1
|
Abstract
OBJECTIVES This study tested the hypotheses that micro-tensile bond strengths of all currently available single-step adhesives to dentine are adversely affected by delayed activation of a light-cured composite, and that such a phenomenon only occurs in the presence of water from the substrate side of the bonded interface. METHODS In experiment I, a control three-step adhesive (All-Bond 2, Bisco) and six single-step adhesives (One-Up Bond F, Tokuyama; Etch&Prime 3.0, Degussa; Xeno CF Bond, Sankin; AQ Bond, Sun Medical; Reactmer Bond, Shofu and Prompt L-Pop, 3M ESPE) were bonded to sound, hydrated dentine. A microfilled composite was placed over the cured adhesive and was either light-activated immediately, or after leaving the composite in the dark for 20 min. In experiment II, three single-step adhesives (Etch&Prime 3.0, Xeno CF Bond and AQ Bond) were similarly bonded to completely dehydrated dentine using the same delayed light-activation protocol. In experiment III, a piece of processed composite was used as the bonding substrate for the same three single-step adhesives. The microfilled composite was applied to the cured adhesives using the same immediate and delayed light-activation protocols. Bonded specimens were sectioned for micro-tensile bond strength evaluation. Fractographic analysis of the specimens was performed using SEM. Stained, undemineralised sections of unstressed, bonded specimens were also examined by TEM. RESULTS When bonded to hydrated dentine, delayed light-activation had no effect on the control three-step adhesive, but significantly lowered the bond strengths of all the single-step adhesives (p < 0.05). This adverse effect of delayed light-activation was not observed in the three single-step adhesives that were bonded to either dehydrated dentine or processed composite. Morphological manifestations of delayed light-activation of composite in the hydrated dentine bonding substrate were exclusively located along the composite-adhesive interface, and were present as large voids, resin globules and honeycomb structures that formed partitions around a myriad of small blisters along the fractured interfaces. CONCLUSION These features resembled the 'overwet phenomenon' that was previously reported along the dentine-adhesive interfaces of some acetone-based three-step adhesives. The cured adhesive layer in single-step adhesives may act as semi-permeable membranes that allow water diffusion from the bonded hydrated dentine to the intermixed zone between the adhesive and the uncured composite. Osmotic blistering of water droplets along the surface of the cured adhesive layer and emulsion polymerisation of immiscible resin components probably account for the compromised bond strength in single-step adhesives after delayed activation of light-cured composites.
Collapse
|
Comparative Study |
23 |
395 |
2
|
Xu HH, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, Rekow ED. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 1998; 77:472-80. [PMID: 9496920 DOI: 10.1177/00220345980770030601] [Citation(s) in RCA: 331] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the mechanical properties of human teeth is important to clinical tooth preparation and to the development of "tooth-like" restorative materials. Previous studies have focused on the macroscopic fracture behavior of enamel and dentin. In the present study, we performed indentation studies to understand the microfracture and deformation and the microcrack-microstructure interactions of teeth. It was hypothesized that crack propagation would be influenced by enamel rods and the dentino-enamel junction (DEJ), and the mechanical properties would be influenced by enamel rod orientation and tooth-to-tooth variation. Twenty-eight human third molars were used for the measurement of hardness, fracture toughness, elastic modulus, and energy absorbed during indentation. We examined the effect of enamel rod orientation by propagating cracks in the occlusal surface, and in the axial section in directions parallel and perpendicular to the occlusal surface. The results showed that the cracks in the enamel axial section were significantly longer in the direction perpendicular to the occlusal surface than parallel. The cracks propagating toward the DEJ were always arrested and unable to penetrate dentin. The fracture toughness of enamel was not single-valued but varied by a factor of three as a function of enamel rod orientation. The elastic modulus of enamel showed a significant difference between the occlusal surface and the axial section. It is concluded that the cracks strongly interact with the DEJ and the enamel rods, and that the mechanical properties of teeth are functions of microstructural orientations; hence, single values of properties (e.g., a single toughness value or a single modulus value) should not be used without information on microstructural orientation.
