1
|
Abstract
Mycotoxins are secondary metabolites produced by microfungi that are capable of causing disease and death in humans and other animals. Because of their pharmacological activity, some mycotoxins or mycotoxin derivatives have found use as antibiotics, growth promotants, and other kinds of drugs; still others have been implicated as chemical warfare agents. This review focuses on the most important ones associated with human and veterinary diseases, including aflatoxin, citrinin, ergot akaloids, fumonisins, ochratoxin A, patulin, trichothecenes, and zearalenone.
Collapse
|
Review |
22 |
2111 |
2
|
Marin S, Ramos AJ, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 2013; 60:218-37. [PMID: 23907020 DOI: 10.1016/j.fct.2013.07.047] [Citation(s) in RCA: 930] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023]
Abstract
Mycotoxins are abiotic hazards produced by certain fungi that can grow on a variety of crops. Consequently, their prevalence in plant raw materials may be relatively high. The concentration of mycotoxins in finished products is usually lower than in raw materials. In this review, occurrence and toxicology of the main mycotoxins are summarised. Furthermore, methodological approaches for exposure assessment are described. Existing exposure assessments, both through contamination and consumption data and biomarkers of exposure, for the main mycotoxins are also discussed.
Collapse
|
Review |
12 |
930 |
3
|
Abstract
The worldwide contamination of foods and feeds with mycotoxins is a significant problem. Mycotoxins are secondary metabolites of molds that have adverse effects on humans, animals, and crops that result in illnesses and economic losses. Aflatoxins, ochratoxins, trichothecenes, zearelenone, fumonisins, tremorgenic toxins, and ergot alkaloids are the mycotoxins of greatest agro-economic importance. Some molds are capable of producing more than one mycotoxin and some mycotoxins are produced by more than one fungal species. Often more than one mycotoxin is found on a contaminated substrate. Factors influencing the presence of mycotoxins in foods or feeds include environmental conditions related to storage that can be controlled. Other extrinsic factors such as climate or intrinsic factors such as fungal strain specificity, strain variation, and instability of toxigenic properties are more difficult to control. Mycotoxins have various acute and chronic effects on humans and animals (especially monogastrics) depending on species and susceptibility of an animal within a species. Ruminants have, however, generally been more resistant to the adverse effects of mycotoxins. This is because the rumen microbiota is capable of degrading mycotoxins. The economic impact of mycotoxins include loss of human and animal life, increased health care and veterinary care costs, reduced livestock production, disposal of contaminated foods and feeds, and investment in research and applications to reduce severity of the mycotoxin problem. Although efforts have continued internationally to set guidelines to control mycotoxins, practical measures have not been adequately implemented.
Collapse
|
Review |
24 |
918 |
4
|
Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP. Fumonisins--novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 1988; 54:1806-11. [PMID: 2901247 PMCID: PMC202749 DOI: 10.1128/aem.54.7.1806-1811.1988] [Citation(s) in RCA: 763] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cultures on corn of Fusarium moniliforme MRC 826 are known to cause leukoencephalomalacia in horses and to be toxic and hepatocarcinogenic in rats. Culture material of this F. moniliforme isolate has also been shown to exhibit cancer-promoting activity in a short-term cancer initiation-promotion bioassay with diethylnitrosamine-initiated rats and the induction of gamma-glutamyl-transpeptidase-positive (GGT+) foci as an endpoint after 4 weeks of promotion. This bioassay was used as a monitoring system to isolate cancer-promoting compounds from cultures of F. moniliforme MRC 826. Culture material was successively extracted with ethyl acetate and CH3OH-H2O (3:1). Most of the cancer-promoting activity was recovered in the CH3OH-H2O extract and remained in the aqueous phase following partitioning of this extract between CH3OH-H2O (1:3) and CHCl3. The CH3OH-H2O fraction was chromatographed on an Amberlite XAD-2 column, and the active fraction was eluted with CH3OH. This fraction was chromatographed on a silica gel column with CHCl3-CH3OH-CH3COOH (6:3:1) as eluent and further purified on a C18 reverse-phase column. Two pure compounds were isolated, and these have been chemically characterized and given the trivial names fumonisin B1 and B2. At least 2 g of the major compound fumonisin B1 was purified from 1 kg of culture material. Fumonisin B1 in the diet (0.1%) significantly (P less than 0.001) induced the formation of GGT+ foci in the livers of initiated as well as noninitiated rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
