1
|
Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13776-84. [PMID: 25384056 DOI: 10.1021/es504038a] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Polyethylene (PE) has been considered nonbiodegradable for decades. Although the biodegradation of PE by bacterial cultures has been occasionally described, valid evidence of PE biodegradation has remained limited in the literature. We found that waxworms, or Indian mealmoths (the larvae of Plodia interpunctella), were capable of chewing and eating PE films. Two bacterial strains capable of degrading PE were isolated from this worm's gut, Enterobacter asburiae YT1 and Bacillus sp. YP1. Over a 28-day incubation period of the two strains on PE films, viable biofilms formed, and the PE films' hydrophobicity decreased. Obvious damage, including pits and cavities (0.3-0.4 μm in depth), was observed on the surfaces of the PE films using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The formation of carbonyl groups was verified using X-ray photoelectron spectroscopy (XPS) and microattenuated total reflectance/Fourier transform infrared (micro-ATR/FTIR) imaging microscope. Suspension cultures of YT1 and YP1 (10(8) cells/mL) were able to degrade approximately 6.1 ± 0.3% and 10.7 ± 0.2% of the PE films (100 mg), respectively, over a 60-day incubation period. The molecular weights of the residual PE films were lower, and the release of 12 water-soluble daughter products was also detected. The results demonstrated the presence of PE-degrading bacteria in the guts of waxworms and provided promising evidence for the biodegradation of PE in the environment.
Collapse
|
|
11 |
448 |
2
|
Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J. Disarming the mustard oil bomb. Proc Natl Acad Sci U S A 2002; 99:11223-8. [PMID: 12161563 PMCID: PMC123237 DOI: 10.1073/pnas.172112899] [Citation(s) in RCA: 333] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Indexed: 11/18/2022] Open
Abstract
Plants are attacked by a broad array of herbivores and pathogens. In response, plants deploy an arsenal of defensive traits. In Brassicaceae, the glucosinolate-myrosinase complex is a sophisticated two-component system to ward off opponents. However, this so-called "mustard oil bomb" is disarmed by a glucosinolate sulfatase of a crucifer specialist insect, diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Sulfatase activity of this enzyme largely prevents the formation of toxic hydrolysis products arising from this plant defense system. Importantly, the enzyme acts on all major classes of glucosinolates, thus enabling diamondback moths to use a broad range of cruciferous host plants.
Collapse
|
research-article |
23 |
333 |
3
|
Abstract
Antibiotic peptides are widely distributed in nature. Almost all function as membrane-active agents, disrupting target-cell permeability. Several exhibit a striking selectivity for single-celled microbes over metazoan cells, and as such are amongst the simplest components of the animal's defensive system, which distinguishes environmental microbes from 'self'.
Collapse
|
Review |
33 |
269 |
4
|
Vogt RG, Prestwich GD, Lerner MR. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. JOURNAL OF NEUROBIOLOGY 1991; 22:74-84. [PMID: 2010751 DOI: 10.1002/neu.480220108] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The olfactory receptors of terrestrial animals exist in an aqueous environment, yet detect odorants that are primarily hydrophobic. The aqueous solubility of hydrophobic odorants is thought to be greatly enhanced via odorant binding proteins (OBP) which exist in the extracellular fluid surrounding the odorant receptors. We have isolated and partially sequenced 14 candidate OBPs from six insect (moth) species. All 14 represent a single homologous family based on conserved sequence domains. The 14 proteins can be divided into three subfamilies based on differences in tissue specific expression and similarities in amino acid sequences. All 14 proteins are specifically expressed in antennal olfactory tissue. Subfamily I represents previously described pheromone binding proteins (PBP), which are male-specific, associate with pheromone-sensitive neurons, and are highly variable in their sequences when compared among species. Subfamilies II and III are expressed in both male and female antennae, appear to associate with general-odorant-sensitive neurons, and are highly conserved when compared among species. The properties of the subfamily II and III proteins suggest these are general-odorant binding proteins (GOBP). The properties of the respective insect OBP subfamilies suggest that they have different odorant binding specificities. The association of different insect OBP subfamilies with distinct classes of olfactory neurons having different odorant specificities suggests that OBPs can act as selective signal filters, peripheral to the actual receptor proteins.