Collapse
|
|
27 |
331 |
3
|
Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res 1997; 76:1587-95. [PMID: 9294493 DOI: 10.1177/00220345970760091101] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Casein phosphopeptides (CPP) stabilize amorphous calcium phosphate (ACP), localize ACP in dental plaque, and are anticariogenic in animal and in situ human caries model. In this vitro study, CPP-stabilized calcium phosphate solutions were shown to remineralize subsurface lesions in human third-molar enamel. Solutions were used to examine the effect of CPP-calcium phosphate concentration on remineralization. Other solutions were used to examine the effect of increasing pH, which decreased the concentrations of free calcium and phosphate ions and increased the level of CPP-bound ACP. Although most of the remineralizing solutions were supersaturated with respect to the amorphous and crystalline calcium phosphate phases, the solutions were stabilized by the CPP such that spontaneous precipitation of calcium phosphate did not occur. After a ten-day remineralization period, enamel lesions were sectioned, subjected to microradiography, and the mineral content determined by microdensitometry. All solutions deposited mineral into the bodies of the lesions, with the 1.0% CPP-calcium phosphate (pH 7.0) solution replacing 63.9 +/- 20.1% of mineral lost at an averaged rate of 3.9 +/- 0.8 x 10(-8) mol hydroxyapatite/m2/s. The remineralizing capacity was greater for the solutions with the higher levels of CPP-stabilized free calcium and phosphate ions. Remineralization was not significantly correlated with either the CPP-bound ACP of the degrees of saturation for hydroxyapatite, octacalcium phosphate, or ACP. However, remineralization was significantly correlated with the degree of saturation for dicalcium phosphate dihydrate (CaHPO4.2H2O), but his was attributed to the significant correlation of remineralization with the activity gradients from the solution into the lesion of some calcium phosphate ions and ion pairs, in particular the neutral ion pair CaHPO4(0). The CPP, by stabilizing calcium phosphate in solution, maintain high-concentration gradients of calcium and phosphate ions and ion pairs into the subsurface lesion and thus effect high rates of enamel remineralization.
Collapse
|
|
28 |
300 |
4
|
Habelitz S, Marshall SJ, Marshall GW, Balooch M. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 2001; 46:173-83. [PMID: 11163325 DOI: 10.1016/s0003-9969(00)00089-3] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Atomic force microscopy (AFM) combined with a nano-indentation technique was used to reveal the structure and to perform site-specific mechanical testing of the enamel of third molars. Nano-indentations (size<500 nm) were made in the cusp area to measure the mechanical properties of single enamel rods at different orientations. The influence of etching on the physical properties was studied and etching conditions that did not significantly alter the plastic-elastic response of enamel were defined. Elasticity and hardness were found to be a function of the microstructural texture. Mean Young's moduli of 87.5 (+/-2.2) and 72.2 (+/-4.5) GPa and mean hardness of 3.9+/-0.3 and 3.3+/-0.3 GPa were measured in directions parallel and perpendicular to the enamel rods, respectively. Analysis of variance showed that the differences were significant. The observed anisotropy of enamel is related to the alignment of fibre-like apatite crystals and the composite nature of enamel rods. Mechanical properties were also studied at different locations on single enamel rods. Compared to those in the head area of the rods, Young's moduli and hardness were lower in the tail area and in the inter-rod enamel, which can be attributed to changes in crystal orientation and the higher content of soft organic tissue in these areas.
