1
|
Yan S, Zhang J, Wang Y, Guo W, Zhang S, Liu Y, Cao J, Wang Y, Wang L, Ma F, Zhang P, Chen HY, Huang S. Single Molecule Ratcheting Motion of Peptides in a Mycobacterium smegmatis Porin A (MspA) Nanopore. NANO LETTERS 2021; 21:6703-6710. [PMID: 34319744 DOI: 10.1021/acs.nanolett.1c02371] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Diverse functions of proteins, including synthesis, catalysis, and signaling, result from their highly variable amino acid sequences. The technology allowing for direct analysis of protein sequences, however, is still unsatisfactory. Recent developments of nanopore sequencing of DNA or RNA have motivated attempts to realize nanopore sequencing of peptides in a similar manner. The core challenge has been to achieve a controlled ratcheting motion of the target peptide, which is currently restricted to a limited choice of compatible enzymes. By constructing peptide-oligonucleotide conjugates (POCs) and measurements with nanopore-induced phase-shift sequencing (NIPSS), direct observation of the ratcheting motion of peptides has been successfully achieved. The generated events show a clear sequence dependence on the peptide that is being tested. The method is compatible with peptides with either a conjugated N- or C-terminus. The demonstrated results suggest a proof of concept of nanopore sequencing of peptide and can be useful for peptide fingerprinting.
Collapse
|
|
4 |
110 |
2
|
Sharma K, Gupta M, Pathak M, Gupta N, Koul A, Sarangi S, Baweja R, Singh Y. Transcriptional control of the mycobacterial embCAB operon by PknH through a regulatory protein, EmbR, in vivo. J Bacteriol 2006; 188:2936-44. [PMID: 16585755 PMCID: PMC1446986 DOI: 10.1128/jb.188.8.2936-2944.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/02/2006] [Indexed: 11/20/2022] Open
Abstract
EmbR, a putative transcriptional regulator from Mycobacterium tuberculosis, is homologous to the OmpR class of transcriptional regulators that possess winged helix-turn-helix DNA binding motifs. In contrast to other OmpR-like response regulators that are usually phosphorylated and controlled by histidine kinases, EmbR was recently shown to be phosphorylated by the cognate mycobacterial serine/threonine kinase PknH. Despite the in vitro evidence of phosphorylation and interaction between the kinase and regulator, the physiological function of the PknH-EmbR pair is still unknown. We identify the embCAB operon encoding arabinosyltransferases in M. tuberculosis as the cellular target of EmbR. Phosphorylation of EmbR enhances its DNA binding activity towards promoter regions of embCAB genes. In vivo studies involving expression of PknH in Mycobacterium smegmatis established its positive regulatory effect on transcription of the embCAB operon via phosphorylation of EmbR. Interestingly, increased transcription of embC, catalyzing arabinosylation of lipomannan (LM) to lipoarabinomannan (LAM), results in a high LAM/LM ratio, which in turn is a crucial factor in mycobacterial virulence. The PknH-mediated increase in the transcription of embAB genes significantly alters resistance to ethambutol, a frontline antituberculosis drug known to target embAB genes. These findings and in vivo upregulation of PknH inside the host macrophages suggest a functionally relevant signaling mechanism involving the PknH-EmbR-embCAB system.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
84 |
3
|