research-article |
37 |
763 |
5
|
Pfohl-Leszkowicz A, Manderville RA. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 2007; 51:61-99. [PMID: 17195275 DOI: 10.1002/mnfr.200600137] [Citation(s) in RCA: 713] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ochratoxin A (OTA) is a ubiquitous mycotoxin produced by fungi of improperly stored food products. OTA is nephrotoxic and is suspected of being the main etiological agent responsible for human Balkan endemic nephropathy (BEN) and associated urinary tract tumours. Striking similarities between OTA-induced porcine nephropathy in pigs and BEN in humans are observed. International Agency for Research on Cancer (IARC) has classified OTA as a possible human carcinogen (group 2B). Currently, the mode of carcinogenic action by OTA is unknown. OTA is genotoxic following oxidative metabolism. This activity is thought to play a central role in OTA-mediated carcinogenesis and may be divided into direct (covalent DNA adduction) and indirect (oxidative DNA damage) mechanisms of action. Evidence for a direct mode of genotoxicity has been derived from the sensitive 32P-postlabelling assay. OTA facilitates guanine-specific DNA adducts in vitro and in rat and pig kidney orally dosed, one adduct comigrates with a synthetic carbon (C)-bonded C8-dG OTA adduct standard. In this paper, our current understanding of OTA toxicity and carcinogenicity are reviewed. The available evidence suggests that OTA is a genotoxic carcinogen by induction of oxidative DNA lesions coupled with direct DNA adducts via quinone formation. This mechanism of action should be used to establish acceptable intake levels of OTA from human food sources.
Collapse
|
Review |
18 |
713 |
6
|
Pestka JJ, Smolinski AT. Deoxynivalenol: toxicology and potential effects on humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2005; 8:39-69. [PMID: 15762554 DOI: 10.1080/10937400590889458] [Citation(s) in RCA: 664] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereal-based foods worldwide. At the molecular level, DON disrupts normal cell function by inhibiting protein synthesis via binding to the ribosome and by activating critical cellular kinases involved in signal transduction related to proliferation, differentiation, and apoptosis. Relative to toxicity, there are marked species differences, with the pig being most sensitive to DON, followed by rodent > dog > cat > poultry > ruminants. The physiologic parameter that is most sensitive to low-level DON exposure is the emetic response, with as little as 0.05 to 0.1 mg/kg body weight (bw) inducing vomiting in swine and dogs. Chinese epidemiological studies suggest that DON may also produce emetic effects in humans. With respect to chronic effects, growth (anorexia and decreased nutritional efficiency), immune function, (enhancement and suppression), and reproduction (reduced litter size) are also adversely affected by DON in animals, whereas incidence of neoplasia is not affected. When hazard evaluations were conducted using existing chronic toxicity data and standard safety factors employed for anthropogenic additives/contaminants in foods, tolerable daily intakes (TDIs) ranging from 1 to 5 microg/kg bw have been generated. Given that critical data gaps still exist regarding the potential health effects of DON, additional research is needed to improve capacity for assessing adverse health effects of this mycotoxin. Critical areas for future DON research include molecular mechanisms underlying toxicity, sensitivity of human cells/tissues relative to other species, emetic effects in primates, epidemiological association with gastroenteritis and chronic disease in humans, and surveillance in cereal crops worldwide.