Collapse
|
|
24 |
294 |
5
|
Van Landuyt KL, De Munck J, Snauwaert J, Coutinho E, Poitevin A, Yoshida Y, Inoue S, Peumans M, Suzuki K, Lambrechts P, Van Meerbeek B. Monomer-solvent phase separation in one-step self-etch adhesives. J Dent Res 2005; 84:183-8. [PMID: 15668338 DOI: 10.1177/154405910508400214] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One-step adhesives bond less effectively to enamel/dentin than do their multi-step versions. To investigate whether this might be due to phase separation between adhesive ingredients, we characterized the interaction of 5 experimental and 3 commercial self-etch adhesives with dentin using transmission electron microscopy. All adhesives were examined for homogeneity by light microscopy. Bonding effectiveness to dentin was determined with the use of a micro-tensile bond-strength protocol. The lower bond strength of the one-step adhesives was associated with light-microscopic observation of multiple droplets that disappeared slowly. Interfacial analysis confirmed the entrapment of droplets within the adhesive layer. The prompt disappearance of droplets upon application of a small amount of HEMA (2-hydroxyethyl methacrylate) or a HEMA-containing bonding agent, as well as the absence of droplets at the interface of all HEMA-containing adhesives, strongly suggests that the adhesive monomers separate from water upon evaporation of ethanol/acetone. Upon polymerization, the droplets become entrapped within the adhesive, potentially jeopardizing bond durability. This can be avoided by strong air-drying of the adhesive, thereby removing interfacial water and thus improving bonding effectiveness.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
270 |
6
|
Cadenaro M, Antoniolli F, Sauro S, Tay FR, Di Lenarda R, Prati C, Biasotto M, Contardo L, Breschi L. Degree of conversion and permeability of dental adhesives. Eur J Oral Sci 2005; 113:525-30. [PMID: 16324144 DOI: 10.1111/j.1600-0722.2005.00251.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to analyse the extent of polymerization of different adhesive films in relation to their permeability. One adhesive of each class was investigated: OptiBond FL; One-Step; Clearfil Protect Bond; and Xeno III. Adhesive films were prepared and cured with XL-2500 (3M ESPE) for 20, 40 or 60 s. Polymerization kinetic curves of the adhesives tested were obtained with differential scanning calorimetry (DSC) and data were correlated with microhardness. The permeability of the adhesives under the same experimental conditions was evaluated on human extracted teeth connected to a permeability device and analysed statistically. The results showed that the extent of polymerization obtained from DSC exotherms was directly correlated with microhardness. An increased level of polymerization after prolonged light-curing was confirmed for all adhesives. Simplified adhesives exhibited a lower extent of polymerization and showed incomplete polymerization, even after 60 s. An inverse correlation was found between the degree of cure and the permeability. This study supports the hypothesis that the permeability of simplified adhesives is correlated with incomplete polymerization of resin monomers and the extent of light exposure. These adhesives may be rendered less permeable by using longer curing times than those recommended by the respective manufacturer.
Collapse
|
|
20 |
204 |
7
|
Marshall GW, Balooch M, Gallagher RR, Gansky SA, Marshall SJ. Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 54:87-95. [PMID: 11077406 DOI: 10.1002/1097-4636(200101)54:1<87::aid-jbm10>3.0.co;2-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dentinoenamel junction (DEJ) is a complex and poorly defined structure that unites the brittle overlying enamel with the dentin that forms the bulk of the tooth. In addition, this structure appears to confer excellent toughness and crack deflecting properties to the tooth, and has drawn considerable interest as a biomimetic model of a structure uniting dissimilar materials. This work sought to characterize the nanomechanical properties in the region of the DEJ using modified AFM based nanoindentation to determine nanohardness and elastic modulus. Lines of indentations traversing the DEJ were made at 1-2 microm intervals from the dentin to enamel along three directions on polished sagittal sections from three third molars. Nanohardness and elastic modulus rose steadily across the DEJ from bulk dentin to enamel. DEJ width was estimated by local polynomial regression fits for each sample and location of the mechanical property curves for the data gradient from enamel to dentin, and gave a mean value of 11.8 microm, which did not vary significantly with intratooth location or among teeth. Nanoindentation was also used to initiate cracks in the DEJ region. In agreement with prior work, it was difficult to initiate cracks that traversed the DEJ, or to produce cracks in the dentin. The fracture toughness values for enamel of 0.6-0.9 MPa . m(1/2) were in good agreement with recent microindentation fracture results. Our results suggest that the DEJ displays a gradient in structure and that nanoindenation methods show promise for further understanding its structure and function.
Collapse
|
|
24 |
203 |
8
|
About I, Bottero MJ, de Denato P, Camps J, Franquin JC, Mitsiadis TA. Human dentin production in vitro. Exp Cell Res 2000; 258:33-41. [PMID: 10912785 DOI: 10.1006/excr.2000.4909] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main hard tissues of teeth are composed of dentin and enamel, synthesized by the mesenchyme-derived odontoblasts and the epithelial-derived ameloblasts, respectively. Odontoblasts are highly differentiated post-mitotic cells secreting the organic matrix of dentin throughout the life of the animal. Pathological conditions such as carious lesions and dental injuries are often lethal to the odontoblasts, which are then replaced by other pulp cells. These cells are able to differentiate into odontoblast-like cells and produce a reparative dentin. In this study we reproduced this physiological event in an in vitro culture system using pulps of human third molars. Pulp cells cultured in presence of beta-glycerophosphate formed mineralization nodules, which grew all over the culture period. The immunohistochemical study revealed that, as odontoblasts, pulp cells contributing to the nodule formation express type I collagen, osteonectin, and nestin. By the exception of nestin, these proteins are also detected in the nodules. The composition of the nodules was also analyzed by Fourier transform infrared microspectroscopy. The spectra obtained showed that both the organic and the mineral composition of the nodules have the characteristics of the human dentin and differ from those of enamel and bone. Taken together, these results show that both the molecular and the mineral characteristics of the human dentin matrix are respected in the in vitro culture conditions.
