1
|
Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 1975; 72:3666-70. [PMID: 1103152 PMCID: PMC433057 DOI: 10.1073/pnas.72.9.3666] [Citation(s) in RCA: 2853] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In studying "hemorrhagic necrosis" of tumors produced by endotoxin, it was found that the serum of bacillus Calmette--Guerin (BCG)-infected mice treated with endotoxin contains a substance (tumor necrosis factor; TNF) which mimics the tumor necrotic action of endotoxin itself. TNF-positive serum is as effective as endotoxin itself in causing necrosis of the sarcoma Meth A and other transplanted tumors. A variety of tests indicate that TNF is not residual endotoxin, but a factor released from host cells, probably macrophages, by endotoxin. Corynebacteria and Zymosan, which like BCG induce hyperplasia of the reticulo-endothelial system, can substitute for BCG in priming mice for release of TNF by endotoxin. TNF is toxic in vitro for two neoplastic cell lines; it is not toxic for mouse embryo cultures. We propose that TNF mediates endotoxin-induced tumor necrosis, and that it may be responsible for the suppression of transformed cells by activated macrophages.
Collapse
|
research-article |
50 |
2853 |
2
|
|
Review |
30 |
962 |
3
|
Abstract
Humans are exposed to a variety of environmental mycobacteria (EM), and most children are inoculated with live Bacille Calmette-Guérin (BCG) vaccine. In addition, most of the world's population is occasionally exposed to human-borne mycobacterial species, which are less abundant but more virulent. Although rarely pathogenic, mildly virulent mycobacteria, including BCG and most EM, may cause a variety of clinical diseases. Mycobacterium tuberculosis, M. leprae, and EM M. ulcerans are more virulent, causing tuberculosis, leprosy, and Buruli ulcer, respectively. Remarkably, only a minority of individuals develop clinical disease, even if infected with virulent mycobacteria. The interindividual variability of clinical outcome is thought to result in part from variability in the human genes that control host defense. In this well-defined microbiological and clinical context, the principles of mouse immunology and the methods of human genetics can be combined to facilitate the genetic dissection of immunity to mycobacteria. The natural infections are unique to the human model, not being found in any of the animal models of experimental infection. We review current genetic knowledge concerning the simple and complex inheritance of predisposition to mycobacterial diseases in humans. Rare patients with Mendelian disorders have been found to be vulnerable to BCG, a few EM, and M. tuberculosis. Most cases of presumed Mendelian susceptibility to these and other mycobacterial species remain unexplained. In the general population leprosy and tuberculosis have been shown to be associated with certain human genetic polymorphisms and linked to certain chromosomal regions. The causal vulnerability genes themselves have yet to be identified and their pathogenic alleles immunologically validated. The studies carried out to date have been fruitful, initiating the genetic dissection of protective immunity against a variety of mycobacterial species in natural conditions of infection. The human model has potential uses beyond the study of mycobacterial infections and may well become a model of choice for the investigation of immunity to infectious agents.
