1
|
Wu Y, Guo P, Zhang X, Zhang Y, Xie S, Deng J. Effect of microplastics exposure on the photosynthesis system of freshwater algae. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:219-227. [PMID: 31005054 DOI: 10.1016/j.jhazmat.2019.04.039] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 05/23/2023]
Abstract
Microplastics are widely distributed in freshwater environments. At present, most of the studies on the toxicity of microplastics are concentrated on aquatic feeding animals, but relatively few have addressed freshwater algae. This study investigated the effect of microplastics (polypropylene (PP) and polyvinyl chloride (PVC)) exposure on the photosynthetic system of freshwater algae over the logarithmic growth period. The results showed that both PVC and PP had a negative effect on chlorophyll a concentrations of Chlorella (C.) pyrenoidosa and Microcystis (M.) flos-aquae; among them, when the concentration of PVC exceeded 250 mg/L, compared with the control group, the chlorophyll a content of C. pyrenoidosa was reduced by 55.23%. For photosynthetic activity, higher concentrations of PVC and PP can induce lower values of Fv/Fm, Fv/F0, and Fv'/Fm', suggesting a larger impact in algae. However, algae were able to adjust, with increased values of Fv/Fm, Fv/F0, and Fv'/Fm'. This dose-negative effect phenomenon also exists in the study of the rapid light-response curves. In addition, comparing the two microplastics, we could see that PVC greatly inhibits the photosynthesis system of freshwater algae. Our study confirmed that microplastics can affect algae growth under certain concentrations, which provides evidence for understanding the risks of microplastics.
Collapse
|
|
6 |
235 |
2
|
Daly RI, Ho L, Brookes JD. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:4447-53. [PMID: 17626450 DOI: 10.1021/es070318s] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The proliferation of cyanobacteria in drinking water sources is problematic for water authorities as they can interfere with water treatment processes. Studies have shown that oxidants such as chlorine can enhance the coagulation of cyanobacteria; however, chlorine can potentially lyse cyanobacterial cells, releasing toxic metabolites. Chlorine also has the potential to effectively degrade these toxins. This study evaluated the effect of chlorine on the cell integrity of toxic Microcystis aeruginosa in reservoir water using flow cytometry. In addition, the effect of chlorine on the subsequent release and degradation of microcystin toxins was systematically assessed. Cell lysis occurred at chlorine exposure values between 7 and 29 mg min/L, which is within the range of normal disinfection practices. Intracellular toxin was shown to be released from damaged cells at a rate three times faster than it was degraded by chlorine. The degradation of extracellular microcystin by chlorine was found to be dependent upon the pH, chlorine exposure, and the presence of cyanobacterial cells.
Collapse
|
|
18 |
193 |
3
|
Zhang Q, Qu Q, Lu T, Ke M, Zhu Y, Zhang M, Zhang Z, Du B, Pan X, Sun L, Qian H. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1106-1112. [PMID: 30253301 DOI: 10.1016/j.envpol.2018.09.073] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Waste plastics can be degraded to nanoplastics (NPs, diameter<1 μm) by natural forces. NPs not only directly affect aquatic organisms but also adsorb other pollutants, causing combined pollution. Glyphosate is one of the most widely used herbicides and is commonly monitored in freshwater systems. In this study, the effects of the combined toxicity of polystyrene cationic amino-modified nanoparticles (nPS-NH2) and glyphosate on a blue-green alga, Microcystis aeruginosa, were investigated. Our results demonstrated that 5 mg/L glyphosate had a strong inhibitory effect on M. aeruginosa (the 96-h inhibitory rate was 27%), while 5 mg/L nPS-NH2 had no apparent effect on the growth of M. aeruginosa. Interestingly, nPS-NH2 combined with glyphosate showed antagonistic effects on the inhibition of algal growth because nPS-NH2 displayed a strong adsorption capacity for glyphosate, which significantly alleviated the inhibitory effect of glyphosate on M. aeruginosa growth. However, the presence of glyphosate enhanced the stability of the dispersion system, which allowed more nPS-NH2 to adsorb on the surface of M. aeruginosa and may result in greater enrichment of nPS-NH2 in the food chain to show potential repercussions to human life. Our current study provides a new theoretical basis for the combined effects of NPs and pesticide pollution.