Collapse
|
|
25 |
197 |
9
|
Couble ML, Farges JC, Bleicher F, Perrat-Mabillon B, Boudeulle M, Magloire H. Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int 2000; 66:129-38. [PMID: 10652961 DOI: 10.1007/pl00005833] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to elucidate the mechanisms involved in human dentin formation, we developed a cell culture system to promote differentiation of dental pulp cells into odontoblasts. Explants from human teeth were cultured in Eagle's basal medium supplemented with 10% or 15% fetal calf serum, with or without beta-glycerophosphate (beta GP). Addition of beta GP to the culture medium induced odontoblast features in the cultured pulp cells. Cells polarized and some of them exhibited a typical cellular extension. In some cases, cells aligned with their processes oriented in the same direction and developed junctional complexes similar to the terminal web linking odontoblasts in vivo. Fine structural analyses showed the presence of typical intracellular organelles of the odontoblast body, whereas the process contained only cytoskeleton elements and secretory vesicles. Polarized cells deposited onto the plastic dishes an abundant and organized type I collagen-rich matrix with areas of mineralization appearing thereafter. X-ray microanalysis showed the presence of calcium and phosphorus and the electron diffraction pattern confirmed the apatitic crystal structure of the mineral. High expression of alpha 1 (1) collagen mRNAs was detected in all polarized cells whereas dentin sialoprotein gene was mainly expressed in mineralizing areas. This cell culture system allowed for the differentiation of pulp cells into odontoblasts, at both the morphological and functional level. Moreover, these cells presented a spatial organization similar to the odontoblastic layer.
Collapse
|
|
25 |
196 |
10
|
Sanares AM, Itthagarun A, King NM, Tay FR, Pashley DH. Adverse surface interactions between one-bottle light-cured adhesives and chemical-cured composites. Dent Mater 2001; 17:542-56. [PMID: 11567693 DOI: 10.1016/s0109-5641(01)00016-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This study examined the effect of one-bottle adhesives with different acidities on bonding to chemical-cured and light-cured resin composites. METHODS Twenty-four non-carious human third molars were divided into eight groups. A flat dentin surface was created for each tooth. Acid-conditioned dentin surfaces were bonded with Prime&Bond NT (Dentsply), OptiBond SOLO (Kerr), Single Bond (3M) or One-Step (Bisco). Each adhesive group was covered with composite buildups, using either a light-cured (Z100, 3M) or a chemical-cured composite (BisFil 2, Bisco). Specimens were vertically sectioned into 0.9x0.9 mm beams. Microtensile bond strengths were recorded and failure modes were classified using a stereoscopical microscope. Four representative beams from each group were further prepared for SEM examination. RESULTS Two-way ANOVA showed that the effect of adhesive types, composite curing modes and their interaction were statistically significant (P<0.001). Multiple comparison tests revealed no statistically significant difference in the bond strength of the four adhesives with the light-cured composite (P>0.05). However, they were significantly lower when used with the chemical-cured composite (P<0.01). A positive correlation was observed between the acidity of adhesives and the bond strengths of the chemical-cured composite. Failure occurred predominantly along the composite-adhesive interface, with microporosities on the adhesive surface and voids within the chemical-cured composite. SIGNIFICANCE Air incorporated during mixing of chemical-cured composites only contributed partially to the decreased bond strength observed in simplified-step adhesives. Ultrastructural observations suggested the presence of a surface interaction between the uncured, acidic resin monomers from the oxygen inhibition layer of the adhesive and the initiator components in the chemical-cured composite.
Collapse
|
Comparative Study |
24 |
164 |
11
|
Kinney JH, Balooch M, Marshall GW, Marshall SJ. A micromechanics model of the elastic properties of human dentine. Arch Oral Biol 1999; 44:813-22. [PMID: 10530914 DOI: 10.1016/s0003-9969(99)00080-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young's moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young's moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young's modulus of approx. 16 GPa and a shear modulus of 6.2 GPa.