Deghmane AE, Soualhine H, Soulhine H, Bach H, Sendide K, Itoh S, Tam A, Noubir S, Talal A, Lo R, Toyoshima S, Av-Gay Y, Hmama Z. Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation. J Cell Sci 2007; 120:2796-806. [PMID: 17652161 DOI: 10.1242/jcs.006221] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis evades the innate antimicrobial defenses of macrophages by inhibiting the maturation of its phagosome to a bactericidal phagolysosome. Despite intense studies of the mycobacterial phagosome, the mechanism of mycobacterial persistence dependent on prolonged phagosomal retention of the coat protein coronin-1 is still unclear. The present study demonstrated that several mycobacterial proteins traffic intracellularly in M. bovis BCG-infected cells and that one of them, with an apparent subunit size of M(r) 50,000, actively retains coronin-1 on the phagosomal membrane. This protein was initially termed coronin-interacting protein (CIP)50 and was shown to be also expressed by M. tuberculosis but not by the non-pathogenic species M. smegmatis. Cell-free system experiments using a GST-coronin-1 construct showed that binding of CIP50 to coronin-1 required cholesterol. Thereafter, mass spectrometry sequencing identified mycobacterial lipoamide dehydrogenase C (LpdC) as a coronin-1 binding protein. M. smegmatis over-expressing Mtb LpdC protein acquired the capacity to maintain coronin-1 on the phagosomal membrane and this prolonged its survival within the macrophage. Importantly, IFNgamma-induced phagolysosome fusion in cells infected with BCG resulted in the dissociation of the LpdC-coronin-1 complex by a mechanism dependent, at least in part, on IFNgamma-induced LRG-47 expression. These findings provide further support for the relevance of the LpdC-coronin-1 interaction in phagosome maturation arrest.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
67 |
4
|
GORDON RE, SMITH MM. Rapidly growing, acid fast bacteria. I. Species' descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. J Bacteriol 1953; 66:41-8. [PMID: 13069464 PMCID: PMC357089 DOI: 10.1128/jb.66.1.41-48.1953] [Citation(s) in RCA: 60] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
research-article |
72 |
60 |
5
|
Roy S, Gupta S, Das S, Sekar K, Chatterji D, Vijayan M. X-ray Analysis of Mycobacterium smegmatis Dps and a Comparative Study Involving Other Dps and Dps-like Molecules. J Mol Biol 2004; 339:1103-13. [PMID: 15178251 DOI: 10.1016/j.jmb.2004.04.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/07/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
The structure of the DNA binding protein from starved cells from Mycobacterium smegmatis has been determined in three crystal forms and has been compared with those of similar proteins from other sources. The dodecameric molecule can be described as a distorted icosahedron. The interfaces among subunits are such that the dodecameric molecule appears to have been made up of stable trimers. The situation is similar in the proteins from Escherichia coli and Agrobacterium tumefaciens, which are closer to the M.smegmatis protein in sequence and structure than those from other sources, which appear to form a dimer first. Trimerisation is aided in the three proteins by the additional N-terminal stretches that they possess. The M.smegmatis protein has an additional C-terminal stretch compared to other related proteins. The stretch, known to be involved in DNA binding, is situated on the surface of the molecule. A comparison of the available structures permits a delineation of the rigid and flexible regions in the molecule. The subunit interfaces around the molecular dyads, where the ferroxidation centres are located, are relatively rigid. Regions in the vicinity of the acidic holes centred around molecular 3-fold axes, are relatively flexible. So are the DNA binding regions. The crystal structures of the protein from M.smegmatis confirm that DNA molecules can occupy spaces within the crystal without disturbing the arrangement of the protein molecules. However, contrary to earlier suggestions, the spaces do not need to be between layers of protein molecules. The cubic form provides an arrangement in which grooves, which could hold DNA molecules, criss-cross the crystal.
