-Tyrosine Kinase
Collapse
|
research-article |
21 |
963 |
10
|
Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297:1901-8. [PMID: 17473300 DOI: 10.1001/jama.297.17.1901] [Citation(s) in RCA: 912] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT While global microRNA (miRNA) expression patterns of many embryologic, physiologic, and oncogenic processes have been described, description of the role of miRNAs in ductal adenocarcinoma of the pancreas is lacking. OBJECTIVE To define the expression pattern of miRNAs in pancreatic cancer and compare it with those of normal pancreas and chronic pancreatitis. DESIGN AND SETTING Specimens were obtained at a National Cancer Institute-designated comprehensive cancer center from patients with ductal adenocarcinoma of the pancreas (n = 65) or chronic pancreatitis (n = 42) (January 2000-December 2005). All patients underwent curative pancreatectomy; those with pancreatic cancer were chemotherapy-naive. RNA harvested from resected pancreatic cancers and matched benign adjacent pancreatic tissue as well as from chronic pancreatitis specimens was hybridized to miRNA microarrays. MAIN OUTCOME MEASURES Identification of differentially expressed miRNAs that could differentiate pancreatic cancer from normal pancreas, chronic pancreatitis, or both, as well as a pattern of miRNA expression predictive of long-term (>24 months) survival. Significance of Analysis of Microarrays and Prediction of Analysis of Microarrays were undertaken to identify miRNAs predictive of tissue type and prognosis. P values were calculated by t test, adjusted for multiple testing. Kaplan-Meier survival curves were constructed using mean miRNA expression (high vs low) as threshold and compared by log-rank analysis. RESULTS Twenty-one miRNAs with increased expression and 4 with decreased expression were identified that correctly differentiated pancreatic cancer from benign pancreatic tissue in 90% of samples by cross validation. Fifteen overexpressed and 8 underexpressed miRNAs differentiated pancreatic cancer from chronic pancreatitis with 93% accuracy. A subgroup of 6 miRNAs was able to distinguish long-term survivors with node-positive disease from those dying within 24 months. Finally, high expression of miR-196a-2 was found to predict poor survival (median, 14.3 months [95% confidence interval, 12.4-16.2] vs 26.5 months [95% confidence interval, 23.4-29.6]; P = .009). CONCLUSIONS Pancreatic cancer may have a distinct miRNA expression pattern that may differentiate it from normal pancreas and chronic pancreatitis. miRNA expression patterns may be able to distinguish between long- and short-term survivors, but these findings need to be validated in other study populations.
Collapse
|
Comparative Study |
18 |
912 |
11
|
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2007; 2:e219. [PMID: 17299599 PMCID: PMC1790633 DOI: 10.1371/journal.pone.0000219] [Citation(s) in RCA: 882] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/24/2007] [Indexed: 11/18/2022] Open
Abstract
In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
882 |
12
|
Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T. Identification of microRNAs of the herpesvirus family. Nat Methods 2005; 2:269-76. [PMID: 15782219 DOI: 10.1038/nmeth746] [Citation(s) in RCA: 865] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 02/10/2005] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV or HHV4), a member of the human herpesvirus (HHV) family, has recently been shown to encode microRNAs (miRNAs). In contrast to most eukaryotic miRNAs, these viral miRNAs do not have close homologs in other viral genomes or in the genome of the human host. To identify other miRNA genes in pathogenic viruses, we combined a new miRNA gene prediction method with small-RNA cloning from several virus-infected cell types. We cloned ten miRNAs in the Kaposi sarcoma-associated virus (KSHV or HHV8), nine miRNAs in the mouse gammaherpesvirus 68 (MHV68) and nine miRNAs in the human cytomegalovirus (HCMV or HHV5). These miRNA genes are expressed individually or in clusters from either polymerase (pol) II or pol III promoters, and share no substantial sequence homology with one another or with the known human miRNAs. Generally, we predicted miRNAs in several large DNA viruses, and we could neither predict nor experimentally identify miRNAs in the genomes of small RNA viruses or retroviruses.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