Collapse
|
|
26 |
160 |
12
|
Baxendale BR, Vater M, Lavery KM. Dexamethasone reduces pain and swelling following extraction of third molar teeth. Anaesthesia 1993; 48:961-4. [PMID: 8250191 DOI: 10.1111/j.1365-2044.1993.tb07474.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Extraction of multiple third molar teeth can cause significant postoperative pain, swelling and trismus, which may result in delayed hospital discharge. We have examined the effect of a single prophylactic dose of oral dexamethasone 8 mg on these complications, in a randomised double-blind study of 50 adult patients. The number of extractions performed and the operative approach were standardised. Dexamethasone resulted in a significant reduction in pain 4 h postoperatively, and eliminated the need for opioid analgesia in the postoperative period. The incidence of severe swelling was also reduced significantly, but there was no effect on trismus. Postoperative nausea and vomiting were significantly lower in the dexamethasone group. We conclude that the use of prophylactic oral dexamethasone is useful in reducing postoperative analgesia requirements in this group of patients, and may facilitate surgery performed on a day case basis.
Collapse
|
Clinical Trial |
32 |
159 |
13
|
Spencer P, Wang Y, Walker MP, Wieliczka DM, Swafford JR. Interfacial chemistry of the dentin/adhesive bond. J Dent Res 2000; 79:1458-63. [PMID: 11005728 DOI: 10.1177/00220345000790070501] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To date, the dentin/adhesive (d/a) bond has primarily been studied by morphologic analysis in conjunction with bond strength measurement. Although these analyses have enhanced our understanding, numerous questions about the chemistry have not been answered. The purpose of this study was to determine, at the molecular level, quantitative differences in the composition of the d/a interface formed under "wet" bonding conditions. The occlusal one-third of the crown was removed from 10 extracted, unerupted human third molars. The prepared dentin surfaces were treated, per manufacturers' instructions, with either Single Bond (3M) or One-Step adhesive (Bisco). Three-micron-thick sections of the d/a interface were cut and stained with Goldner trichrome for light microscopy. Companion slabs were analyzed with micro-Raman spectroscopy; the sample was placed at the focus of a 100x microscope objective, and spectra were acquired at 1-microm intervals across the d/a interface. Reference spectra were collected on model compounds of type I collagen and adhesive; the relative ratios of the integrated intensities of spectral features from adhesive and collagen were determined and plotted as a function of wt% adhesive. The same ratios were determined for the interface samples; by comparing these ratios with the calibration curve generated from the model compounds, we determined the percent of adhesive as a function of spatial position across the d/a interface. The relative percent of Single Bond adhesive was < 50% throughout more than half of the hybrid layer; One Step adhesive was > or = 50% throughout most of the hybrid. The results from this study provide the first direct chemical evidence of phase separation in a dentin adhesive and its detrimental effect on the dentin/adhesive bond.
Collapse
|
Comparative Study |
25 |
159 |
14
|
Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka A. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol 2013; 59:167-75. [PMID: 24370188 DOI: 10.1016/j.archoralbio.2013.11.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) induces pro-inflammatory cytokines, such as interleukin-1 β (IL-1β), IL-6, and IL-8, which induce periodontal tissue destruction. Periodontal ligament stem cells (PDLSCs) play an important role in periodontal tissue regeneration and are expected to have future applications in cellular therapies for periodontitis. However, no studies have examined the effects of P. gingivalis LPS on PDLSCs. The aim of this study was to investigate how P. gingivalis LPS affects the osteoblastic differentiation and pro-inflammatory cytokine production of PDLSCs. DESIGN PDLSCs were obtained from healthy adult human mandibular third molars. The identification of PDLSCs was confirmed by immunohistochemical evaluations of the mesenchymal stem cell markers STRO-1 and SSEA-4. Cell proliferation and osteoblastic differentiation were investigated by culturing the PDLSCs in a normal or osteogenic medium with P. gingivalis LPS (0, 1, or 10μg/mL) and then measuring the alkaline phosphatase (ALP) activity and the production of collagen type 1 Alpha 1 (COL1A1), osteocalcin production, and mineralisation. Additionally, we examined the production of IL-1β, IL-6, and IL-8 in the PDLSCs. RESULTS P. gingivalis LPS inhibited the ALP activity, COL1A1 and osteocalcin production, and mineralisation in the PDLSCs, which are positive for STRO-1 and SSEA-4. P. gingivalis LPS also promoted cell proliferation and produced IL-1β, IL-6, and IL-8. CONCLUSIONS This study provides the first findings that P. gingivalis LPS inhibits osteoblastic differentiation and induces pro-inflammatory cytokines in PDLSCs. These findings will help clarify the relationship between periodontitis and periodontal tissue regeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