Collapse
|
Comparative Study |
34 |
246 |
5
|
Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. INSECT MOLECULAR BIOLOGY 2006; 15:383-91. [PMID: 16756557 DOI: 10.1111/j.1365-2583.2006.00656.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA interference (RNAi) or gene silencing is typically induced in insects by the injection of double-stranded RNAs (dsRNAs), short interfering RNAs, or through the use of hairpin constructs in transgenic insects. Here we demonstrate in the horticultural pest, Epiphyas postvittana (Lepidoptera: Tortricidae), that RNAi can be triggered by oral delivery of dsRNA to larvae. Transcript levels of a larval gut carboxylesterase gene (EposCXE1) were reduced to less than half that of controls within 2 days of being fed EposCXE1 dsRNA. Transcript levels of the pheromone binding protein gene (EposPBP1) were reduced in adult antennae by feeding larvae EposPBP1 dsRNA. Knockdown of EposPBP1 transcripts was observed for the first 2 days after adult eclosion but recovered to wild-type levels at 4 days posteclosion. The potential mechanisms involved in the initiation, movement and amplification of the silencing signal are discussed.
Collapse
|
|
19 |
206 |
6
|
Mancini JA, Abramovitz M, Cox ME, Wong E, Charleson S, Perrier H, Wang Z, Prasit P, Vickers PJ. 5-lipoxygenase-activating protein is an arachidonate binding protein. FEBS Lett 1993; 318:277-81. [PMID: 8440384 DOI: 10.1016/0014-5793(93)80528-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
5-Lipoxygenase-activating protein (FLAP) is an 18-kDa integral membrane protein which is essential for cellular leukotriene (LT) synthesis, and is the target of LT biosynthesis inhibitors. However, the mechanism by which FLAP activates 5-LO has not been determined. We have expressed high levels of human FLAP in Spodoptera frugiperda (Sf9) insect cells infected with recombinant baculovirus, and used this system to demonstrate that FLAP specifically binds [125I]L-739,059, a novel photoaffinity analog of arachidonic acid. This binding is inhibited by both arachidonic acid and MK-886, an LT biosynthesis inhibitor which specifically interacts with FLAP. These studies suggest that FLAP may activate 5-LO by specifically binding arachidonic acid and transferring this substrate to the enzyme.
Collapse
|
|
32 |
173 |
7
|
Whitten MMA, Tew IF, Lee BL, Ratcliffe NA. A novel role for an insect apolipoprotein (apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsulation reactions. THE JOURNAL OF IMMUNOLOGY 2004; 172:2177-85. [PMID: 14764684 DOI: 10.4049/jimmunol.172.4.2177] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipoproteins and molecules for pattern recognition are centrally important in the innate immune response of both vertebrates and invertebrates. Mammalian apolipoproteins such as apolipoprotein E (apoE) are involved in LPS detoxification, phagocytosis, and possibly pattern recognition. The multifunctional insect protein, apolipophorin III (apoLp-III), is homologous to apoE. In this study we describe novel roles for apoLp-III in pattern recognition and multicellular encapsulation reactions in the innate immune response, which may be of direct relevance to mammalian systems. It is known that apoLp-III stimulates antimicrobial peptide production in insect blood, enhances phagocytosis by insect blood cells (hemocytes), and binds and detoxifies LPS and lipoteichoic acid. In the present study we show that apoLp-III from the greater wax moth, Galleria mellonella, also binds to fungal conidia and beta-1,3-glucan and therefore may act as a pattern recognition molecule for multiple microbial and parasitic invaders. This protein also stimulates increases in cellular encapsulation of nonself particles by the blood cells and exerts shorter term, time-dependent, modulatory effects on cell attachment and spreading. All these responses are dose dependent, occur within physiological levels, and, with the notable exception of beta-glucan binding, are only observed with the lipid-associated form of apoLp-III. Preliminary studies also established a beneficial role for apoLp-III in the in vivo response to an entomopathogenic fungus. These data suggest a wide range of immune functions for a multiple specificity pattern recognition molecule and may provide a useful model for identifying further potential roles for homologous proteins in mammalian immunology, particularly in terms of fungal infections, pneumoconiosis, and granulomatous reactions.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
162 |
8
|
Garczynski SF, Crim JW, Adang MJ. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol 1991; 57:2816-20. [PMID: 1746942 PMCID: PMC183880 DOI: 10.1128/aem.57.10.2816-2820.1991] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.