Collapse
|
|
7 |
188 |
4
|
Fang J, Ma J, Yang X, Shang C. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa. WATER RESEARCH 2010; 44:1934-1940. [PMID: 20060561 DOI: 10.1016/j.watres.2009.11.046] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/18/2009] [Accepted: 11/23/2009] [Indexed: 05/28/2023]
Abstract
Formation of carbonaceous disinfection by-products (C-DBPs), including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs), chloral hydrate (CH), and nitrogenous disinfection by-products (N-DBPs), including haloacetonitriles (HANs) and trichloronitromethane (TCNM) from chlorination of Microcystis aeruginosa, a blue-green algae, under different conditions was investigated. Factors evaluated include contact time, chlorine dosages, pH, temperature, ammonia concentrations and algae growth stages. Increased reaction time, chlorine dosage and temperature improved the formation of the relatively stable C-DBPs (e.g., THM, HAA, and CH) and TCNM. Formation of dichloroacetonitrile (DCAN) followed an increasing and then decreasing pattern with prolonged reaction time and increased chlorine dosages. pH affected DBP formation differently, with THM increasing, HKs decreasing, and other DBPs having maximum concentrations at certain pH values. The addition of ammonia significantly reduced the formation of most DBPs, but TCNM formation was not affected and 1,1-dichloropropanone (1,1-DCP) formation was higher with the addition of ammonia. Most DBPs increased as the growth period of algal cells increased. Chlorination of algal cells of higher organic nitrogen content generated higher concentrations of N-DBPs (e.g., HANs and TCNM) and CH, comparable DCAA concentration but much lower concentrations of other C-DBPs (e.g., THM, TCAA and HKs) than did natural organic matter (NOM).
Collapse
|
|
15 |
180 |
5
|
Qu F, Liang H, Wang Z, Wang H, Yu H, Li G. Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms. WATER RESEARCH 2012; 46:1490-500. [PMID: 22178303 DOI: 10.1016/j.watres.2011.11.051] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/29/2011] [Accepted: 11/17/2011] [Indexed: 05/26/2023]
Abstract
This paper focused on the membrane fouling caused by extracellular organic matters (EOM) which was extracted from lab-cultured Microcystis aeruginosa in stationary phase. The characteristics of EOM such as molecular weight distribution, hydrophobicity and fluorescence were measured. It was found that high molecular weight (MW) and hydrophilic organics accounted for the major parts of algal EOM which was comprised of protein-like, polysaccharide-like and humic-like substances. Ultrafiltration (UF) experiments were carried out in a stirring cell and hydrophobic polyethersulfone (PES) membranes which carried negative charge were used. Prefiltration, calcium addition and XAD fractionation were employed to change the interfacial characteristics of EOM. Then the effects of these interfacial characteristics on flux decline, reversibility and mass balance of organics were compared. Algal EOM proved to cause serious membrane fouling during UF. The fraction of algal EOM between 0.45 μm and 100 kDa contributed a significant portion of the fouling. Hydrophobic organics in EOM tended to adhere to membrane surface causing irreversible fouling, while the cake layer formed by hydrophilic organics caused greater resistance to water flow due to hydrophilic interaction such as hydrogen bond and led to faster flux decline during UF. The results also indicated that the algal EOM was negatively charged and the electrostatic repulsion could prevent organics from adhering to membrane surface. In term of fouling mechanisms, cake layer formation, hydrophobic adhesion and pore plugging were the main mechanisms for membrane fouling caused by algal EOM.
Collapse
|
|
13 |
174 |
6
|
Xie P, Ma J, Fang J, Guan Y, Yue S, Li X, Chen L. Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14051-14061. [PMID: 24237350 DOI: 10.1021/es4027024] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aqueous suspensions of Microcystis aeruginosa were preoxidized with either ozone or permanganate and then subjected to chlorination under conditions simulating drinking water purification. The impacts of the two oxidants on the algal cells and on the subsequent production of dissolved organic matter and disinfection byproducts were investigated. Preozonation dramatically increased disinfection byproduct formation during chlorination, especially the formation of haloaldehydes, haloacetonitriles, and halonitromethanes. Preoxidation with permanganate had much less effect on disinfection byproduct formation. Preozonation destroyed algal cell walls and cell membranes to release intracellular organic matter (IOM), and less than 2.0% integrated cells were left after preozonation with the dosage as low as 0.4 mg/L. Preoxidation with permanganate mainly released organic matter adsorbed on the cells' surface without causing any damage to the cells' integrity, so the increase in byproduct formation was much less. More organic nitrogen and lower molecular weight precursors were produced in a dissolved phase after preozonation than permanganate preoxidation, which contributes to the significant increase of disinfection byproducts after preozonation. The results suggest that permanganate is a better choice than ozone for controlling algae derived pollutants and disinfection byproducts.