Collapse
|
Review |
23 |
723 |
4
|
Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009; 136:37-49. [PMID: 19135887 PMCID: PMC3134310 DOI: 10.1016/j.cell.2008.11.014] [Citation(s) in RCA: 650] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/12/2008] [Accepted: 11/03/2008] [Indexed: 02/04/2023]
Abstract
Granulomas, organized aggregates of immune cells, form in response to persistent stimuli and are hallmarks of tuberculosis. Tuberculous granulomas have long been considered host-protective structures formed to contain infection. However, work in zebrafish infected with Mycobacterium marinum suggests that granulomas contribute to early bacterial growth. Here we use quantitative intravital microscopy to reveal distinct steps of granuloma formation and assess their consequence for infection. Intracellular mycobacteria use the ESX-1/RD1 virulence locus to induce recruitment of new macrophages to, and their rapid movement within, nascent granulomas. This motility enables multiple arriving macrophages to efficiently find and phagocytose infected macrophages undergoing apoptosis, leading to rapid, iterative expansion of infected macrophages and thereby bacterial numbers. The primary granuloma then seeds secondary granulomas via egress of infected macrophages. Our direct observations provide insight into how pathogenic mycobacteria exploit the granuloma during the innate immune phase for local expansion and systemic dissemination.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
650 |
5
|
Roach DR, Bean AGD, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4620-7. [PMID: 11971010 DOI: 10.4049/jimmunol.168.9.4620] [Citation(s) in RCA: 546] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Host immunity to mycobacterial infection is dependent on the activation of T lymphocytes and their recruitment with monocytes to form granulomas. These discrete foci of activated macrophages and lymphocytes provide a microenvironment for containing the infection. The cytokine, TNF, is essential for the formation and maintenance of granulomas, but the mechanisms by which TNF regulates these processes are unclear. We have compared the responses of TNF-deficient (TNF(-/-)) and wild-type C57BL/6 mice to infection with Mycobacterium smegmatis, a potent inducer of TNF, and virulent Mycobacterium tuberculosis to delineate the TNF-dependent and -independent components of the process. The initial clearance of M. smegmatis was TNF independent, but TNF was required for the early expression of mRNA encoding C-C and C-X-C chemokines and the initial recruitment of CD11b(+) macrophages and CD4(+) T cells to the liver during the second week of infection. Late chemokine expression and cell recruitment developed in TNF(-/-) mice associated with enhanced Th1-like T cell responses and mycobacterial clearance, but recruited leukocytes did not form tight granulomas. Infection of TNF(-/-) mice with M. tuberculosis also resulted in an initial delay in chemokine induction and cellular recruitment to the liver. Subsequently, increased mRNA expression was evident in TNF(-/-) mice, but the loosely associated lymphocytes and macrophages failed to form granulomas and prevent progressive infection. Therefore, TNF orchestrates early induction of chemokines and initial leukocyte recruitment, but has an additional role in the aggregation of leukocytes into functional granulomas capable of controlling virulent mycobacterial infection.
Collapse
|
Comparative Study |
23 |
546 |
6
|
Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, Daffé M, Emile JF, Marchou B, Cardona PJ, de Chastellier C, Altare F. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 2008; 4:e1000204. [PMID: 19002241 PMCID: PMC2575403 DOI: 10.1371/journal.ppat.1000204] [Citation(s) in RCA: 542] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/15/2008] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis–infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria. Mycobacterium tuberculosis, the causative agent of tuberculosis, is responsible for dramatic health problems globally. It is estimated that this pathogen infects one-third of the human population and causes three million deaths annually. Most individuals remain asymptomatic for several years before developing an active disease. In such individuals, the bacilli are not cleared but rather persist in a dormant state. Major goals of TB research are to (i) understand how the bacilli remain alive for years within infected individuals, and (ii) find how to prevent their reactivation and hence clinical disease. During dormancy, most of the bacilli are confined to granulomas that consist of well-defined aggregates of different host immune cells. Granulomas prevent spreading of bacilli. In this study, we analyzed the role of a particular cell population found within granulomas, the “foamy macrophages”. These cells are filled with droplets of lipids, a well-known nutrient for persistent bacilli. We found that within these cells, the bacilli do not replicate, but remain alive and seem to internalize host lipids. The foamy macrophages might thus constitute a reservoir for persisting bacilli within their human host, and could provide a relevant model for screening of new antimicrobials against non-replicating persistent mycobacteria.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
542 |
7
|
Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 2013; 210:1283-99. [PMID: 23825232 PMCID: PMC3698517 DOI: 10.1084/jem.20122220] [Citation(s) in RCA: 495] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 05/23/2013] [Indexed: 12/17/2022] Open
Abstract
Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10-20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.