Collapse
|
|
21 |
55 |
6
|
FORBES M, KUCK NA, PEETS EA. EFFECT OF ETHAMBUTOL ON NUCLEIC ACID METABOLISM IN MYCOBACTERIUM SMEGMATIS AND ITS REVERSAL BY POLYAMINES AND DIVALENT CATIONS. J Bacteriol 1996; 89:1299-305. [PMID: 14293001 PMCID: PMC277643 DOI: 10.1128/jb.89.5.1299-1305.1965] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forbes, M. (Lederle Laboratories Division, Pearl River, N.Y.), N. A. Kuck, and E. A. Peets. Effect of ethambutol on nucleic acid metabolism in Mycobacterium smegmatis and its reversal by polyamines and divalent cations. J. Bacteriol. 89:1299-1305. 1965.-Mycobacterium smegmatis, harvested from cultures inhibited by ethambutol and then suspended in drug-free medium, exhibited a prolonged lag before growth resumed. Polyamines and magnesium ions shortened this lag. Polyamines and magnesium added to the culture increased the minimal inhibitory concentration of the drug and reversed the inhibitory effect of the drug, even when added after the drug had already inhibited growth. When ethambutol was added to a culture in its exponential phase of growth, synthesis of protein and deoxyribonucleic acid (DNA), as measured by incorporation of S(35) and P(32), continued for 3 hr at a rate slightly less than in the control cells and then essentially ceased. Synthesis of ribonucleic acid (RNA) was depressed, but it proceeded even after protein synthesis had ceased. Even though the synthesis of RNA continued, the net RNA decreased, and inhibited cells became deficient in RNA. Polyamines and divalent cations, which reverse the inhibitory effect of the drug, have been reported to be involved in nucleic acid turnover. These considerations suggested that ethambutol may exert its inhibitory effect by interfering with a function of cellular polyamines and divalent cations in RNA metabolism.
Collapse
|
Journal Article |
29 |
47 |
7
|
WINDER FG, O'HARA C. Effects of iron deficiency and of zinc deficiency on the composition of Mycobacterium smegmatis. Biochem J 1998; 82:98-108. [PMID: 14007457 PMCID: PMC1243413 DOI: 10.1042/bj0820098] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
Journal Article |
27 |
41 |
8
|
Abstract
Forbes, M. (Lederle Laboratories Division, Pearl River, N.Y.), N. A. Kuck, and E. A. Peets. Mode of action of ethambutol. J. Bacteriol. 84:1099-1103. 1962.-Ethambutol [2,2'-(ethylenediimino) di-1-butanol] arrested multiplication of Mycobacterium smegmatis cells and eventually effected their death. The inhibitory effect of the drug on multiplication did not become apparent until several hours after its addition to the culture. The drug had no effect on the survival of nonproliferating cells. It had little or no effect on the metabolism of nonproliferating cells, but cells from cultures whose growth had been inhibited by ethambutol showed evidence of impaired metabolism. C(14)-labeled ethambutol was taken up rapidly by both proliferating and nonproliferating cells. The observations are consistent with the hypothesis that ethambutol exerts its antibacterial effect by interfering with the synthesis of a metabolite(s) needed for multiplication. Depletion of the metabolite(s) results in arrest of multiplication, impairment of metabolism, and loss of viability. Resistance to ethambutol cannot be explained by the failure of the cells to take up the drug, since the drug was equally bound by resistant and sensitive cells.
Collapse
|
Journal Article |
27 |
39 |
9
|
RATLEDGE C. RELATIONSHIP BETWEEN THE PRODUCTS OF AROMATIC BIOSYNTHESIS IN MYCOBACTERIUM SMEGMATIS AND AEROBACTER AEROGENES. Nature 1996; 203:428-9. [PMID: 14197402 DOI: 10.1038/203428a0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
Journal Article |
29 |
36 |
10
|
|
Journal Article |
15 |
35 |
11
|
Krishna R, Manjunath GP, Kumar P, Surolia A, Chandra NR, Muniyappa K, Vijayan M. Crystallographic identification of an ordered C-terminal domain and a second nucleotide-binding site in RecA: new insights into allostery. Nucleic Acids Res 2006; 34:2186-95. [PMID: 16648362 PMCID: PMC1450331 DOI: 10.1093/nar/gkl107] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/16/2005] [Accepted: 03/08/2006] [Indexed: 11/13/2022] Open
Abstract
RecA protein is a crucial and central component of the homologous recombination and DNA repair machinery. Despite numerous studies on the protein, several issues concerning its action, including the allosteric regulation mechanism have remained unclear. Here we report, for the first time, a crystal structure of a complex of Mycobacterium smegmatis RecA (MsRecA) with dATP, which exhibits a fully ordered C-terminal domain, with a second dATP molecule bound to it. ATP binding is an essential step for all activities of RecA, since it triggers the formation of active nucleoprotein filaments. In the crystal filament, dATP at the first site communicates with a dATP of the second site of an adjacent subunit, through conserved residues, suggesting a new route for allosteric regulation. In addition, subtle but definite changes observed in the orientation of the nucleotide at the first site and in the positions of the segment preceding loop L2 as well as in the segment 102-105 situated between the 2 nt, all appear to be concerted and suggestive of a biological role for the second bound nucleotide.