Collapse
|
research-article |
34 |
152 |
9
|
Plettner E, Lazar J, Prestwich EG, Prestwich GD. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 2000; 39:8953-62. [PMID: 10913308 DOI: 10.1021/bi000461x] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gypsy moth, Lymantria dispar, uses (7R, 8S)-cis-2-methyl-7, 8-epoxyoctadecane, (+)-disparlure, as a sex pheromone. The (-) enantiomer of the pheromone is a strong behavioral antagonist. Specialized sensory hairs, sensillae, on the antennae of male moths detect the pheromone. Once the pheromone enters a sensillum, the very abundant pheromone binding protein (PBP) transports the odorant to the sensory neuron. We have expressed the two PBPs found in gypsy moth antennae, PBP1 and PBP2, and we have studied the affinity of these recombinant PBPs for the enantiomers of disparlure. To study pheromone binding under equilibrium conditions, we developed and validated a binding assay. We have addressed the two major problems with hydrophobic ligands in aqueous solution: (1) concentration-dependent adsorption of the ligand on vial surfaces and (2) separation of the protein-bound ligand from the material remaining free in solution. We used this assay to demonstrate for the first time that pheromone binding to PBP is reversible and that the two PBPs from L. dispar differ in their enantiomer binding preference. PBP1 has a higher affinity for the (-) enantiomer, while PBP2 has a higher affinity for the (+) enantiomer. The PBP from the wild silk moth, Antheraea polyphemus (Apol-3) bound the disparlure enantiomers more weakly than either of the L. dispar PBPs, but Apol-3 was also able to discriminate the enantiomers. We have observed extensive aggregation of both L. dispar PBPs and an increase in pheromone binding at high (>2 microM) PBP concentrations. We present a model of disparlure binding to the two PBPs.
Collapse
|
Comparative Study |
25 |
142 |
10
|
Wolfersberger MG. The toxicity of two Bacillus thuringiensis delta-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. EXPERIENTIA 1990; 46:475-7. [PMID: 2161350 DOI: 10.1007/bf01954236] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The delta-endotoxin from Bacillus thuringiensis subspecies kurstaki strain HD1-9 is almost 400 times more potent than the delta-endotoxin from strain HD-73 as a gypsy moth larvicide. The two delta-endotoxins compete for a high-affinity binding site on the brush border membrane of larval gypsy moth midguts. The affinity for the delta-endotoxin from strain HD-73 is much greater than the affinity for the delta-endotoxin from strain HD1-9.
Collapse
|
Comparative Study |
35 |
140 |
11
|
French TJ, Roy P. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J Virol 1990; 64:1530-6. [PMID: 2157041 PMCID: PMC249287 DOI: 10.1128/jvi.64.4.1530-1536.1990] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The L3 and M7 genes of bluetongue virus (BTV), which encode the two major core proteins of the virus (VP3 and VP7, respectively), were inserted into a baculovirus dual-expression transfer vector and a recombinant baculovirus expressing both foreign genes isolated following in vivo recombination with wild-type Autographa californica nuclear polyhedrosis virus DNA. Spodoptera frugiperda insect cells infected with the recombinant synthesized large amounts of BTV corelike particles. These particles have been shown to be similar to authentic BTV cores in terms of size, appearance, stoichiometric arrangement of VP3 to VP7 (ratio, 2:15), and the predominance of VP7 on the surface of the particles. In infected insect cells, the corelike particles were observed in paracrystalline arrays. The formation of these structures indicates that neither the BTV double-stranded viral RNA species nor the associated minor core proteins are necessary for assembly of cores in insect cells. Furthermore, the three BTV nonstructural proteins NS1, NS2, and NS3, are not required to assist or direct the formation of empty corelike particles from VP3 and VP7.