Collapse
|
Comparative Study |
12 |
168 |
7
|
Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. MICROBIAL ECOLOGY 2002; 43:443-454. [PMID: 11953809 DOI: 10.1007/s00248-001-0041-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2001] [Accepted: 11/07/2001] [Indexed: 05/23/2023]
Abstract
The growth and intracellular microcystin concentration of two hepatotoxic and two nontoxic axenic Microcystis strains were measured in batch cultures with variable nitrogen (0.84-84 mg L(-1)) and phosphorus (0.05-5.5 mg L(-1)) concentrations. Growth was estimated by measuring dry weight, optical density, chlorophyll a, and cellular protein concentration. Microcystin concentrations in cells and in culture medium were measured by HPLC analysis. Both nontoxic strains needed less nutrients for their growth at low nutrient concentrations. With high nutrient concentrations the toxic strains grew better than the nontoxic strains. Growth and intracellular microcystin concentration did not correlate in the hepatotoxic strains. Multivariate regression analysis together with mathematical modeling revealed a significant interactive effect of nitrogen and phosphorus, which partly explains the controversial results obtained in previous studies. In this study we have shown that variation of nitrogen and phosphorus concentrations influence the growth and the microcystin production of Microcystis strains and that the strains differ in their response to nutrients. High levels of nitrogen and phosphorus in freshwaters may favor the growth of toxic Microcystis strains over nontoxic ones.
Collapse
|
|
23 |
167 |
8
|
Qian H, Yu S, Sun Z, Xie X, Liu W, Fu Z. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:405-12. [PMID: 20566224 DOI: 10.1016/j.aquatox.2010.05.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/24/2010] [Accepted: 05/29/2010] [Indexed: 05/13/2023]
Abstract
Algal blooms have been increasing in prevalence all over the world, destroying ecosystems and placing other organisms at risk. Chemical remediation is one of most important methods of controlling algal bloom formation. The effects of copper sulfate, hydrogen peroxide (H(2)O(2)) and N-phenyl-2-naphthylamine on photosynthesis-related and microcystin-related gene transcription and physiological changes of Microcystis aeruginosa were analyzed. The results suggest that transcription of psaB, psbD1 and rbcL was inhibited by the three algaecides, which blocked the electron transport chain, significantly enhanced reactive oxygen species (ROS) accumulation and overwhelmed the antioxidant system. The increase in ROS destroyed pigment synthesis and membrane integrity, which inhibited or killed the algal cells. Furthermore, H(2)O(2) treatment down-regulated mcyD transcription, which indicated a decrease in the microcystin level in the cells. Our results demonstrate that H(2)O(2) has the greatest potential as an algaecide because it not only inhibits algae growth but may reduce microcystin synthesis.
Collapse
|
|
15 |
155 |
9
|
Hong Y, Hu HY, Xie X, Sakoda A, Sagehashi M, Li FM. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:262-269. [PMID: 19131120 DOI: 10.1016/j.aquatox.2008.11.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/20/2008] [Accepted: 11/22/2008] [Indexed: 05/27/2023]
Abstract
In recent years, the exploration and development of the effective methods of treatment and prevention to algal blooms, especially Microcystis aeruginosa blooms has been an important issue in the field of water environment protection. Allelochemicals (natural plant toxins) are considered promising sources of algicides to control algal blooms. The objective of this study is to determine the inhibitory effects and potential mechanisms of a well-known allelochemical gramine (N,N-dimethyl-3-amino-methylindole) on bloom-forming cyanobacterium M. aeruginosa. The results showed that this indole alkaloid effectively inhibited the growth of M. aeruginosa. The effective concentration causing a 50% inhibition at 3 d (EC(50, 3 d)) increased with the initial algal density (IAD) increasing. When IAD increased from 5x10(4) to 5x10(5)cellsmL(-1), the values of EC(50, 3 d) increased from 0.5 to 2.1mgL(-1). In the cells of M. aeruginosa, gramine caused an obvious increase in the level of reactive oxygen species (ROS). The lipid-peroxidation product malondialdehyde (MDA) increased significantly in gramine-treated cells. The effects of gramine on enzymatic and non-enzymatic antioxidants were in different manners. The activity of superoxide dismutase (SOD) was decreased after gramine exposure. The catalase (CAT) activity was increased after 4h but decreased from 60h. Both the contents and the regeneration rates of ascorbic acid (AsA) and reduced glutathione (GSH) were increased after 4h of exposure to gramine. However, only GSH content was still increased after 40h of exposure. These results suggested that the activation of antioxidants in M. aeruginosa played an important role to resist the stress from gramine at initial time, the inactivation of SOD is crucial to the growth inhibition of M. aeruginosa by gramine, and the phytotoxicity of gramine on M. aeruginosa may be due to oxidative damage via oxidation of ROS.