Collapse
|
research-article |
19 |
32 |
12
|
WINDER F, DENNENY JM. Utilization of metaphosphate for phosphorylation by cell-free extracts of Mycobacterium smegmatis. Nature 2003; 175:636. [PMID: 14370184 DOI: 10.1038/175636a0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
Journal Article |
22 |
26 |
13
|
Abstract
DNA extracted from D29 mycobacteriophage produced plaques when plated on Mycobacterium smegmatis 607. The host bacterium did not require alternation such as conversion to protoplasts; cells susceptible to infection with intact phage were susceptible to DNA. The bases found in calf thymus DNA constituted the bases of D29 DNA, adenine being paired with thymine and guanine with cytosine. The dissymmetry ratio (A + T/G + C) was 0.56, and the buoyant density in CsCl was 1.722 with a GC content of 63.77 per cent. The efficiency of plating of the DNA is very much lower than that of intact D29, and it penetrates the host at a slower rate. As does intact phage, D29 DNA requires calcium ions for productive infection of 607. D29 DNA is significantly inactivated by incubation with RNAase, but the inactivation probably results from a complexing with the DNA rather than from enzyme hydrolysis.
Collapse
|
Journal Article |
29 |
25 |
14
|
SHEPARD CC. Growth characteristics in HeLa cells of the rapidly growing acid fast bacteria, Mycobacterium fortuitum, Mycobacterium phlei, and Mycobacterium smegmatis. J Bacteriol 1957; 73:722-6. [PMID: 13449037 PMCID: PMC289856 DOI: 10.1128/jb.73.6.722-726.1957] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
research-article |
68 |
23 |
15
|
WINDER F, DENNENY JM. Effect of iron and zinc on nucleic acid and protein synthesis in Mycobacterium smegmatis. Nature 1998; 184(Suppl 10):742-3. [PMID: 13845181 DOI: 10.1038/184742a0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
Journal Article |
27 |
23 |
16
|
|
Journal Article |
19 |
23 |
17
|
Abstract
Gale, Glen R. (Veterans Administration Hospital, Durham, N.C.) and Helen H. McLain. Effect of ethambutol on cytology of Mycobacterium smegmatis. J. Bacteriol. 86:749-756. 1963.-Electron microscopy showed the effects of the antimycobacterial drug, ethambutol [d-2,2'-(ethylenediimino)-di-1-butanol], on the cytology of Mycobacterium smegmatis. After 10 hr of exposure to the drug, cells no longer contained material which, in control cells, was closely associated with cellular division, possibly genetic substance. No marked changes were observed in other cellular structures. It was concluded that the drug may block one or more steps in the synthesis of pentose nucleic acid or deoxypentose nucleic acid, ultimately causing cessation of cellular division and loss of viability. These cytological findings were compatible with results of other investigators on the mode of action of this drug.