865 |
13
|
Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012; 7:e30679. [PMID: 22427800 PMCID: PMC3302865 DOI: 10.1371/journal.pone.0030679] [Citation(s) in RCA: 850] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/28/2011] [Indexed: 01/03/2023] Open
Abstract
There is an increasing interest in using microRNAs (miRNA) as biomarkers in autoimmune diseases. They are easily accessible in many body fluids but it is controversial if they are circulating freely or are encapsulated in microvesicles, particularly exosomes. We investigated if the majority of miRNas in serum and saliva are free-circulating or concentrated in exosomes. Exosomes were isolated by ultracentrifugation from fresh and frozen human serum and saliva. The amount of selected miRNAs extracted from the exosomal pellet and the exosome-depleted serum and saliva was compared by quantitative RT-PCR. Some miRNAs tested are ubiquitously expressed, others were previously reported as biomarkers. We included miRNAs previously reported to be free circulating and some thought to be exosome specific. The purity of exosome fraction was confirmed by electronmicroscopy and western blot. The concentration of miRNAs was consistently higher in the exosome pellet compared to the exosome-depleted supernatant. We obtained the same results using an equal volume or equal amount of total RNA as input of the RT-qPCR. The concentration of miRNA in whole, unfractionated serum, was between the exosomal pellet and the exosome-depleted supernatant. Selected miRNAs, which were detectable in exosomes, were undetectable in whole serum and the exosome-depleted supernantant. Exosome isolation improves the sensitivity of miRNA amplification from human biologic fluids. Exosomal miRNA should be the starting point for early biomarker studies to reduce the probability of false negative results involving low abundance miRNAs that may be missed by using unfractionated serum or saliva.
Collapse
|
Research Support, N.I.H., Intramural |
13 |
850 |
14
|
Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci 2016; 17:ijms17101712. [PMID: 27754357 PMCID: PMC5085744 DOI: 10.3390/ijms17101712] [Citation(s) in RCA: 843] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022] Open
Abstract
The finding that small non-coding RNAs (ncRNAs) are able to control gene expression in a sequence specific manner has had a massive impact on biology. Recent improvements in high throughput sequencing and computational prediction methods have allowed the discovery and classification of several types of ncRNAs. Based on their precursor structures, biogenesis pathways and modes of action, ncRNAs are classified as small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), endogenous small interfering RNAs (endo-siRNAs or esiRNAs), promoter associate RNAs (pRNAs), small nucleolar RNAs (snoRNAs) and sno-derived RNAs. Among these, miRNAs appear as important cytoplasmic regulators of gene expression. miRNAs act as post-transcriptional regulators of their messenger RNA (mRNA) targets via mRNA degradation and/or translational repression. However, it is becoming evident that miRNAs also have specific nuclear functions. Among these, the most studied and debated activity is the miRNA-guided transcriptional control of gene expression. Although available data detail quite precisely the effectors of this activity, the mechanisms by which miRNAs identify their gene targets to control transcription are still a matter of debate. Here, we focus on nuclear functions of miRNAs and on alternative mechanisms of target recognition, at the promoter lavel, by miRNAs in carrying out transcriptional gene silencing.