Collapse
|
research-article |
35 |
138 |
12
|
Ebbinghaus-Kintscher U, Luemmen P, Lobitz N, Schulte T, Funke C, Fischer R, Masaki T, Yasokawa N, Tohnishi M. Phthalic acid diamides activate ryanodine-sensitive Ca2+ release channels in insects. Cell Calcium 2005; 39:21-33. [PMID: 16219348 DOI: 10.1016/j.ceca.2005.09.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/01/2005] [Accepted: 09/05/2005] [Indexed: 11/20/2022]
Abstract
Flubendiamide represents a novel chemical family of substituted phthalic acid diamides with potent insecticidal activity. So far, the molecular target and the mechanism of action were not known. Here we present for the first time evidence that phthalic acid diamides activate ryanodine-sensitive intracellular calcium release channels (ryanodine receptors, RyR) in insects. With Ca(2+) measurements, we showed that flubendiamide and related compounds induced ryanodine-sensitive cytosolic calcium transients that were independent of the extracellular calcium concentration in isolated neurons from the pest insect Heliothis virescens as well as in transfected CHO cells expressing the ryanodine receptor from Drosophila melanogaster. Binding studies on microsomal membranes from Heliothis flight muscles revealed that flubendiamide and related compounds interacted with a site distinct from the ryanodine binding site and disrupted the calcium regulation of ryanodine binding by an allosteric mechanism. This novel insecticide mode of action seems to be restricted to specific RyR subtypes because the phthalic acid diamides reported here had almost no effect on mammalian type 1 ryanodine receptors.
Collapse
|
Journal Article |
20 |
134 |
13
|
Bollenbacher WE, Vedeckis WV, Gilbert LI. Ecdysone titers and prothoracic gland activity during the larval-pupal development of Manduca sexta. Dev Biol 1975; 44:46-53. [PMID: 1132588 DOI: 10.1016/0012-1606(75)90375-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
50 |
122 |
14
|
Pauchet Y, Wilkinson P, Vogel H, Nelson DR, Reynolds SE, Heckel DG, ffrench-Constant RH. Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence. INSECT MOLECULAR BIOLOGY 2010; 19:61-75. [PMID: 19909380 DOI: 10.1111/j.1365-2583.2009.00936.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The tobacco hornworm Manduca sexta is an important model for insect physiology but genomic and transcriptomic data are currently lacking. Following a recent pyrosequencing study generating immune related expressed sequence tags (ESTs), here we use this new technology to define the M. sexta larval midgut transcriptome. We generated over 387,000 midgut ESTs, using a combination of Sanger and 454 sequencing, and classified predicted proteins into those involved in digestion, detoxification and immunity. In many cases the depth of 454 pyrosequencing coverage allowed us to define the entire cDNA sequence of a particular gene. Many new M. sexta genes are described including up to 36 new cytochrome P450s, some of which have been implicated in the metabolism of host plant-derived nicotine. New lepidopteran gene families such as the beta-fructofuranosidases, previously thought to be restricted to Bombyx mori, are also described. An unexpectedly high number of ESTs were involved in immunity, for example 39 contigs encoding serpins, and the increasingly appreciated role of the midgut in insect immunity is discussed. Similar studies of other tissues will allow for a tissue by tissue description of the M. sexta transcriptome and will form an essential complimentary step on the road to genome sequencing and annotation.
Collapse
|
|
15 |
121 |
15
|
Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A 1994; 91:4120-4. [PMID: 8183881 PMCID: PMC43736 DOI: 10.1073/pnas.91.10.4120] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Continued success of the most widely used biopesticide, Bacillus thuringiensis, is threatened by development of resistance in pests. Experiments with Plutella xylostella (diamondback moth), the first insect with field populations resistant to B. thuringiensis, revealed factors that promote reversal of resistance. In strains of P. xylostella with 25- to 2800-fold resistance to B. thuringiensis compared with unselected strains, reversal of resistance occurred when exposure to B. thuringiensis was stopped for many generations. Reversal of resistance was associated with restoration of binding of B. thuringiensis toxin CryIA(c) to brush-border membrane vesicles and with increased biotic fitness. Compared with susceptible colonies, revertant colonies had a higher proportion of extremely resistant individuals. Revertant colonies responded rapidly to reselection for resistance. Understanding reversal of resistance will help to design strategies for extending the usefulness of this environmentally benign insecticide.