Collapse
|
Journal Article |
29 |
22 |
18
|
Miallau L, Jain P, Arbing MA, Cascio D, Phan T, Ahn CJ, Chan S, Chernishof I, Maxson M, Chiang J, Jacobs WR, Eisenberg DS. Comparative proteomics identifies the cell-associated lethality of M. tuberculosis RelBE-like toxin-antitoxin complexes. Structure 2013; 21:627-37. [PMID: 23523424 DOI: 10.1016/j.str.2013.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/06/2023]
Abstract
The Mycobacterium tuberculosis (Mtb) genome encodes approximately 90 toxin-antitoxin protein complexes, including three RelBE family members, which are believed to play a major role in bacterial fitness and pathogenicity. We have determined the crystal structures of Mtb RelBE-2 and RelBE-3, and the structures reveal homologous heterotetramers. Our structures suggest RelE-2, and by extension the closely related RelE-1, use a different catalytic mechanism than RelE-3, because our analysis of the RelE-2 structure predicts additional amino acid residues that are likely to be functionally significant and are missing from analogous positions in the RelE-3 structure. Toxicity assays corroborate our structural findings; overexpression of RelE-3, whose active site is more similar to Escherichia coli YoeB, has limited consequences on bacterial growth, whereas RelE-1 and RelE-2 overexpression results in acute toxicity. Moreover, RelE-2 overexpression results in an elongated cell phenotype in Mycobacterium smegmatis and protects M. tuberculosis against antibiotics, suggesting a different functional role for RelE-2.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
21 |
19
|
STJERNHOLM RL, NOBLE RE, KOCH-WESER D. Formation of methylmalonyl-CoA and succinyl-CoA by extracts of Mycobacterium smegmatis. ACTA ACUST UNITED AC 1962; 64:174-7. [PMID: 13984205 DOI: 10.1016/0006-3002(62)90771-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
63 |
18 |
20
|
Migliara G, Mueller M, Piermattei A, Brodie C, Paidas MJ, Barnea ER, Ria F. PIF* promotes brain re-myelination locally while regulating systemic inflammation- clinically relevant multiple sclerosis M.smegmatis model. Oncotarget 2017; 8:21834-21851. [PMID: 28423529 PMCID: PMC5400627 DOI: 10.18632/oncotarget.15662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022] Open
Abstract
Neurologic disease diagnosis and treatment is challenging. Multiple Sclerosis (MS) is a demyelinating autoimmune disease with few clinical forms and uncertain etiology. Current studies suggest that it is likely caused by infection(s) triggering a systemic immune response resulting in antigen/non-antigen-related autoimmune response in central nervous system (CNS). New therapeutic approaches are needed. Secreted by viable embryos, PreImplantation Factor (PIF) possesses a local and systemic immunity regulatory role. Synthetic PIF (PIF) duplicates endogenous peptide's protective effect in pre-clinical autoimmune and transplantation models. PIF protects against brain hypoxia-ischemia by directly targeting microglia and neurons. In chronic experimental autoimmune encephalitis (EAE) model PIF reverses paralysis while promoting neural repair. Herein we report that PIF directly promotes brain re-myelination and reverses paralysis in relapsing remitting EAE MS model. PIF crosses the blood-brain barrier targeting microglia. Systemically, PIF decreases pro-inflammatory IL23/IL17 cytokines, while preserving CNS-specific T-cell repertoire. Global brain gene analysis revealed that PIF regulates critical Na+/K+/Ca++ ions, amino acid and glucose transport genes expression. Further, PIF modulates oxidative stress, DNA methylation, cell cycle regulation, and protein ubiquitination while regulating multiple genes. In cultured astrocytes, PIF promotes BDNF-myelin synthesis promoter and SLC2A1 (glucose transport) while reducing deleterious E2F5, and HSP90ab1 (oxidative stress) genes expression. In cultured microglia, PIF increases anti-inflammatory IL10 while reducing pro-inflammatory IFNγ expression. Collectively, PIF promotes brain re-myelination and neuroprotection in relapsing remitting EAE MS model. Coupled with ongoing, Fast-Track FDA approved clinical trial, NCT#02239562 (immune disorder), current data supports PIF's translation for neurodegenerative disorders therapy.