154 |
15
|
Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 2005; 84:907-12. [PMID: 16183789 DOI: 10.1177/154405910508401007] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human post-natal stem cells possess a great potential to be utilized in stem-cell-mediated clinical therapies and tissue engineering. It is not known whether cryopreserved human tissues contain functional post-natal stem cells. In this study, we utilized human periodontal ligament to test the hypothesis that cryopreserved human periodontal ligament contains retrievable post-natal stem cells. These cryopreserved periodontal ligament stem cells maintained normal periodontal ligament stem cell characteristics, including expression of the mesenchymal stem cell surface molecule STRO-1, single-colony-strain generation, multipotential differentiation, cementum/periodontal-ligament-like tissue regeneration, and a normal diploid karyotype. Collectively, this study provides valuable evidence demonstrating a practical approach to the preservation of solid-frozen human tissues for subsequent post-natal stem cell isolation and tissue regeneration. The present study demonstrates that human post-natal stem cells can be recovered from cryopreserved human periodontal ligament, thereby providing a practical clinical approach for the utilization of frozen tissues for stem cell isolation.
Collapse
|
Research Support, N.I.H., Intramural |
20 |
151 |
16
|
Kaidonis JA, Richards LC, Townsend GC, Tansley GD. Wear of human enamel: a quantitative in vitro assessment. J Dent Res 1998; 77:1983-90. [PMID: 9839786 DOI: 10.1177/00220345980770120601] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many factors influence the extent and rate at which enamel wears. Clinical studies in humans are limited by difficulties in the accurate quantification of intra-oral wear and by a lack of control over the oral environment. The purpose of this study was to determine the wear characteristics of human dental enamel under controlled experimental conditions. An electro-mechanical tooth wear machine, in which opposing enamel surfaces of sectioned, extracted teeth were worn under various conditions, was used to simulate tooth grinding or bruxism. Enamel surface wear was quantified by weight to an accuracy of 0.1 mg, with water uptake and loss controlled. The variables considered included the structure and hardness of enamel, facet area, duration of tooth contact, relative speed of opposing surfaces, temperature, load, pH, and the nature of the lubricant. Enamel wear under non-lubricated conditions increased with increasing load over the range of 1.7 to 16.2 kg. The addition of a liquid lubricant (pH = 7) reduced enamel wear up to 6.7 kg, but when the load increased above this threshold, the rate of wear increased dramatically. With the viscosity of the lubricant constant and pH = 3, the rate of wear was further reduced to less than 10% of the non-lubricated rate at 9.95 kg, after which the rate again increased substantially. Under more extreme conditions (pH = 1.2, simulating gastric acids), the wear was excessive under all experimental loads. When saliva was used as a lubricant, the amount of wear was relatively low at 9.95 kg, but rapid wear occurred at 14.2 kg and above. These results indicate that under non-lubricated conditions, enamel wear remains low at high loads due to the dry-lubricating capabilities of fine enamel powder. Under lubricated conditions, low loads with an acidic lubricant lead to little enamel wear, whereas very low pH results in a high rate of wear under all loads.
Collapse
|
Comparative Study |
27 |
119 |
17
|
Abstract
Subjects (N = 543) reporting on acute postoperative dental pain were classified into four major ancestral groups: Asian (N = 96), black American (N = 65), European (N = 296), and Latino (N = 88). Pain severity was measured using a 10-cm visual analogue scale following a standardized operative procedure. The subjects of European descent reported significantly less severe pain than those of black American or Latino descent. They also reported less pain than Asians, although this finding did not reach significance. Evaluation of covariates, including gender, age, education, generation in the United States, and difficulty of the surgical extraction, demonstrated that gender was significant, with men reporting less pain than women regardless of ancestry. Possible implications of these findings are discussed in terms of potential differences in physiology, in addition to social learning.