Collapse
|
research-article |
31 |
117 |
16
|
Tabashnik BE, Gould F, Carrière Y. Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. J Evol Biol 2004; 17:904-12; discussion 913-8. [PMID: 15271091 DOI: 10.1111/j.1420-9101.2004.00695.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The refuge strategy is used widely for delaying evolution of insect resistance to transgenic crops that produce Bacillus thuringiensis (Bt) toxins. Farmers grow refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Many modelling studies predict that refuges will delay resistance longest if alleles conferring resistance are rare, most resistant adults mate with susceptible adults, and Bt plants have sufficiently high toxin concentration to kill heterozygous progeny from such matings. In contrast, based on their model of the cotton pest Heliothis virescens, Vacher et al. (Journal of Evolutionary Biology, 16, 2003, 378) concluded that low rather than high toxin doses would delay resistance most effectively. We demonstrate here that their conclusion arises from invalid assumptions about larval concentration-mortality responses and dominance of resistance. Incorporation of bioassay data from H. virescens and another key cotton pest (Pectinophora gossypiella) into a population genetic model shows that toxin concentrations high enough to kill all or nearly all heterozygotes should delay resistance longer than lower concentrations.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
117 |
17
|
Meng JY, Zhang CY, Zhu F, Wang XP, Lei CL. Ultraviolet light-induced oxidative stress: effects on antioxidant response of Helicoverpa armigera adults. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:588-592. [PMID: 19418599 DOI: 10.1016/j.jinsphys.2009.03.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultraviolet (UV) light (blacklight), which emits UV in the range of 320-400 nm, has been used worldwide in light trapping of insect pests. In this article, we test the hypothesis that one of the effects of UV light irradiation is to increase oxidative stress on insects. The effects of UV light irradiation on total antioxidant capacity, malondialdehyde (MDA) and protein carbonyl contents and the activities of superoxide dismutase (SOD), catalase (CAT), peroxidases (POX) and glutathione-S-transferase (GST)were investigated in Helicoverpa armigera adults. The adults were exposed to UV light for various time periods (0, 30, 60 and 90 min). We found that exposure to UV light for 30 min resulted in increased total antioxidant capacity, protein carbonyl content and activities of SOD, CAT, POX and GST. When the exposure time lasted for 60 and 90 min, the protein carbonyl content and activities of CAT and GST remained significantly higher than the control. However, the antioxidant capacity and SOD activity returned to control levels, and POX activity decreased at 60 and 90 min. Our results confirm the hypothesis that UV light irradiation increases the level of oxidative stress in H. armigera adults.
Collapse
|
|
16 |
116 |
18
|
Kent KS, Hoskins SG, Hildebrand JG. A novel serotonin-immunoreactive neuron in the antennal lobe of the sphinx moth Manduca sexta persists throughout postembryonic life. JOURNAL OF NEUROBIOLOGY 1987; 18:451-65. [PMID: 3309187 DOI: 10.1002/neu.480180506] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A single serotonin-immunoreactive neuron in the antennal lobe (AL) of the brain of the sphinx moth Manduca sexta is present in larval, pupal, and adult stages. This neuron has a neurite that extends to the contralateral AL, where it forms sparse arborizations in each glomerulus. Other neurites from this neuron project into the ipsilateral and contralateral protocerebrum. This cell is morphologically very different from other neurons previously characterized in the adult AL. The neuron maintains the same basic profile in the adult as in the larva, although fine processes such as the arborizations within the AL neuropil appear to be restructured to conform to the larger, more anatomically differentiated regions of the adult brain.
Collapse
|
Review |
38 |
114 |
19
|
Hammock B, Nowock J, Goodman W, Stamoudis V, Gilbert LI. The influence of hemolymph-binding protein on juvenile hormone stability and distribution in Manduca sexta fat body and imaginal discs in vitro. Mol Cell Endocrinol 1975; 3:167-84. [PMID: 171183 DOI: 10.1016/0303-7207(75)90043-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The wing discs and fat body of Manduca sexta larvae contain enzymes (i.e. carboxylesterase and epoxide hydratase) that can convert the C18 juvenile hormone (JH) to the acid, diol and acid diol. No evidence of oxidative degradation was noted. In vitro studies suggest that JH can be compartmentalized within the cells of the fat body where it is less accessible to degradative mechanisms. Experiments utilizing a hemolymph-binding protein fraction (BPF) in vitro with fat body and imaginal discs indicate that the BPF retards the uptake of JH by tissues and its subsequent degradation by tissue enzymes. BPF also appears to protect JH from degradation by enzymes released into the medium. By these mechanisms the insect can maintain elevated JH titers for relatively long periods. Binding protein may also keep JH in solution in the hemolymph allowing its rapid distribution throughout the insect. The data suggest that the binding protein plays a key role in maintaining juvenile hormone titers.