Collapse
|
research-article |
8 |
15 |
21
|
BARBIER M, LEDERER E. [The isolation and chemical constitution of the mycolic acids from Mycobacterium phlei and Mycobacterium smegmatis]. BIOCHIMICA ET BIOPHYSICA ACTA 1954; 14:246-58. [PMID: 13172243 DOI: 10.1016/0006-3002(54)90165-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
71 |
14 |
22
|
Dörner U, Maier E, Benz R. Identification of a cation-specific channel (TipA) in the cell wall of the gram-positive mycolata Tsukamurella inchonensis: the gene of the channel-forming protein is identical to mspA of Mycobacterium smegmatis and mppA of Mycobacterium phlei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1667:47-55. [PMID: 15533305 DOI: 10.1016/j.bbamem.2004.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/01/2004] [Accepted: 09/02/2004] [Indexed: 11/30/2022]
Abstract
Detergent extracts of whole cells of the Gram-positive bacterium Tsukamurella inchonensis ATCC 700082, which belongs to the mycolata, were studied for the presence of ion-permeable channels using lipid bilayer experiments. One channel with a conductance of about 4.5 nS in 1 M KCl was identified in the extracts. The channel-forming protein was purified to homogeneity by preparative SDS-PAGE. The protein responsible for channel-forming activity had an apparent molecular mass of about 33 kDa as judged by SDS-PAGE. Interestingly, the protein showed cross-reactivity with polyclonal antibodies raised against a polypeptide derived from MspA of Mycobacterium smegmatis similarly as the cell wall channel of Mycobacterium phlei. Primers derived from mspA were used to clone and sequence the gene of the cell wall channels of T. inchonensis (named tipA for T. inchonensis porin A) and M. phlei (named mppA for M. phlei porin A). Surprisingly, both genes, tipA and mppA, were found to be identical to mspA of M. smegmatis, indicating that the genomes of T. inchonensis, M. phlei and M. smegmatis contain the same genes for the major cell wall channel. RT-PCR revealed that tipA is transcribed in T. inchonensis and mppA in M. phlei. The results suggest that despite a certain distance between the three organisms, their genomes contain the same gene coding for the major cell wall channel, with a molecular mass of 22 kDa for the monomer.
Collapse
|
|
21 |
12 |
23
|
Zhang S, Cao Z, Fan P, Sun W, Xiao Y, Zhang P, Wang Y, Huang S. Discrimination of Disaccharide Isomers of Different Glycosidic Linkages Using a Modified MspA Nanopore. Angew Chem Int Ed Engl 2024; 63:e202316766. [PMID: 38116834 DOI: 10.1002/anie.202316766] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Disaccharides are composed of two monosaccharide subunits joined by a glycosidic linkage in an α or β configuration. Different combinations of isomeric monosaccharide subunits and different glycosidic linkages result in different isomeric disaccharide products. Thus, direct discrimination of these disaccharide isomers from a mixture is extremely difficult. In this paper, a hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore conjugated with a phenylboronic acid (PBA) adapter was applied for disaccharide sensing, with which three most widely known disaccharides in nature, including sucrose, lactose and maltose, were clearly discriminated. Besides, all six isomeric α-D-glucopyranosyl-D-fructoses, differing only in their glycosidic linkages, were also well resolved. Assisted by a custom machine learning algorithm, a 0.99 discrimination accuracy is achieved. Nanopore discrimination of disaccharide isomers with different glycosidic linkages, which has never been previously demonstrated, is inspiring for nanopore saccharide sequencing. This sensing capacity was also applied in direct identification of isomaltulose additives in a commercial sucrose-free yogurt, from which isomaltulose, lactose and L-lactic acid were simultaneously detected.