Collapse
|
Review |
12 |
495 |
8
|
Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, Fortin A, Haniffa M, Ceron-Gutierrez L, Bacon CM, Menon G, Trouillet C, McDonald D, Carey P, Ginhoux F, Alsina L, Zumwalt TJ, Kong XF, Kumararatne D, Butler K, Hubeau M, Feinberg J, Al-Muhsen S, Cant A, Abel L, Chaussabel D, Doffinger R, Talesnik E, Grumach A, Duarte A, Abarca K, Moraes-Vasconcelos D, Burk D, Berghuis A, Geissmann F, Collin M, Casanova JL, Gros P. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 2011; 365:127-38. [PMID: 21524210 PMCID: PMC3136554 DOI: 10.1056/nejmoa1100066] [Citation(s) in RCA: 475] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guérin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained. METHODS We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease. RESULTS We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells. CONCLUSIONS These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.).
Collapse
|
Case Reports |
14 |
475 |
9
|
Abstract
Suppression of HIV replication by highly active antiretroviral therapy (HAART) often restores protective pathogen-specific immune responses, but in some patients the restored immune response is immunopathological and causes disease [immune restoration disease (IRD)]. Infections by mycobacteria, cryptococci, herpesviruses, hepatitis B and C virus, and JC virus are the most common pathogens associated with infectious IRD. Sarcoid IRD and autoimmune IRD occur less commonly. Infectious IRD presenting during the first 3 months of therapy appears to reflect an immune response against an active (often quiescent) infection by opportunistic pathogens whereas late IRD may result from an immune response against the antigens of non-viable pathogens. Data on the immunopathogenesis of IRD is limited but it suggests that immunopathogenic mechanisms are determined by the pathogen. For example, mycobacterial IRD is associated with delayed-type hypersensitivity responses to mycobacterial antigens whereas there is evidence of a CD8 T-cell response in herpesvirus IRD. Furthermore, the association of different cytokine gene polymorphisms with mycobacterial or herpesvirus IRD provides evidence of different pathogenic mechanisms as well as indicating a genetic susceptibility to IRD. Differentiation of IRD from an opportunistic infection is important because IRD indicates a successful, albeit undesirable, effect of HAART. It is also important to differentiate IRD from drug toxicity to avoid unnecessary cessation of HAART. The management of IRD often requires the use of anti-microbial and/or anti-inflammatory therapy. Investigation of strategies to prevent IRD is a priority, particularly in developing countries, and requires the development of risk assessment methods and diagnostic criteria.
Collapse
|
Review |
21 |
452 |
10
|
Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 1996; 9:532-62. [PMID: 8894351 PMCID: PMC172909 DOI: 10.1128/cmr.9.4.532] [Citation(s) in RCA: 451] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the mid-1980s, Mosmann, Coffman, and their colleagues discovered that murine CD4+ helper T-cell clones could be distinguished by the cytokines they synthesized. The isolation of human Th1 and Th2 clones by Romagnani and coworkers in the early 1990s has led to a large number of reports on the effects of Th1 and Th2 on the human immune system. More recently, cells other than CD4+ T cells, including CD8+ T cells, monocytes, NK cells, B cells, eosinophils, mast cells, basophils, and other cells, have been shown to be capable of producing "Th1" and "Th2" cytokines. In this review, we examine the literature on human diseases, using the nomenclature of type 1 (Th1-like) and type 2 (Th2-like) cytokines, which includes all cell types producing these cytokines rather than only CD4+ T cells. Type 1 cytokines include interleukin-2 (IL-2), gamma interferon, IL-12 and tumor necrosis factor beta, while type 2 cytokines include IL-4, IL-5, IL-6, IL-10, and IL-13. In general, type 1 cytokines favor the development of a strong cellular immune response whereas type 2 cytokines favor a strong humoral immune response. Some of these type 1 and type 2 cytokines are cross-regulatory. For example, gamma interferon and IL-12 decrease the levels of type 2 cytokines whereas IL-4 and IL-10 decrease the levels of type 1 cytokines. We use this cytokine perspective to examine human diseases including infections due to viruses, bacteria, parasites, and fungi, as well as selected neoplastic, atopic, rheumatologic, autoimmune, and idiopathic-inflammatory conditions. Clinically, type 1 cytokine-predominant responses should be suspected in any delayed-type hypersensitivity-like granulomatous reactions and in infections with intracellular pathogens, whereas conditions involving hypergammaglobulinemia, increased immunoglobulin E levels, and/or eosinophilia are suggestive of type 2 cytokine-predominant conditions. If this immunologic concept is relevant to human diseases, the potential exists for novel cytokine-based therapies and novel cytokine-directed preventive vaccines for such diseases.