Collapse
|
Comparative Study |
31 |
116 |
18
|
Van Landuyt KL, Snauwaert J, De Munck J, Coutinho E, Poitevin A, Yoshida Y, Suzuki K, Lambrechts P, Van Meerbeek B. Origin of interfacial droplets with one-step adhesives. J Dent Res 2007; 86:739-44. [PMID: 17652202 DOI: 10.1177/154405910708600810] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Contemporary one-step self-etch adhesives are often documented with interfacial droplets. The objective of this study was to research the origin of these droplets. Two HEMA-rich and one HEMA-free adhesive were applied to enamel and dentin, with the lining composite either immediately cured or cured only after 20 min. All one-step adhesives exhibited droplets at the interface; however, the droplets had two different origins. With the HEMA-free adhesives, droplets were located throughout the adhesive layer and were stable in number over time. With the HEMA-rich adhesives, the droplets were observed exclusively at the adhesive resin/composite interface, and their number increased significantly when the composite was delay-cured. Only the latter droplets caused a significant drop in bond strength after delayed curing. While the droplets in the HEMA-free one-step adhesives should be ascribed to phase separation, those observed with HEMA-rich adhesives resulted from water absorption from dentin through osmosis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
111 |
19
|
Peck S, Peck L, Kataja M. Prevalence of tooth agenesis and peg-shaped maxillary lateral incisor associated with palatally displaced canine (PDC) anomaly. Am J Orthod Dentofacial Orthop 1996; 110:441-3. [PMID: 8876497 DOI: 10.1016/s0889-5406(96)70048-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fifty-eight nonsyndromic North American white orthodontic patients with palatal displacement of one or both maxillary canine teeth were studied for associated tooth agenesis and peg-shaped maxillary lateral incisors. Agenesis of permanent teeth was identified by x-ray film analysis. Conical crown-size reduction (peg-shape anomaly) of the maxillary lateral incisor (l2) was determined by direct observation. Increases in absence of third molars and second premolars associated with the palatally displaced canine (PDC) anomaly were statistically very highly significant compared with normative data for tooth-agenesis prevalence. In contrast, the prevalence of l2 agenesis in the PDC sample showed no difference statistically compared with reference values. Reasons for this posterior site-specific suppression of tooth formation are not clear. The l2 peg-shape anomaly exceeded a 10-fold elevation in expression in the PDC sample, a very highly significant increase from normal prevalence. The findings are consistent with a hypothesis that the anomalies of tooth agenesis, tooth-size reduction, and PDC are biologic covariables in a complex of genetically related dental disturbances.
Collapse
|
|
29 |
111 |
20
|
GARN SM, LEWIS AB, VICINUS JH. Third Molar Polymorphism and its Significance to Dental Genetics. J Dent Res 2016; 42:SUPPL1344-63. [PMID: 14075430 DOI: 10.1177/00220345630420061001] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
9 |
104 |
21
|
Wood WR, Greco GW, McFall WT. Tooth loss in patients with moderate periodontitis after treatment and long-term maintenance care. J Periodontol 1989; 60:516-20. [PMID: 2677303 DOI: 10.1902/jop.1989.60.9.516] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Records of 63 patients diagnosed as having moderate periodontitis who had been treated and maintained by scaling and root planing for 10 years or longer (mean 13.6 years, range 10 to 34 years) in dental school clinics were reviewed for tooth loss. The patients averaged 45 years of age (range 24 to 67 years) at the initial appointment, and 41 were female. Record audit determined type of periodontal treatment, total tooth loss, periodontally related tooth loss, loss of teeth with furcation invasion, plaque scores, and maintenance interval. Results of therapy were evaluated by groups on the basis of number of teeth lost. At the completion of active periodontal therapy 1,607 teeth were present in the patients. During the maintenance period, 115 teeth (7.1%) were lost and of these 88 (5.0%) were lost due to periodontal reasons. Maxillary and mandibular molar teeth, particularly maxillary second molars, were the teeth lost most frequently to periodontal disease. Of the 164 teeth initially indicated as having furcation invasion, 23% were subsequently lost. This retrospective study confirms the low rate of tooth mortality occurring when patients with periodontal disease are treated and kept on a maintenance program. Canines were the teeth least frequently lost.