Collapse
|
|
16 |
146 |
10
|
Wan J, Guo P, Peng X, Wen K. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. JOURNAL OF HAZARDOUS MATERIALS 2015; 283:778-86. [PMID: 25464321 DOI: 10.1016/j.jhazmat.2014.10.026] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 05/05/2023]
Abstract
Erythromycin, a macrolide antibiotic, is commonly used in human life. This compound and its derivatives have been detected in various aquatic compartments and may pose a serious threat to aquatic organisms. This study investigated the effects of erythromycin on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. The results showed that at 0.001-0.1 μg L(-1), erythromycin could stimulate the growth of M. flos-aquae and increase its photosynthetic activity; however, it did not significantly increase the activities of superoxide dismutase (SOD) and catalase (CAT) or the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). In contrast, the growth of M. flos-aquae was significantly inhibited (p<0.01) at high levels of erythromycin, reaching an inhibition rate of 81.6% at 40 μg L(-1) erythromycin. At the same time, the activities of SOD and CAT along with MDA content also increased significantly (p<0.01), indicating that the high concentrations of erythromycin caused a severe oxidative stress on algae. However, the balance between oxidants and antioxidant enzymes were disrupted because ROS content simultaneously increased. In addition, the fluorescence parameters of M. flos-aquae decreased significantly with both exposure time and increasing concentration of erythromycin, indicating that photosynthesis was inhibited.
Collapse
|
|
10 |
146 |
11
|
Ross C, Santiago-Vázquez L, Paul V. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 78:66-73. [PMID: 16580745 DOI: 10.1016/j.aquatox.2006.02.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 05/08/2023]
Abstract
An unprecedented bloom of the cyanobacterium Microcystis aeruginosa Kütz. occurred in the St. Lucie Estuary, FL in the summer of 2005. Samples were analyzed for toxicity by ELISA and by use of the polymerase chain reaction (PCR) with specific oligonucleotide primers for the mcyB gene that has previously been correlated with the biosynthesis of toxic microcystins. Despite the fact that secreted toxin levels were relatively low in dense natural assemblages (3.5 microg l(-1)), detectable toxin levels increased by 90% when M. aeruginosa was stressed by an increase in salinity, physical injury, application of the chemical herbicide paraquat, or UV irradiation. The application of the same stressors caused a three-fold increase in the production of H(2)O(2) when compared to non-stressed cells. The application of micromolar concentrations of H(2)O(2) induced programmed cell death (PCD) as measured by a caspase protease assay. Catalase was capable of inhibiting PCD, implicating H(2)O(2) as the inducing oxidative species. Our results indicate that physical stressors induce oxidative stress, which results in PCD and a concomitant release of toxin into the surrounding media. Remediation strategies that induce cellular stress should be approached with caution since these protocols are capable of releasing elevated levels of microcystins into the environment.
Collapse
|
|
19 |
145 |
12
|
Abstract
Nitrate- and phosphate-limited conditions had no effect on toxin production by Microcystis aeruginosa. In contrast, iron-limited conditions influenced toxin production by M. aeruginosa, and iron uptake was light dependent. A model for production of toxin by M. aeruginosa is proposed.
Collapse
|
research-article |
30 |
137 |
13
|
Fan J, Ho L, Hobson P, Brookes J. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. WATER RESEARCH 2013; 47:5153-5164. [PMID: 23866133 DOI: 10.1016/j.watres.2013.05.057] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 06/02/2023]
Abstract
Cyanobacterial blooms are continuously critical challenges in drinking water systems which can have various negative impacts such as production of taste, odour and toxic compounds. Furthermore, the intracellular metabolites could be released into surrounding waters when the cyanobacterial membranes are destroyed. Although a variety of techniques have been developed to control cyanobacterial blooms and remove cyanobacterial cells or metabolites in water treatment processes, the effect of these treatments on the membrane integrity of cyanobacterial cells have not been systematically studied and compared. This study evaluated the effectiveness of copper sulphate (CuSO4), chlorine, potassium permanganate (KMnO4), hydrogen peroxide (H2O2) and ozone on the cell integrity and densities of Microcystis aeruginosa. All of these technologies can compromise the cell membrane of cyanobacteria to varying degrees. Chlorine showed the strongest ability to impair the cell integrity with a majority (≥ 88%) of the cells compromised within the first minute and with the cell lysis rates ranging of 0.640-3.82 h(-1) during 1-60 min. Ozone dose of 6 mg L(-1) also could induce 90% lysis of the cyanobacterial cells in 5 min and the cell lysis rate of KMnO4 (10 mg L(-1)) was 0.829 h(-1). CuSO4 and H2O2 could not only destroy the viability of cyanobacterial cells but also showed algistatic potential over the 7 day treatment. The potential of all the oxidants (chlorine, KMnO4, H2O2 and ozone) considered as algicides were discussed in this study. The benefits and drawbacks of these control and water treatment options were assessed as well.