Collapse
|
research-article |
29 |
451 |
11
|
Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, Ray JP, Ko DC, Zou Y, Bang ND, Chau TTH, Vary JC, Hawn TR, Dunstan SJ, Farrar JJ, Thwaites GE, King MC, Serhan CN, Ramakrishnan L. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 2012; 148:434-46. [PMID: 22304914 PMCID: PMC3433720 DOI: 10.1016/j.cell.2011.12.023] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/07/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022]
Abstract
Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4). We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
442 |
12
|
Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P, Mansouri N, Okada S, Bryant VL, Kong XF, Kreins A, Velez MM, Boisson B, Khalilzadeh S, Ozcelik U, Darazam IA, Schoggins JW, Rice CM, Al-Muhsen S, Behr M, Vogt G, Puel A, Bustamante J, Gros P, Huibregtse JM, Abel L, Boisson-Dupuis S, Casanova JL. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 2012; 337:1684-8. [PMID: 22859821 PMCID: PMC3507439 DOI: 10.1126/science.1224026] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ISG15 is an interferon (IFN)-α/β-inducible, ubiquitin-like intracellular protein. Its conjugation to various proteins (ISGylation) contributes to antiviral immunity in mice. Here, we describe human patients with inherited ISG15 deficiency and mycobacterial, but not viral, diseases. The lack of intracellular ISG15 production and protein ISGylation was not associated with cellular susceptibility to any viruses that we tested, consistent with the lack of viral diseases in these patients. By contrast, the lack of mycobacterium-induced ISG15 secretion by leukocytes-granulocyte, in particular-reduced the production of IFN-γ by lymphocytes, including natural killer cells, probably accounting for the enhanced susceptibility to mycobacterial disease. This experiment of nature shows that human ISGylation is largely redundant for antiviral immunity, but that ISG15 plays an essential role as an IFN-γ-inducing secreted molecule for optimal antimycobacterial immunity.
Collapse
|
Case Reports |
13 |
406 |
13
|
Browne SK, Burbelo PD, Chetchotisakd P, Suputtamongkol Y, Kiertiburanakul S, Shaw PA, Kirk JL, Jutivorakool K, Zaman R, Ding L, Hsu AP, Patel SY, Olivier KN, Lulitanond V, Mootsikapun P, Anunnatsiri S, Angkasekwinai N, Sathapatayavongs B, Hsueh PR, Shieh CC, Brown MR, Thongnoppakhun W, Claypool R, Sampaio EP, Thepthai C, Waywa D, Dacombe C, Reizes Y, Zelazny AM, Saleeb P, Rosen LB, Mo A, Iadarola M, Holland SM. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med 2012; 367:725-34. [PMID: 22913682 PMCID: PMC4190026 DOI: 10.1056/nejmoa1111160] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Autoantibodies against interferon-γ are associated with severe disseminated opportunistic infection, but their importance and prevalence are unknown. METHODS We enrolled 203 persons from sites in Thailand and Taiwan in five groups: 52 patients with disseminated, rapidly or slowly growing, nontuberculous mycobacterial infection (group 1); 45 patients with another opportunistic infection, with or without nontuberculous mycobacterial infection (group 2); 9 patients with disseminated tuberculosis (group 3); 49 patients with pulmonary tuberculosis (group 4); and 48 healthy controls (group 5). Clinical histories were recorded, and blood specimens were obtained. RESULTS Patients in groups 1 and 2 had CD4+ T-lymphocyte counts that were similar to those in patients in groups 4 and 5, and they were not infected with the human immunodeficiency virus (HIV). Washed cells obtained from patients in groups 1 and 2 had intact cytokine production and a response to cytokine stimulation. In contrast, plasma obtained from these patients inhibited the activity of interferon-γ in normal cells. High-titer anti-interferon-γ autoantibodies were detected in 81% of patients in group 1, 96% of patients in group 2, 11% of patients in group 3, 2% of patients in group 4, and 2% of controls (group 5). Forty other anticytokine autoantibodies were assayed. One patient with cryptococcal meningitis had autoantibodies only against granulocyte-macrophage colony-stimulating factor. No other anticytokine autoantibodies or genetic defects correlated with infections. There was no familial clustering. CONCLUSIONS Neutralizing anti-interferon-γ autoantibodies were detected in 88% of Asian adults with multiple opportunistic infections and were associated with an adult-onset immunodeficiency akin to that of advanced HIV infection. (Funded by the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research; ClinicalTrials.gov number, NCT00814827.).