Collapse
|
Review |
20 |
664 |
7
|
Abstract
The most frequent toxigenic fungi in Europe are Aspergillus, Penicillium and Fusarium species. They produce aflatoxin B1 transformed into aflatoxin M1 found in the milk, as well as Ochratoxins and Zearalenone, Fumonisin B1, T-2 toxin, HT-2 toxin and deoxynivalenol (vomitoxin), which are of increasing concern in human health. These mycotoxins are under continuous survey in Europe, but the regulatory aspects still need to be set up and/or harmonised at European level. They are found in foodstuffs and are not destroyed by normal industrial processing or cooking since they are heat-stable. Some of their metabolites are still toxic and may be involved in human diseases. Their toxic effects (liver, kidney and hematopoetic toxicity, immune toxicity, reproduction toxicity, foetal toxicity and teratogenicity, and mainly carcinogenicity) are mostly known in experimental models, the extrapolation to humans being always inaccurate. The inaccuracy of extrapolation to humans may be explained by the lack of adequate food consumption data, lack of knowledge about relative health risks associated with specifically proposed limits and by the possibility of synergism with other mycotoxins present in the same food commodities. Other pathological causes are viral hepatitis, immune or hormonal deficiencies or organ dysfunction. Even when a specific biomarker of a given mycotoxin is identified in humans, it remains difficult to establish the relation with a given illness, because of genetic polymorphism and the possible beneficial influence of diet, and because other environmental toxicants may well interfere. The acceptable daily intake limits are mostly based on animal data and may be too high, due to the differences in the sensitivity of different animal species. The prevention involves first reduction of mycotoxin levels in foodstuffs and further increasing the intake of diet components such as vitamins, antioxidants and substances known to prevent carcinogenesis.
Collapse
|
Review |
23 |
653 |
8
|
Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, Murciano C, Blagojevic M, Thavaraj S, Förster TM, Hebecker B, Kasper L, Vizcay G, Iancu SI, Kichik N, Häder A, Kurzai O, Luo T, Krüger T, Kniemeyer O, Cota E, Bader O, Wheeler RT, Gutsmann T, Hube B, Naglik JR. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016; 532:64-8. [PMID: 27027296 PMCID: PMC4851236 DOI: 10.1038/nature17625] [Citation(s) in RCA: 647] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/26/2016] [Indexed: 01/23/2023]
Abstract
Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
647 |
9
|
Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 2010; 31:71-82. [PMID: 19875698 PMCID: PMC2802673 DOI: 10.1093/carcin/bgp264] [Citation(s) in RCA: 561] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 10/18/2009] [Accepted: 10/22/2009] [Indexed: 11/12/2022] Open
Abstract
Aflatoxins and fumonisins (FB) are mycotoxins contaminating a large fraction of the world's food, including maize, cereals, groundnuts and tree nuts. The toxins frequently co-occur in maize. Where these commodities are dietary staples, for example, in parts of Africa, Asia and Latin America, the contamination translates to high-level chronic exposure. This is particularly true in subsistence farming communities where regulations to control exposure are either non-existent or practically unenforceable. Aflatoxins are hepatocarcinogenic in humans, particularly in conjunction with chronic hepatitis B virus infection, and cause aflatoxicosis in episodic poisoning outbreaks. In animals, these toxins also impair growth and are immunosuppressive; the latter effects are of increasing interest in human populations. FB have been reported to induce liver and kidney tumours in rodents and are classified as Group 2B 'possibly carcinogenic to humans', with ecological studies implying a possible link to increased oesophageal cancer. Recent studies also suggest that the FB may cause neural tube defects in some maize-consuming populations. There is a plausible mechanism for this effect via a disruption of ceramide synthase and sphingolipid biosynthesis. Notwithstanding the need for a better evidence-base on mycotoxins and human health, supported by better biomarkers of exposure and effect in epidemiological studies, the existing data are sufficient to prioritize exposure reduction in vulnerable populations. For both toxins, there are a number of practical primary and secondary prevention strategies which could be beneficial if the political will and financial investment can be applied to what remains a largely and rather shamefully ignored global health issue.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
561 |
10
|
Abstract