Collapse
|
|
12 |
133 |
14
|
Qian H, Li J, Pan X, Sun Z, Ye C, Jin G, Fu Z. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. ENVIRONMENTAL TOXICOLOGY 2012; 27:229-37. [PMID: 20725941 DOI: 10.1002/tox.20636] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/06/2010] [Accepted: 06/15/2010] [Indexed: 05/05/2023]
Abstract
Streptomycin is a common contaminant in a variety of industrial and agricultural wastewaters. The available information on the potential toxicity of streptomycin of fresh algae implicated in the treatment of biological wastewater is extremely limited. The objective of this study was to evaluate the effects of streptomycin on physiological indices and photosynthesis-related gene transcription. The results of short-term batch bioassays indicated that streptomycin was more sensitive to cyanobacteria than to green algae. The EC50 of streptomycin in Microcystis aeruginosa and Chlorella vulgaris were 0.28 and 20.08 mg L(-1) , respectively. These selected streptomycin concentrations inhibited algal cell growth and decreased chlorophyll or phycocyanobilin content. Streptomycin also destroyed the overall membrane system, which was speculated from malondialdehyde (MDA) content and electrolyte leakage increasing after streptomycin exposure. Two algae were induced to increase their antioxidant enzyme activities to withstand streptomycin. However, the balance between oxidant substance and antioxidant enzyme was broken, because reactive oxygen species (ROS) content simultaneously increased. Streptomycin inhibited photosynthesis-related gene transcription in C. vulgaris and M. aeruginosa. Transcript levels of psaB, psbA, and rbcL in C. vulgaris decreased to only 14.5%, 32.2%, and 9.3% of the control, respectively. Similarly, the transcript levels of psaB, psbD, and rbcL in M. aeruginosa decreased markedly in the present of streptomycin. The transcription of these genes was 12.4%, 26.1%, and 28.4% of the control after 0.1 mg L(-1) streptomycin exposure, respectively. Our results demonstrate that streptomycin is toxic to fresh algae, affects photosynthesis-related gene transcription, and blocks electron transport and ROS overproduction.
Collapse
|
|
13 |
114 |
15
|
Kardinaal WEA, Tonk L, Janse I, Hol S, Slot P, Huisman J, Visser PM. Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl Environ Microbiol 2007; 73:2939-46. [PMID: 17337540 PMCID: PMC1892876 DOI: 10.1128/aem.02892-06] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyanobacterium Microcystis can produce microcystins, a family of toxins that are of major concern in water management. In several lakes, the average microcystin content per cell gradually declines from high levels at the onset of Microcystis blooms to low levels at the height of the bloom. Such seasonal dynamics might result from a succession of toxic to nontoxic strains. To investigate this hypothesis, we ran competition experiments with two toxic and two nontoxic Microcystis strains using light-limited chemostats. The population dynamics of these closely related strains were monitored by means of characteristic changes in light absorbance spectra and by PCR amplification of the rRNA internal transcribed spacer region in combination with denaturing gradient gel electrophoresis, which allowed identification and semiquantification of the competing strains. In all experiments, the toxic strains lost competition for light from nontoxic strains. As a consequence, the total microcystin concentrations in the competition experiments gradually declined. We did not find evidence for allelopathic interactions, as nontoxic strains became dominant even when toxic strains were given a major initial advantage. These findings show that, in our experiments, nontoxic strains of Microcystis were better competitors for light than toxic strains. The generality of this finding deserves further investigation with other Microcystis strains. The competitive replacement of toxic by nontoxic strains offers a plausible explanation for the gradual decrease in average toxicity per cell during the development of dense Microcystis blooms.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
113 |
16
|
Shao J, Wu Z, Yu G, Peng X, Li R. Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. CHEMOSPHERE 2009; 75:924-928. [PMID: 19201447 DOI: 10.1016/j.chemosphere.2009.01.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/12/2008] [Accepted: 01/02/2009] [Indexed: 05/27/2023]
Abstract
Pyrogallol is a potent allelochemical on Microcystis aeruginosa, but its allelopathic mechanism is not fully known. In order to explore this mechanism, gene expressions for prx, mcyB, psbA, recA, grpE, fabZ under pyrogallol stress were studied, and activities of the main antioxidant enzymes were also measured. The results showed that expression of grpE and recA showed no significant change under pyrogallol stress, while psbA and mcyB were up-regulated at 4 mg L(-1). Both prx and fabZ were up-regulated even under exposure to 1 mg L(-1) pyrogallol concentration. The activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced under pyrogallol stress. Levels of malodialdehyde (MDA) at 2 and 4 mg L(-1) pyrogallol were significantly higher than those of the controls. It was concluded that oxidant damage is an important mechanism for the allelopathic effect of pyrogallol on M. aeruginosa.