Collapse
|
Research Support, N.I.H., Intramural |
13 |
402 |
14
|
Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts 2018; 9:64-79. [PMID: 29856726 DOI: 10.1515/bmc-2018-0007] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
A key player in driving cellular immunity, IFN-γ is capable of orchestrating numerous protective functions to heighten immune responses in infections and cancers. It can exhibit its immunomodulatory effects by enhancing antigen processing and presentation, increasing leukocyte trafficking, inducing an anti-viral state, boosting the anti-microbial functions and affecting cellular proliferation and apoptosis. A complex interplay between immune cell activity and IFN-γ through coordinated integration of signals from other pathways involving cytokines and Pattern Recognition Receptors (PRRs) such as Interleukin (IL)-4, TNF-α, Lipopolysaccharide (LPS), Type-I Interferons (IFNS) etc. leads to initiation of a cascade of pro-inflammatory responses. Microarray data has unraveled numerous genes whose transcriptional regulation is influenced by IFN-γ. Consequently, IFN-γ stimulated cells display altered expression of many such target genes which mediate its downstream effector functions. The importance of IFN-γ is further reinforced by the fact that mice possessing disruptions in the IFN-γ gene or its receptor develop extreme susceptibility to infectious diseases and rapidly succumb to them. In this review, we attempt to elucidate the biological functions and physiological importance of this versatile cytokine. The functional implications of its biological activity in several infectious diseases and autoimmune pathologies are also discussed. As a counter strategy, many virulent pathogenic species have devised ways to thwart IFN-γ endowed immune-protection. Thus, IFN-γ mediated host-pathogen interactions are critical for our understanding of disease mechanisms and these aspects also manifest enormous therapeutic importance for the annulment of various infections and autoimmune conditions.
Collapse
|
Review |
7 |
390 |
15
|
Lawn SD, Bekker LG, Miller RF. Immune reconstitution disease associated with mycobacterial infections in HIV-infected individuals receiving antiretrovirals. THE LANCET. INFECTIOUS DISEASES 2005; 5:361-73. [PMID: 15919622 DOI: 10.1016/s1473-3099(05)70140-7] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Immune reconstitution disease (IRD) in HIV-infected patients is an adverse consequence of the restoration of pathogen-specific immune responses during the initial months of highly active antiretroviral treatment (HAART). Previously subclinical infections are "unmasked" or pre-existing opportunistic infections clinically deteriorate as host immunopathological inflammatory responses are "switched on". IRD is most frequently associated with mycobacterial infections. Our literature search identified 166 published cases of IRD associated with mycobacterial infections. We review the underlying immunological mechanisms, difficulties surrounding case definition and diagnosis, the wide diversity of clinical manifestations, and treatment. The importance of screening patients for mycobacterial disease before starting HAART and the critical impact of the timing of commencement of HAART in patients receiving treatment for tuberculosis are highlighted. We also discuss the problem of IRD associated with mycobacterial diseases in developing countries where tuberculosis prevalence is high and access to HAART is currently expanding.