Collapse
|
|
1 |
12 |
24
|
Jeong H, Lee SY, Seo H, Kim BJ. Recombinant Mycobacterium smegmatis delivering a fusion protein of human macrophage migration inhibitory factor (MIF) and IL-7 exerts an anticancer effect by inducing an immune response against MIF in a tumor-bearing mouse model. J Immunother Cancer 2021; 9:e003180. [PMID: 34389619 PMCID: PMC8365831 DOI: 10.1136/jitc-2021-003180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a pleotropic inflammatory cytokine that is overexpressed in a number of cancer types including most types of human cancer. Inhibition of MIF signaling can restore anticancer immune responses in tumor microenvironments. In this study, we aimed to develop a therapeutic vaccine capable of inhibiting tumor development by inducing anti-MIF immune responses. METHODS We introduced a recombinant Mycobacterium smegmatis (rSmeg-hMIF-hIL-7) vaccine that could deliver a fusion protein of human macrophage migration inhibitory factor (MIF) and interleukin 7, which could act as a target antigen and as an adjuvant of cancer vaccine, respectively. We checked the anticancer potential of the vaccine in a tumor-bearing mouse model. RESULTS We found that rSmeg-hMIF-hIL-7 showed enhanced oncolytic activity compared with PBS, BCG or Smeg in MC38-bearing mice, and there was an increase in the humoral and cell-mediated immune responses against MIF. rSmeg-hMIF-hIL-7 can also induce a neutralizing effect regarding MIF tautomerase activity in the serum of vaccinated mice. We also found downregulation of MIF, CD74, and CD44, which are related to the MIF signaling pathway and PI3K/Akt and MMP2/9 signaling, which are regulated by MIF in the tumor tissue of rSmeg-hMIF-hIL-7-vaccinated mice, suggesting a significant role of the anti-MIF immune response to rSmeg-hMIF-hIL-7 in its anticancer effect. In addition, rSmeg-hMIF-hIL-7 treatment led to enhanced activation of CD4+ and CD8+ T cells in the tumor regions of vaccinated mice, also contributing to the anticancer effect. This trend was also found in LLC-bearing and PanO2-bearing mouse models. In addition, rSmeg-hMIF-hIL-7 treatment exerted an enhanced anticancer effect with one of the immune checkpoint inhibitors, the anti-PD-L1 antibody, in a tumor-bearing mouse model. CONCLUSIONS In conclusion, our data showed that rSmeg-hMIF-hIL-7 exerts a strong antitumor immune response in mice, possibly by inhibiting the MIF-dependent promotion of tumorigenesis by the anti-MIF immune response and via enhanced cytotoxic T cell recruitment into tumor microenvironments. We also found that it also exerted an enhanced anticancer effect with immune checkpoint inhibitors. These results suggest that rSmeg-hMIF-hIL-7 is a potential adjuvant for cancer immunotherapy. This is the first report to prove anticancer potential of immunotherapeutic vaccine targeting immune response against MIF.
Collapse
|
research-article |
4 |
11 |
25
|
Madhvi A, Mishra H, Chegou NN, Tromp G, Van Heerden CJ, Pietersen RD, Leisching G, Baker B. Distinct host-immune response toward species related intracellular mycobacterial killing: A transcriptomic study. Virulence 2020; 11:170-182. [PMID: 32052695 PMCID: PMC7051142 DOI: 10.1080/21505594.2020.1726561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 01/10/2023] Open
Abstract
The comparison of the host immune response when challenged with pathogenic and nonpathogenic species of mycobacteria can provide answers to the unresolved question of how pathogens subvert or inhibit an effective response. We infected human monocyte derived macrophages (hMDMs) with different species of mycobacteria, in increasing order of pathogenicity, i.e. M. smegmatis, M. bovis BCG, and M. tuberculosis R179 that had been cultured in the absence of detergents. RNA was isolated post-infection and transcriptomic analysis using amplicons (Ampliseq) revealed 274 differentially expressed genes (DEGs) across three species, out of which we selected 19 DEGs for further validation. We used qRT-PCR to confirm the differential expression of 19 DEGs. We studied biological network through Ingenuity Pathway Analysis® (IPA) which revealed up-regulated pathways of the interferon and interleukin family related to the killing of M. smegmatis. Apart from interferon and interleukin family, we found one up-regulated (EIF2AK2) and two down-regulated (MT1A and TRIB3) genes as unique potential targets found by Ampliseq and qRT-PCR which may be involved in the intracellular mycobacterial killing. The roles of these genes have not previously been described in tuberculosis. Multiplex ELISA of culture supernatants showed increased host immune response toward M. smegmatis as compared to M. bovis BCG and M.tb R179. These results enhance our understanding of host immune response against M.tb infection.
Collapse
|
research-article |
5 |
10 |