Collapse
|
|
16 |
112 |
17
|
Dziallas C, Grossart HP. Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS One 2011; 6:e25569. [PMID: 21980492 PMCID: PMC3182230 DOI: 10.1371/journal.pone.0025569] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022] Open
Abstract
Pronounced rises in frequency of toxic cyanobacterial blooms are recently observed worldwide, particularly when temperatures increase. Different strains of cyanobacterial species vary in their potential to produce toxins but driving forces are still obscure. Our study examines effects of hydrogen peroxide on toxic and non-toxic (including a non-toxic mutant) strains of M. aeruginosa. Here we show that hydrogen peroxide diminishes chlorophyll a content and growth of cyanobacteria and that this reduction is significantly lower for toxic than for non-toxic strains. This indicates that microcystins protect from detrimental effects of oxygen radicals. Incubation of toxic and non-toxic strains of M. aeruginosa with other bacteria or without (axenic) at three temperatures (20, 26 and 32°C) reveals a shift toward toxic strains at higher temperatures. In parallel to increases in abundance of toxic (i.e. toxin gene possessing) strains and their actual toxin expression, concentrations of microcystins rise with temperature, when amounts of radicals are expected to be enhanced. Field samples from three continents support the influence of radicals and temperature on toxic potential of M. aeruginosa. Our results imply that global warming will significantly increase toxic potential and toxicity of cyanobacterial blooms which has strong implications for socio-economical assessments of global change.
Collapse
|
research-article |
14 |
101 |
18
|
Zhou S, Shao Y, Gao N, Deng Y, Qiao J, Ou H, Deng J. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:111-119. [PMID: 23792253 DOI: 10.1016/j.scitotenv.2013.05.064] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Bench scale tests were conducted to study the effects of four common algaecides, including copper sulfate, hydrogen peroxide, diuron and ethyl 2-methylacetoacetate (EMA) on the photosynthetic capacity, cell integrity and microcystin-LR (MC-LR) release of Microcystis aeruginosa. The release of potassium (K(+)) from cell membrane during algaecide exposure was also analyzed. The three typical photosynthetic parameters, including the effective quantum yield (Фe), photosynthetic efficiency (α) and maximal electron transport rate (rETRmax), were measured by a pulse amplitude modulated (PAM) fluorometry. Results showed that the photosynthetic capacity was all inhibited by the four algaecides, to different degrees, by limiting the energy capture in photosynthesis, and blocking the electron transfer chain in primary reaction. For example, at high diuron concentration (7.5 mg L(-1)), Фe, α and rETRmax decreased from 0.46 to 0.19 (p<0.01), from 0.20 to 0.01 (p<0.01) μmol electrons m(-2) s(-1)/μmol photons m(-2) s(-1), and from 160.7 to 0.1 (p<0.001) μmol m(-2) s(-1) compared with the control group after 96 h of exposure, respectively. Furthermore, the increase of algaecide dose could lead to the cell lysis, as well as release of intracellular MC-LR that enhanced the accumulation of extracellular MC-LR. The order of MC-LR release potential for the four algaecides was CuSO4>H2O2>diuron>EMA.
Collapse
|
|
12 |
98 |
19
|
Horst GP, Sarnelle O, White JD, Hamilton SK, Kaul RB, Bressie JD. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. WATER RESEARCH 2014; 54:188-198. [PMID: 24568788 DOI: 10.1016/j.watres.2014.01.063] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
An important objective in understanding harmful phytoplankton blooms is determining how environmental factors influence the toxicity of bloom-forming species. We examined how nutrients and grazers (dreissenid mussels) affect the production of microcystin (a liver toxin) by the cyanobacterium Microcystis aeruginosa, via a combination of field and laboratory experiments, and field observations in Lake Erie. The field experiment revealed no effect of mussel density on microcystin quota (particulate microcystin per unit Microcystis biomass). In contrast, in both field and laboratory experiments, nitrogen-limited conditions led to substantially reduced microcystin quota relative to phosphorus-limited or nutrient-saturated conditions. In the field experiment, microcystin per unit of mcyB gene was strongly reduced under nitrogen-limited conditions, indicating a phenotypic response. Results from a seasonal survey in the western basin of Lake Erie revealed a similar negative influence of nitrogen limitation (as indexed by nitrate concentration) on microcystin quota. Our results are consistent with stoichiometric considerations in that the cell quota of a nitrogen-rich secondary metabolite, microcystin, was reduced disproportionately under nitrogen limitation.