Collapse
|
|
20 |
389 |
16
|
Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, Harris J, Holland SM, Schreiber RD, Casanova JL. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 2001; 293:300-3. [PMID: 11452125 DOI: 10.1126/science.1061154] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Interferons (IFN) alpha/beta and gamma induce the formation of two transcriptional activators: gamma-activating factor (GAF) and interferon-stimulated gamma factor 3 (ISGF3). We report a natural heterozygous germline STAT1 mutation associated with susceptibility to mycobacterial but not viral disease. This mutation causes a loss of GAF and ISGF3 activation but is dominant for one cellular phenotype and recessive for the other. It impairs the nuclear accumulation of GAF but not of ISGF3 in heterozygous cells stimulated by IFNs. Thus, the antimycobacterial, but not the antiviral, effects of human IFNs are principally mediated by GAF.
Collapse
|
|
24 |
382 |
17
|
Curtis MM, Way SS. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 2009; 126:177-85. [PMID: 19125888 PMCID: PMC2632692 DOI: 10.1111/j.1365-2567.2008.03017.x] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 12/23/2022] Open
Abstract
The mammalian immune system is intricately regulated, allowing for potent pathogen-specific immunity to be rapidly activated in response to infection with a broad and diverse array of potential pathogens. As a result of their ability to differentiate into distinct effector lineages, CD4 T cells significantly contribute to pathogen-specific adaptive immune responses. Through the production of effector cytokines, CD4 T helper (Th) cells orchestrate the precise mobilization of specific immune cells to eradicate infection. The protective effects of the newly identified lineage of Th17 cells against pathogens like Klebsiella pneumoniae, Citrobacter rodentium and Candida albicans indicate the capacity of Th17 cells to confer protection against extracellular bacterial and fungal pathogens, filling a critical void in host immunity not covered by the classically described Th1 lineage that activates immunity to intracellular pathogens or the Th2 lineage that is important in protection against mucosal parasitic pathogens. Host defence by Th17 cells extends beyond protection against extracellular bacterial and fungal pathogens, as demonstrated in infections against intracellular bacteria like Listeria monocytogenes and Salmonella enterica, as well as Mycobacterium tuberculosis. Herein, we summarize both experimental data from mouse infection models and epidemiological studies in humans that demonstrate the protective effects of interleukin-17 and Th17 CD4 T cells in immunity to bacterial, mycobacterial and fungal pathogens.
Collapse
|
Review |
16 |
374 |
18
|
Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondanèche MC, Dupuis S, Döffinger R, Altare F, Girdlestone J, Emile JF, Ducoulombier H, Edgar D, Clarke J, Oxelius VA, Brai M, Novelli V, Heyne K, Fischer A, Holland SM, Kumararatne DS, Schreiber RD, Casanova JL. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet 1999; 21:370-8. [PMID: 10192386 DOI: 10.1038/7701] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunogenetic basis of severe infections caused by bacille Calmette-Guérin vaccine and environmental mycobacteria in humans remains largely unknown. We describe 18 patients from several generations of 12 unrelated families who were heterozygous for 1 to 5 overlapping IFNGR1 frameshift small deletions and a wild-type IFNGR1 allele. There were 12 independent mutation events at a single mutation site, defining a small deletion hotspot. Neighbouring sequence analysis favours a small deletion model of slipped mispairing events during replication. The mutant alleles encode cell-surface IFNgamma receptors that lack the intra-cytoplasmic domain, which, through a combination of impaired recycling, abrogated signalling and normal binding to IFNgamma exert a dominant-negative effect. We thus report a hotspot for human IFNGR1 small deletions that confer dominant susceptibility to infections caused by poorly virulent mycobacteria.