Collapse
|
|
50 |
110 |
20
|
Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 53:125-133. [PMID: 12811766 DOI: 10.1002/arch.10091] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel defensin-like peptide was identified in the greater wax moth, Galleria mellonella. It was discovered in a haemocyte cDNA bank enriched with transcripts upregulated after immune challenge via subtractive hybridisation and suppressive PCR. The deduced amino acid sequence of the defensin-like peptide exhibits similarities to the antifungal peptides drosomycin from Drosophila melanogaster and heliomicin from Heliothis virescens. Therefore, it has been termed gallerimycin. Upregulation of gallerimycin after stimulation of the immune system by LPS-injection was demonstrated by quantitative real-time PCR. A full-size cDNA was cloned and overexpressed in Escherichia coli Origami cells in order to obtain a functional peptide with disulfide bridges. The recombinant peptide was active against the entomopathogenic fungus Metarhizium anisopliae, but not against yeast, gram-negative and gram-positive bacteria.
Collapse
|
|
22 |
110 |
21
|
Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ballester V, Granero F, Ménsua JL, Ferré J. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci U S A 1997; 94:12780-5. [PMID: 9371752 PMCID: PMC24215 DOI: 10.1073/pnas.94.24.12780] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance.
Collapse
|
research-article |
28 |
109 |
22
|
El-Salhy M, Falkmer S, Kramer KJ, Speirs RD. Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca, and corpora allata of an adult lepidopteran insect, Manduca sexta (L). Cell Tissue Res 1983; 232:295-317. [PMID: 6136331 DOI: 10.1007/bf00213788] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the brain of adult specimens of the tobacco hornworm moth, Manduca sexta (L), cells immunoreactive for several kinds of neuropeptides were localized by means of the PAP procedure, by use of antisera raised against mammalian hormones or hormonal peptides. In contrast, no such neurosecretory cells were found in the corpora cardiaca and corpora allata (CC/CA); in the CC/CA, however, immunoreactive nerve fibres were observed, reaching these organs from the brain. The neurosecretory cells found in the brain were immunoreactive with at least one of the following mammalian antisera, namely those raised against the insulin B-chain, somatostatin, glucagon C-terminal, glucagon N-terminal, pancreatic polypeptide (PP), secretin, vasoactive intestinal polypeptide (VIP), glucose-dependent insulinotropic peptide (GIP), gastrin C-terminus, enkephalin, alpha- and beta-endorphin, Substance P, and calcitonin. No cells were immunoreactive with antisera specific for detecting neurons containing the insulin A-chain, nerve growth factor, epidermal growth factor, insulin connecting peptide (C-peptide), polypeptide YY (PYY), gastrin mid-portion (sequence 6-13), cholecystokinin (CCK) mid-portion (sequences 9-20 and 9-25), neurotensin C-terminus, bombesin, motilin, ACTH, or serotonin. All the neuropeptide-immunoreactive cells observed emitted nerve fibers passing through the brain to the CC and in some cases also to the CA. In CC these immunoreactive nerve fibers tended to accumulate near the aorta. It was speculated that neuropeptides are released into the circulating haemolymph and act as neurohormones.
Collapse
|
|
42 |
108 |
23
|
Wang G, Vásquez GM, Schal C, Zwiebel LJ, Gould F. Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. INSECT MOLECULAR BIOLOGY 2011; 20:125-133. [PMID: 20946532 DOI: 10.1111/j.1365-2583.2010.01045.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Functional analyses of candidate Heliothis virescens pheromone odorant receptors (HvORs) were conducted using heterologous expression in Xenopus oocytes. HvOR6 was found to be highly tuned to Z9-14:Ald, while HvOR13, HvOR14 and HvOR16 showed specificity for Z11-16:Ald, Z11-16:OAc and Z11-16:OH, respectively. HvOR15, which had been considered a candidate receptor for Z9-14:Ald did not respond to any of the pheromone compounds tested, nor to 50 other general odorants. Thus, while HvOR15 is specifically expressed in H. virescens male antennae, its role in pheromone reception remains unknown. Based on our results and previous research we can now assign pheromone receptors in H. virescens males to each of the critical H. virescens agonistic pheromone compounds and two antagonistic compounds produced by heterospecific females.