Collapse
|
Review |
9 |
843 |
15
|
Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130:2113-29. [PMID: 16762633 DOI: 10.1053/j.gastro.2006.02.057] [Citation(s) in RCA: 782] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 02/15/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Micro-RNA (miRNA) are endogenous regulatory RNA molecules that modulate gene expression. Alterations in miRNA expression can contribute to tumor growth by modulating the functional expression of critical genes involved in tumor cell proliferation or survival. Our aims were to identify specific miRNA involved in the regulation of cholangiocarcinoma growth and response to chemotherapy. METHODS miRNA expression in malignant and nonmalignant human cholangiocytes was assessed using a microarray. Expression of selected miRNA and their precursors was evaluated by Northern blots and real-time polymerase chain reaction, respectively. The effect of selected miRNA on cell growth and response to chemotherapy was assessed using miRNA-specific antisense oligonucleotides to decrease miRNA expression or with precursor miRNA to increase cellular expression. RESULTS miRNA expression was markedly different in malignant cholangiocytes, with decreased expression of many miRNA compared with nonmalignant cells. A cluster of miRNA, including miR-320, miR-200b, miR-21, miR-23a, miR-141, miR-27a, and miR-34a, were expressed in all cell lines. MiR-21, miR-141, and miR-200b were highly over-expressed in malignant cholangiocytes. Inhibition of miR-21 and miR-200b increased sensitivity to gemcitabine, whereas inhibition of miR-141 decreased cell growth. Treatment of tumor cell xenografts with systemic gemcitabine altered the expression of a significant number of miRNA. miR-21 modulates gemcitabine-induced apoptosis by phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-dependent activation of PI 3-kinase signaling. Potential target genes that were modulated by selected miRNA were identified. CONCLUSIONS Alterations in miRNA expression contribute to tumor growth and response to chemotherapy. Aberrantly expressed miRNA or their targets will provide mechanistic insight and therapeutic targets for cholangiocarcinoma.
Collapse
|
Comparative Study |
19 |
782 |
16
|
Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 2004; 101:9740-4. [PMID: 15210942 PMCID: PMC470744 DOI: 10.1073/pnas.0403293101] [Citation(s) in RCA: 715] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA genes recently found to be abnormally expressed in several types of cancer. Here, we describe a recently developed methodology for miRNA gene expression profiling based on the development of a microchip containing oligonucleotides corresponding to 245 miRNAs from human and mouse genomes. We used these microarrays to obtain highly reproducible results that revealed tissue-specific miRNA expression signatures, data that were confirmed by assessment of expression by Northern blots, real-time RT-PCR, and literature search. The microchip oligolibrary can be expanded to include an increasing number of miRNAs discovered in various species and is useful for the analysis of normal and disease states.
Collapse
|
research-article |
21 |
715 |
17
|
Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007; 120:1046-54. [PMID: 17149698 PMCID: PMC2680248 DOI: 10.1002/ijc.22394] [Citation(s) in RCA: 702] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
microRNAs are functional, 22 nt, noncoding RNAs that negatively regulate gene expression. Disturbance of microRNA expression may play a role in the initiation and progression of certain diseases. A microRNA expression signature has been identified that is associated with pancreatic cancer. This has been accomplished with the application of real-time PCR profiling of over 200 microRNA precursors on specimens of human pancreatic adenocarcinoma, paired benign tissue, normal pancreas, chronic pancreatitis and nine pancreatic cancer cell lines. Hierarchical clustering was able to distinguish tumor from normal pancreas, pancreatitis and cell lines. The PAM algorithm correctly classified 28 of 28 tumors, 6 of 6 normal pancreas and 11 of 15 adjacent benign tissues. One hundred microRNA precursors were aberrantly expressed in pancreatic cancer or desmoplasia (p < 0.01), including microRNAs previously reported as differentially expressed in other human cancers (miR-155, miR-21, miR-221 and miR-222) as well as those not previously reported in cancer (miR-376a and miR-301). Most of the top aberrantly expressed miRNAs displayed increased expression in the tumor. Expression of the active, mature microRNA was validated using a real-time PCR assay to quantify the mature microRNA and Northern blotting. Reverse transcription in situ PCR showed that three of the top differentially expressed miRNAs (miR-221, -376a and -301) were localized to tumor cells and not to stroma or normal acini or ducts. Aberrant microRNA expression may offer new clues to pancreatic tumorigenesis and may provide diagnostic biomarkers for pancreatic adenocarcinoma.