Collapse
|
|
36 |
96 |
22
|
Behnia H, Kheradvar A, Shahrokhi M. An anatomic study of the lingual nerve in the third molar region. J Oral Maxillofac Surg 2000; 58:649-51; discussion 652-3. [PMID: 10847287 DOI: 10.1016/s0278-2391(00)90159-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE The aim of this study was to determine the location of the lingual nerve in the lower third molar region. PATIENTS AND METHODS In this study, 669 nerves from 430 fresh cadavers were examined. Measurements on each cadaver were made using a micrometer caliper to determine the horizontal and vertical position of the lingual nerve in the lower third molar region. RESULTS In 94 cases (14.05%), the nerve was above the lingual crest, and in 1 case (0.15%), the nerve was in the retromolar pad region. In the remaining 574 cases (85.80%), the mean horizontal and vertical distances of the nerve to the lingual plate and the lingual crest 2.06 +/- 1.10 mm (range, 0.00 to 3.20 mm) and 3.01 +/- 0.42 mm (range, 1.70 to 4.00 mm), respectively. In 149 cases (22.27%), the nerve was in direct contact with the lingual plate of the alveolar process. CONCLUSIONS This study confirms the relatively unsafe position of the lingual nerve in relation to some oral and maxillofacial surgery procedures.
Collapse
|
|
25 |
91 |
23
|
Nishitani Y, Yoshiyama M, Donnelly A, Agee K, Sword J, Tay F, Pashley D. Effects of resin hydrophilicity on dentin bond strength. J Dent Res 2006; 85:1016-21. [PMID: 17062742 PMCID: PMC2248726 DOI: 10.1177/154405910608501108] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to determine if hydrophobic resins can be coaxed into dentin wet with ethanol instead of water. The test hypothesis was that dentin wet with ethanol would produce higher bond strengths for hydrophobic resins than would dentin wet with water. This study examined the microtensile bond strength of 5 experimental adhesives (50 wt% ethanol/50% comonomers) of various degrees of hydrophilicity to acid-etched dentin that was left moist with water, moist with ethanol, or air-dried. Following composite buildups, hourglass-shaped slabs were prepared from the bonded teeth for microtensile testing. For all 3 types of dentin surfaces, higher bond strengths were achieved with increased resin hydrophilicity. The lowest bond strengths were obtained on dried dentin, while the highest bond strengths were achieved when dentin was bonded moist with ethanol. Wet-bonding with ethanol achieved higher bond strengths with hydrophobic resins than were possible with water-saturated matrices.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
91 |
24
|
Kahl-Nieke B, Fischbach H, Schwarze CW. Post-retention crowding and incisor irregularity: a long-term follow-up evaluation of stability and relapse. BRITISH JOURNAL OF ORTHODONTICS 1995; 22:249-57. [PMID: 7577875 DOI: 10.1179/bjo.22.3.249] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of the present long-term follow-up study of orthodontically-treated patients (mean: 15.7 years) was to analyse post-retention changes and to reveal factors which may play a role as predictors for long-term prognosis. Pretreatment, end-of-treatment, and post-retention models of 226 cases with all types of anomaly were used to measure intercanine and intermolar width, arch length, and sum of the mesiodistal dimension of the incisors, Irregularity Index, crowding, molar and canine relationship, overjet, and overbite. In order to assess the influence of sex, initial and end-of-treatment alignment, type of therapy, amount of tooth movement, and presence of third molars on the extent of post-retention changes, the total sample was divided into subgroups. Findings indicated that post-retention crowding and incisor irregularity increased more frequently in the mandible than in the maxilla. Pretreatment variables such as increased mesiodistal incisor dimension, severe crowding and incisor irregularity, arch length deficiency, arch constriction, and increased overbite as well as post-treatment spacing, arch expansion, increased arch length, and residual Class II or III molar relationships were found to be associated factors in the process of post-retention increase of crowding and incisor irregularity. 'Overexpansion' was found to be a factor in mandibular incisor relapse.
Collapse
|
|
30 |
91 |
25
|
Robinson PP, Loescher AR, Yates JM, Smith KG. Current management of damage to the inferior alveolar and lingual nerves as a result of removal of third molars. Br J Oral Maxillofac Surg 2004; 42:285-92. [PMID: 15225944 DOI: 10.1016/j.bjoms.2004.02.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2004] [Indexed: 12/14/2022]
Abstract
In this review we present algorithms to guide the clinical management of patients who sustain damage to the inferior alveolar or lingual nerves during the removal of lower third molars. Monitoring recovery using simple sensory testing allows those patients who may benefit from some form of intervention to be identified. There is good evidence that some surgical procedures produce worthwhile improvements in sensation but management of nerve injury-induced dysaesthesia remains problematic.
Collapse
|
|
21 |
86 |