Collapse
|
|
26 |
345 |
19
|
Dorman SE, Holland SM. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 1998; 101:2364-9. [PMID: 9616207 PMCID: PMC508825 DOI: 10.1172/jci2901] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IFN-gamma is critical in the immune response to mycobacterial infections, and deficits in IFN-gamma production and response have been associated with disseminated nontuberculous mycobacterial infections. Mutations in the IFN-gamma receptor ligand-binding chain (IFNgammaR1) have been shown to confer susceptibility to severe infection with nontuberculous mycobacteria. However, mutations in the IFN-gamma receptor signal-transducing chain (IFNgammaR2) have not been described. We describe a child with disseminated Mycobacterium fortuitum and M. avium complex infections and absent IFN-gamma signaling due to a mutation in the extracellular domain of IFNgammaR2. In vitro cytokine production by patient PBMCs showed 75% less PHA-induced IFN-gamma production than in normal cells, while patient PHA-induced TNF-alpha production was normal. The normal augmentation of TNF-alpha production when IFN-gamma was added to endotoxin was absent from patient cells. Expression of IFNgammaR1 was normal, but there was no phosphorylation of Stat1 in response to IFN-gamma stimulation. DNA sequence analysis of the gene for IFNgammaR2 showed a homozygous dinucleotide deletion at nucleotides 278 and 279, resulting in a premature stop codon in the protein extracellular domain. This novel gene defect associated with disseminated nontuberculous mycobacterial infection emphasizes the critical role that IFN-gamma plays in host defense against mycobacteria.
Collapse
|
Case Reports |
27 |
310 |
20
|
Abstract
Severe combined immunodeficiency disease (SCID) refers to a spectrum of inherited immunodeficiencies that together represent the most severe forms of primary immunodeficiency in humans. Recent work has shown that many of these diseases, as well as other forms of immunodeficiency, result from defects in cytokine signalling pathways. Such defects can prevent normal development of lymphoid lineages and/or compromise cytokine signalling by these cells. These natural 'experiments' in human genetics have shown the non-redundant role for several cytokines or cytokine signalling molecules. Moreover, a comparison of the phenotypes of humans with SCID to analogous mouse-knockout models has shown not only expected similarities, but also unexpected differences in cytokine signalling between humans and mice.
Collapse
|
Review |
24 |
281 |
21
|
Greene JB, Sidhu GS, Lewin S, Levine JF, Masur H, Simberkoff MS, Nicholas P, Good RC, Zolla-Pazner SB, Pollock AA, Tapper ML, Holzman RS. Mycobacterium avium-intracellulare: a cause of disseminated life-threatening infection in homosexuals and drug abusers. Ann Intern Med 1982; 97:539-46. [PMID: 6289714 DOI: 10.7326/0003-4819-97-4-539] [Citation(s) in RCA: 261] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Five men developed disseminated infection with Mycobacterium avium-intracellulare. These patients all lived in the New York City area and presented with their illnesses between January 1981 and September 1981; four were homosexual and one was an intravenous drug abuser. Four patients died. All five patients had defects in the cell-mediated immune response. The infections were characterized histopathologically by poor or absent granulomatous tissue reaction. Clinical isolates of M. avium-intracellulare from all five patients agglutinated commonly used antimycobacterial drugs. The spectrum of opportunistic infections among populations of homosexuals and drug abusers should be expanded to include disseminated disease due to M. avium-intracellulare.
Collapse
|
Case Reports |
43 |
261 |
22
|
Abstract
Following their discovery in the early 1970s, classical human leukocyte antigen (HLA) loci have been the prototypical candidates for genetic susceptibility to infectious disease. Indeed, the original hypothesis for the extreme variability observed at HLA loci (H-2 in mice) was the major selective pressure from infectious diseases. Now that both the human genome and the molecular basis of innate and acquired immunity are understood in greater detail, do the classical HLA loci still stand out as major genes that determine susceptibility to infectious disease? This review looks afresh at the evidence supporting a role for classical HLA loci in susceptibility to infectious disease, examines the limitations of data reported to date, and discusses current advances in methodology and technology that will potentially lead to greater understanding of their role in infectious diseases in the future.