Collapse
|
Comparative Study |
18 |
702 |
18
|
Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 2004; 32:e175. [PMID: 15598818 PMCID: PMC545470 DOI: 10.1093/nar/gnh171] [Citation(s) in RCA: 661] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
661 |
19
|
Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 2009; 15:5473-7. [PMID: 19706812 PMCID: PMC2752355 DOI: 10.1158/1078-0432.ccr-09-0736] [Citation(s) in RCA: 624] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE We have previously shown that a transcriptome is found in saliva and subpanels of these mRNAs can be used as oral cancer biomarkers. In this study, we measured the presence of microRNAs (miRNA) in saliva and determined their potential as an additional set of oral cancer biomarkers. EXPERIMENTAL DESIGN A total of 314 miRNAs were measured using reverse transcriptase-preamplification-quantitative PCR in 12 healthy controls. Degradation pattern of endogenous and exogenous saliva miRNAs were measured at room temperature over time. Selected miRNAs were validated in saliva of 50 oral squamous cell carcinoma patients and 50 healthy matched control subjects. RESULTS We detected approximately 50 miRNAs in both the whole and supernatant saliva. Endogenous saliva miRNA degraded much slower compared with exogenous miRNA. Two miRNAs, miR-125a and miR-200a, were present in significantly lower levels (P < 0.05) in the saliva of oral squamous cell carcinoma patients than in control subjects. CONCLUSIONS Both whole and supernatant saliva of healthy controls contained dozens of miRNAs, and similar to saliva mRNAs, these miRNAs are stable. Saliva miRNAs can be used for oral cancer detection.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
624 |
20
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 623] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
623 |
21
|
Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrózek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S, Metzeler KH, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28:2348-55. [PMID: 20368543 PMCID: PMC2881719 DOI: 10.1200/jco.2009.27.3730] [Citation(s) in RCA: 606] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/27/2010] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To analyze the frequency and associations with prognostic markers and outcome of mutations in IDH genes encoding isocitrate dehydrogenases in adult de novo cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS Diagnostic bone marrow or blood samples from 358 patients were analyzed for IDH1 and IDH2 mutations by DNA polymerase chain reaction amplification/sequencing. FLT3, NPM1, CEBPA, WT1, and MLL mutational analyses and gene- and microRNA-expression profiling were performed centrally. Results IDH mutations were found in 33% of the patients. IDH1 mutations were detected in 49 patients (14%; 47 with R132). IDH2 mutations, previously unreported in AML, were detected in 69 patients (19%; 13 with R172 and 56 with R140). R172 IDH2 mutations were mutually exclusive with all other prognostic mutations analyzed. Younger age (< 60 years), molecular low-risk (NPM1-mutated/FLT3-internal tandem duplication-negative) IDH1-mutated patients had shorter disease-free survival than molecular low-risk IDH1/IDH2-wild-type (wt) patients (P = .046). R172 IDH2-mutated patients had lower complete remission rates than IDH1/IDH2wt patients (P = .007). Distinctive microarray gene- and microRNA-expression profiles accurately predicted R172 IDH2 mutations. The highest expressed gene and microRNAs in R172 IDH2-mutated patients compared with the IDH1/IDH2wt patients were APP (previously associated with complex karyotype AML) and miR-1 and miR-133 (involved in embryonal stem-cell differentiation), respectively. CONCLUSION IDH1 and IDH2 mutations are recurrent in CN-AML and have an unfavorable impact on outcome. The R172 IDH2 mutations, previously unreported in AML, characterize a novel subset of CN-AML patients lacking other prognostic mutations and associate with unique gene- and microRNA-expression profiles that may lead to the discovery of novel, therapeutically targetable leukemogenic mechanisms.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
606 |
22
|
Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28:3526-36. [PMID: 19617899 PMCID: PMC3492882 DOI: 10.1038/onc.2009.211] [Citation(s) in RCA: 590] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 06/08/2009] [Accepted: 06/18/2009] [Indexed: 02/06/2023]
Abstract
Growing evidence indicates that microRNAs have a significant role in tumor development and may constitute robust biomarkers for cancer diagnosis and prognosis. In this study, we evaluated the clinical and functional relevance of microRNA-122 (miR-122) expression in human hepatocellular carcinoma (HCC). We report that miR-122 is specifically repressed in a subset of primary tumors that are characterized by poor prognosis. We further show that the loss of miR-122 expression in tumor cells segregates with specific gene expression profiles linked to cancer progression, namely the suppression of hepatic phenotype and the acquisition of invasive properties. We identify liver-enriched transcription factors as central regulatory molecules in the gene networks associated with loss of miR-122, and provide evidence suggesting that miR-122 is under the transcriptional control of HNF1A, HNF3A and HNF3B. We further show that loss of miR-122 results in an increase of cell migration and invasion and that restoration of miR-122 reverses this phenotype. In conclusion, miR-122 is a marker of hepatocyte-specific differentiation and an important determinant in the control of cell migration and invasion. From a clinical point of view, our study emphasizes miR-122 as a diagnostic and prognostic marker for HCC progression.