Collapse
|
|
11 |
97 |
20
|
Liu Y, Guan Y, Gao B, Yue Q. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 86:23-30. [PMID: 23017252 DOI: 10.1016/j.ecoenv.2012.09.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
Cyanobacteria may interact with antibiotic contaminants in aquatic environments, but the interaction effects and mechanisms remain unclear. In the present study, aqueous culture of Microcystis aeruginosa was exposed to 50ng/l-1μg/l of spiramycin and amoxicillin for seven days. The influences of antibiotics on the antioxidant system of M. aeruginosa and the degradation of antibiotics by M. aeruginosa were investigated. The activities of superoxide dismutase (SOD) in spiramycin-treated M. aeruginosa were stimulated by up to 2.2 folds, while the activities of peroxidase (POD) and catalase (CAT) were inhibited by spiramycin at test concentrations of 500ng/l-1μg/l, with a decrease of up to 71% and 76% compared to the control, respectively. The activities of SOD, POD and CAT in M. aeruginosa were stimulated by amoxicillin during the whole exposure period, with respective increases of up to 60%, 30% and 120% relative to the control. At test concentrations of 500ng/l-1μg/l, the higher MDA contents in spiramycin-treated M. aeruginosa indicated a higher toxicity of spiramycin than amoxicillin, possibly due to the accumulation of hydrogen peroxide caused by the inhibited activities of POD and CAT under exposure to spiramycin. The increase of glutathione content, the stimulation of glutathione S-transferase activity and the degradation of each antibiotic were observed in M. aeruginosa during the 7-day exposure. At the end of exposure, 12.5%-32.9% of spiramycin and 30.5%-33.6% of amoxicillin could be degraded by M. aeruginosa from the culture medium, indicating the ability of M. aeruginosa to eliminate coexisting contaminants via detoxification.
Collapse
|
|
13 |
95 |
21
|
García-Villada L, Rico M, Altamirano MM, Sánchez-Martín L, López-Rodas V, Costas E. Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. WATER RESEARCH 2004; 38:2207-2213. [PMID: 15087203 DOI: 10.1016/j.watres.2004.01.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 11/27/2003] [Accepted: 01/29/2004] [Indexed: 05/24/2023]
Abstract
Freshwater toxic cyanobacteria are an increasing problem to human and animal health. Control of cyanobacteria in water supply reservoirs involves the use of algaecides, such as copper sulphate, usually in a repetitive way. Repercussions of recurrent algaecide treatments on cyanobacteria population dynamics remain still unknown. We studied the adaptation of cyanobacteria to lethal doses of copper sulphate by using Microcystis aeruginosa as an experimental model. A fluctuation analysis demonstrated that copper-resistant cells arise by spontaneous mutations that occur randomly prior to exposition to copper sulphate. The rate of spontaneous mutation from copper sensitivity to resistance was 1.76 x 10(-6) mutants per cell division. Resistant mutants exhibited a diminished fitness in the absence of copper sulphate, but only these variants were able to grow at Cu(2+) concentrations higher than 5.8 microM. In addition, copper-resistant cells were significantly smaller than wild-type ones. Warnings on the long-term consequences of repetitive algaecide treatments in water supplies are suggested.
Collapse
|
|
21 |
91 |
22
|
Zheng X, Zhang W, Yuan Y, Li Y, Liu X, Wang X, Fan Z. Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111575. [PMID: 33396101 DOI: 10.1016/j.ecoenv.2020.111575] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs.
Collapse
|
|
4 |
89 |
23
|
Li FM, Hu HY. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microbiol 2005; 71:6545-53. [PMID: 16269680 PMCID: PMC1287638 DOI: 10.1128/aem.71.11.6545-6553.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antialgal allelochemicals were isolated from Phragmites communis Tris. The isolated allelopathic fraction showed strong inhibition activity on the growth of Chlorella pyrenoidosa and Microcystis aeruginosa but had no inhibition on Chlorella vulgaris. The 50% effective concentrations (EC50) of the allelopathic fractions on C. pyrenoidosa and M. aeruginosa were 0.49 and 0.79 mg/liter, respectively. The allelopathic activity of the fraction was species-specific. The isolated allelopathic fraction caused metal ion leakage from algal cells. The fraction decreased the activities of antioxidant enzymes, such as superoxide dismutase and peroxidase. The addition of the isolated fraction increased the concentration of unsaturated lipid fatty acids in cell membrane of C. pyrenoidosa and M. aeruginosa. This caused a change in plasma membrane integrity and the leakage of ions in the protoplast. The allelopathic compound was identified by nuclear magnetic resonance and gas chromatography-mass spectrometry as ethyl 2-methylacetoacetate. Synthesized ethyl 2-methylacetoacetate also showed allelopathic activity on C. pyrenoidosa and M. aeruginosa. The EC50 of synthesized ethyl 2-methylacetoacetate on C. pyrenoidosa and M. aeruginosa were 0.49 and 0.65 mg/liter, respectively.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