Collapse
|
|
14 |
106 |
24
|
Kundungal H, Gangarapu M, Sarangapani S, Patchaiyappan A, Devipriya SP. Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18509-18519. [PMID: 31049864 DOI: 10.1007/s11356-019-05038-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/29/2019] [Indexed: 05/26/2023]
Abstract
Polyethylene (PE) is one of the major persistent plastic that is not biodegradable at considerable rates in most environments, and is the major source of unceasing environmental pollution. Recently, biodegradation of plastic wastes through waxworms and mealworms were reported. The present study focuses on the high-density polyethylene (HDPE) degradation capabilities of the larvae of Achroia grisella (lesser waxworm) and its ability to complete its life cycle when fed with HDPE. Effects of added nutrition on PE degradation were assessed, providing wax comb as co-feed (PE-WC). The egested frass of the waxworm fed on waxcomb (WC), PE, and PE-WC were studied by analyzing the changes in physiochemical properties through FTIR and 1H NMR techniques in addition to weight loss percentage of PE and survival rates of the tested lesser waxworms. The post-degradation studies of WC and PE showed 90.5 ± 1.2% and 43.3 ± 1.6% weight loss, respectively, by a group of 100 lesser waxworms. Over an 8-day period, PE consumption increased with an ingestion of 1.83 mg of PE per day per larvae. Supplementing the PE feed of lesser waxworms with WC facilitated enhanced PE degradation showing 69.6 ± 3.2% weight loss. Twenty-eight day survival rates for lesser waxworms fed on WC, PE, and PE-WC were 91.3 ± 1.01%, 74.6 ± 2.9%, and 86 ± 1.4%, respectively. The FTIR and 1H NMR analysis of egested frass indicated formation of new functional organic groups, supporting biodegradation of PE in lesser waxworms. The frass of the lesser waxworm fed on PE samples shows the presence of new carbonyl and alcoholic groups with increase in unsaturated hydrocarbon indicating formation of biodegraded intermediates. Lesser waxworms fed with WC, PE, and PE-WC completed all life cycle stages (larvae, pupae, moth, and egg) developing into a second generation. The second generation of PE-WC fed larvae of A. grisella efficiently degrades PE at par with first generation counterparts.
Collapse
|
|
6 |
106 |
25
|
Rantala MJ, Roff DA. Inbreeding and extreme outbreeding cause sex differences in immune defence and life history traits in Epirrita autumnata. Heredity (Edinb) 2007; 98:329-36. [PMID: 17314921 DOI: 10.1038/sj.hdy.6800945] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Empirical studies in vertebrates support the hypothesis that inbreeding reduces resistance against parasites and pathogens. However, studies in insects have not found any evidence that inbreeding compromises immune defence. Here we tested whether one generation of brother-sister mating or extreme outbreeding (mating between two populations) have an effect on innate immunity and life history traits in the autumnal moth, Epirrita autumnata. We show that the effect of inbreeding on immune response differed between the sexes: whereas in females, inbreeding significantly reduced encapsulation response against nylon monofilament ability, it did not have a significant effect on male immune response. There were also differences in the correlation of the immune response with other traits: in females increased immune response was positively correlated with large size, whereas in males immune response increased with a reduction in development time. Immune response differed significantly among families in males but not in females, both for the inbreeding and extreme outbreeding experiments. In conjunction with the observed immune responses to inbreeding, these data suggest that in males genetic variation for immune response is largely additive or non-directional with respect to dominance, whereas in females variation is much reduced and consists of directional dominance variance. Further, we show that encapsulation response against nylon monofilament is associated with the resistance against real pathogens suggesting that this widely used method to measure the strength of immune defence in insects is also a biologically relevant method.
Collapse
|
|
18 |
103 |