Collapse
|
Research Support, N.I.H., Intramural |
16 |
590 |
23
|
Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods 2004; 1:47-53. [PMID: 15782152 DOI: 10.1038/nmeth704] [Citation(s) in RCA: 589] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Accepted: 08/10/2004] [Indexed: 12/30/2022]
Abstract
MicroRNAs are short, noncoding RNA transcripts that post-transcriptionally regulate gene expression. Several hundred microRNA genes have been identified in Caenorhabditis elegans, Drosophila, plants and mammals. MicroRNAs have been linked to developmental processes in C. elegans, plants and humans and to cell growth and apoptosis in Drosophila. A major impediment in the study of microRNA function is the lack of quantitative expression profiling methods. To close this technological gap, we have designed dual-channel microarrays that monitor expression levels of 124 mammalian microRNAs. Using these tools, we observed distinct patterns of expression among adult mouse tissues and embryonic stem cells. Expression profiles of staged embryos demonstrate temporal regulation of a large class of microRNAs, including members of the let-7 family. This microarray technology enables comprehensive investigation of microRNA expression, and furthers our understanding of this class of recently discovered noncoding RNAs.
Collapse
|
Journal Article |
21 |
589 |
24
|
Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 2005; 39:519-25. [PMID: 16235564 DOI: 10.2144/000112010] [Citation(s) in RCA: 561] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotide RNAs that are predicted to play regulatory roles in animals and plants. Here we report a simple and sensitive real-time PCR method for quantifying the expression of plant miRNAs. Total RNA, including miRNAs, was polyadenylated and reverse-transcribed with a poly(T) adapter into cDNAs for real-time PCR using the miRNA-specific forward primer and the sequence complementary to the poly(T) adapter as the reverse primer. Several Arabidopsis miRNA sequences were tested using SYBR Green reagent, demonstrating that this method, using as little as 100 pg total RNA, could readily discriminate the expression of miRNAs having asfew as one nucleotide sequence difference. This method also revealed miRNA tissue-specific expression patterns that cannot be resolved by Northern blot analysis and may therefore be widely useful for characterizing miRNA expression in plants as well as in animals.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
561 |
25
|
Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007; 26:4442-52. [PMID: 17237814 DOI: 10.1038/sj.onc.1210228] [Citation(s) in RCA: 536] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is known for its very poor overall prognosis. Accurate early diagnosis and new therapeutic modalities are therefore urgently needed. We used 377 feature microRNA (miRNA) arrays to investigate miRNA expression in normal pancreas, chronic pancreatitis, and PDAC tissues as well as PDAC-derived cell lines. A pancreatic miRNome was established comparing the data from normal pancreas with a reference set of 33 human tissues. The expression of miR-216 and -217 and lack of expression of miR-133a were identified as characteristic of pancreas tissue. Unsupervised clustering showed that the three pancreatic tissues types can be classified according to their respective miRNA expression profiles. We identified 26 miRNAs most prominently misregulated in PDAC and a relative quantitative reverse transcriptase-polymerase chain reaction index using only miR-217 and -196a was found to discriminate normal pancreas, chronic pancreatitis and cancerous tissues, establishing a potential utility for miRNAs in diagnostic procedures. Lastly, comparing differentially expressed genes from PDAC with predicted miRNA target genes for the top 26 miRNAs, we identified potential novel links between aberrant miRNA expression and known target genes relevant to PDAC biology. Our data provides novel insights into the miRNA-driven pathophysiological mechanisms involved in PDAC development and offers new candidate targets to be exploited both for diagnostic and therapeutic strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
536 |