89 |
24
|
Coral LA, Zamyadi A, Barbeau B, Bassetti FJ, Lapolli FR, Prévost M. Oxidation of Microcystis aeruginosa and Anabaena flos-aquae by ozone: impacts on cell integrity and chlorination by-product formation. WATER RESEARCH 2013; 47:2983-2994. [PMID: 23561505 DOI: 10.1016/j.watres.2013.03.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
Pre-ozonation of cyanobacterial (CB) cells in raw water and inter-ozonation of settled water can cause CB cell damage. However, there is limited information about the level of lysis or changes in cell properties after ozonation, release of intracellular compounds and their contribution to the formation of disinfection by-products (DBPs). This study aims to: (1) assess the extent of the pre-ozonation effects on CB cell properties; (2) determine the CT (ozone concentration × detention time) values required for complete loss of cell viability; and (3) study the DBPs formation associated with the pre-ozonation of cyanobacterial cells in laboratorial suspensions. To these ends, both Microcystis aeruginosa and Anabaena flos-aquae suspensions were prepared at concentrations of 250,000 cells mL(-1) and 1,500,000 cells mL(-1) and were subjected to ozone dosages of 0.5, 2.0 and 4.0 mg L(-1) at pH 6 and pH 8. A quick and complete loss of viability was achieved for both CB species after exposure (CT) to ozone of <0.2 mg min L(-1), although no significant decrease in total cell numbers was observed. Maximum dissolved organic carbon (DOC) releases of 0.96 mg L(-1) and 1.63 mg L(-1) were measured after ozonation of 250,000 cells mL(-1) of M. aeruginosa and A. flos-aquae, respectively. DOC release was found to be pH and ozone dose dependent. Ozonation of CB cells increased formation of trihalomethanes (THM) and haloacetic acids (HAA), mainly for suspensions of A. flos-aquae at pH 8 (by 174% and 65% for THM and HAA respectively). Utilities considering using ozone for oxidising CB cells should weigh out the benefit of CB control with the potential increased formation of chlorinated DBPs.
Collapse
|
|
12 |
87 |
25
|
Lürling M, Faassen EJ. Controlling toxic cyanobacteria: effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. WATER RESEARCH 2012; 46:1447-1459. [PMID: 22137447 DOI: 10.1016/j.watres.2011.11.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 09/27/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
Sediment dredging and Phoslock(®) addition were applied individually and in combination in an enclosure experiment in a Dutch hypertrophic urban pond. These measures were applied to control eutrophication and reduce the risk of exposure to cyanobacterial toxins. Over the 58 days course of the experiment, cyanobacteria (predominantly Microcystis aeruginosa) gradually decreased until they dropped below the level of detection in the combined treated enclosures, they were reduced in dredged enclosures, but remained flourishing in controls and Phoslock(®) treated enclosures. Cyanobacteria were, however, less abundant in the enclosures (medians chlorophyll-a 30-87 μg l(-1)) than in the pond (median chlorophyll-a 162 μg l(-1)), where also a thick surface scum covered one-third of the pond for many weeks. Soluble reactive phosphorus (SRP), total phosphorus and total nitrogen concentrations were significantly lower in the combined dredged and Phoslock(®) treated enclosures than in controls. Median SRP concentrations were 24 μg P l(-1) in the combined treatment, 58 μg P l(-1) in dredged enclosures, and 90 μg P l(-1) in controls and 95 μg P l(-1) in Phoslock(®) treated enclosures. Hence, the combined treatment was most effective in decreasing SRP and TP, and in lowering cyanobacterial biomass. Microcystin (MC) concentrations were analyzed by LC-MS/MS. MC concentrations and cyanobacterial biomass were positively correlated in all treatments. Mean MC concentrations in controls (71 μg l(-1)), Phoslock(®) treated enclosures (37 μg l(-1)) and dredged enclosures (25 μg l(-1)) exceeded the provisional guideline of 20 μg l(-1), whereas mean MC concentrations were 13 μg l(-1) in the combined treated enclosures. All samples contained the MC variants dmMC-RR, MC-RR, MC-YR, dmMC-LR and MC-LR; traces of MC-LY and nodularin were detected in few samples. The different treatments did not change the relative contribution of the variants to the MC pool; MC profiles in all treatments and the pond showed dominance of MC-RR followed by MC-LR. In the surface scum of the pond, total MC concentration was extremely high (64000 μg l(-1) or 1300 μg g(-1) DW), which poses a serious health hazard to children playing on the banks of the pond. Based on our results and pond characteristics, we propose combined sediment dredging and Phoslock(®) addition, fish removal and strong reduction of duck feeding by the neighborhood as most promising measures controlling cyanobacterial hazards in this pond.
Collapse
|
|
13 |
87 |