Collapse
|
Review |
16 |
260 |
23
|
Elkington PTG, O'Kane CM, Friedland JS. The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol 2005; 142:12-20. [PMID: 16178851 PMCID: PMC1809491 DOI: 10.1111/j.1365-2249.2005.02840.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2005] [Indexed: 12/15/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that perform multiple roles in the normal immune response to infection. MMPs facilitate leucocyte recruitment, cytokine and chemokine processing, defensin activation and matrix remodelling. However, excess MMP activity following infection may lead to immunopathology that causes host morbidity or mortality and favours pathogen dissemination or persistence. Here, we review the normal functions of MMPs in immunity and then discuss viral and bacterial infections where excess MMP activity has been implicated in pathology, specifically examining HIV, HTLV-1, hepatitis B, endotoxin shock, Helicobacter pylori and Mycobacterium tuberculosis. Tissue destruction may be exacerbated further by bacterial-derived enzymes which activate the host pro-MMPs. Finally, the potential for therapeutic targeting of excess MMP activity in infection is considered.
Collapse
|
Review |
20 |
257 |
24
|
Jouanguy E, Döffinger R, Dupuis S, Pallier A, Altare F, Casanova JL. IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 1999; 11:346-51. [PMID: 10375558 DOI: 10.1016/s0952-7915(99)80055-7] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of gene-knockout mice and the identification of gene-deficient humans have improved our understanding of the role of IL-12 and IFN-gamma in host defense. Comparison of experimental and natural infections has shown that animals and humans genetically deficient in immunity mediated by IL-12 or IFN-gamma are highly susceptible to mycobacteria and salmonella. Impaired secretion of, or response to, IFN-gamma is the common pathogenic mechanism that accounts for impaired granuloma formation and uncontrolled growth of bacteria within macrophages. The axis formed between IL-12 and IFN-gamma is essential for protective immunity against mycobacteria and salmonella in mice and men.
Collapse
|
Review |
26 |
247 |
25
|
Bigley V, Haniffa M, Doulatov S, Wang XN, Dickinson R, McGovern N, Jardine L, Pagan S, Dimmick I, Chua I, Wallis J, Lordan J, Morgan C, Kumararatne DS, Doffinger R, van der Burg M, van Dongen J, Cant A, Dick JE, Hambleton S, Collin M. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med 2011; 208:227-34. [PMID: 21242295 PMCID: PMC3039861 DOI: 10.1084/jem.20101459] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/17/2010] [Indexed: 02/03/2023] Open
Abstract
Congenital or acquired cellular deficiencies in humans have the potential to reveal much about normal hematopoiesis and immune function. We show that a recently described syndrome of monocytopenia, B and NK lymphoid deficiency additionally includes the near absence of dendritic cells. Four subjects showed severe depletion of the peripheral blood HLA-DR(+) lineage(-) compartment, with virtually no CD123(+) or CD11c(+) dendritic cells (DCs) and very few CD14(+) or CD16(+) monocytes. The only remaining HLA-DR(+) lineage(-) cells were circulating CD34(+) progenitor cells. Dermal CD14(+) and CD1a(+) DC were also absent, consistent with their dependence on blood-derived precursors. In contrast, epidermal Langerhans cells and tissue macrophages were largely preserved. Combined loss of peripheral DCs, monocytes, and B and NK lymphocytes was mirrored in the bone marrow by complete absence of multilymphoid progenitors and depletion of granulocyte-macrophage progenitors. Depletion of the HLA-DR(+) peripheral blood compartment was associated with elevated serum fms-like tyrosine kinase ligand and reduced circulating CD4(+)CD25(hi)FoxP3(+) T cells, supporting a role for DC in T reg cell homeostasis.
Collapse
|
Case Reports |
14 |
239 |