Mycotoxins likely have existed for as long as crops have been grown but recognition of the true chemical nature of such entities of fungal metabolism was not known until recent times. Conjecturally, there is historical evidence of their presence back as far as the time reported in the Dead Sea Scrolls. Evidence of their periodic, historical occurrence exists until the recognition of aflatoxins in the early 1960s. At that time mycotoxins were considered as a storage phenomenon whereby grains becoming moldy during storage allowed for the production of these secondary metabolites proven to be toxic when consumed by man and other animals. Subsequently, aflatoxins and mycotoxins of several kinds were found to be formed during development of crop plants in the field. The determination of which of the many known mycotoxins are significant can be based upon their frequency of occurrence and/or the severity of the disease that they produce, especially if they are known to be carcinogenic. Among the mycotoxins fitting into this major group would be the aflatoxins, deoxynivalenol, fumonisins, zearalenone, T-2 toxin, ochratoxin and certain ergot alkaloids. The diseases (mycotoxicoses) caused by these mycotoxins are quite varied and involve a wide range of susceptible animal species including humans. Most of these diseases occur after consumption of mycotoxin contaminated grain or products made from such grains but other routes of exposure exist. The diagnosis of mycotoxicoses may prove to be difficult because of the similarity of signs of disease to those caused by other agents. Therefore, diagnosis of a mycotoxicoses is dependent upon adequate testing for mycotoxins involving sampling, sample preparation and analysis.
Collapse
|
Review |
18 |
557 |
11
|
Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 2010; 107:9452-7. [PMID: 20439716 PMCID: PMC2889104 DOI: 10.1073/pnas.1000675107] [Citation(s) in RCA: 510] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oligogalacturonides (OGs) released from the plant cell wall are active both as damage-associated molecular patterns (DAMPs) for the activation of the plant immune response and regulators of plant growth and development. Members of the Wall-Associated Kinase (WAK) family are candidate receptors of OGs, due to their ability to bind in vitro these oligosaccharides. Because lethality and redundancy have hampered the study of WAKs by reverse genetics, we have adopted a chimeric receptor approach to elucidate the role of Arabidopsis WAK1. In a test-of-concept study, we first defined the appropriate chimera design and demonstrated that the Arabidopsis pattern recognition receptor (PRR) EFR is amenable to the construction of functional and resistance-conferring chimeric receptors carrying the ectodomain of another Arabidopsis PRR, FLS2. After, we analyzed chimeras derived from EFR and WAK1. Our results show that, upon stimulation with OGs, the WAK1 ectodomain is capable of activating the EFR kinase domain. On the other hand, upon stimulation with the cognate ligand elf18, the EFR ectodomain activates the WAK1 kinase, triggering defense responses that mirror those normally activated by OGs and are effective against fungal and bacterial pathogens. Finally, we show that transgenic plants overexpressing WAK1 are more resistant to Botrytis cinerea.
Collapse
|
research-article |
15 |
510 |
12
|
Merrill AH, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E. Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 1997; 142:208-25. [PMID: 9007051 DOI: 10.1006/taap.1996.8029] [Citation(s) in RCA: 479] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The "sphingosin" backbone of sphingolipids was so named by J. L. W. Thudichum in 1884 for its enigmatic ("Sphinx-like") properties. Although still an elusive class of lipids, research on the involvement of sphingolipids in the signal transduction pathways that mediate cell growth, differentiation, multiple cell functions, and cell death has been rapidly expanding our understanding of these compounds. In addition to the newly discovered role of ceramide as an intracellular second messenger for tumor necrosis factor-alpha, IL-1beta, and other cytokines, sphingosine, sphingosine-1-phosphate, and other sphingolipid metabolites have recently been demonstrated to modulate cellular calcium homeostasis and cell proliferation. Perturbation of sphingolipid metabolism using synthetic and naturally occurring inhibitors of key enzymes of the biosynthetic pathways is aiding the characterization of these processes; for examples, inhibition of cerebroside synthase has indicated a role for ceramide in cellular stress responses including heat shock, and inhibition of ceramide synthase (by fumonisins) has revealed the role of disruption of sphingolipid metabolism in several animal diseases. Fumonisins are currently the focus of a FDA long-term tumor study. This review summarizes recent research on (i) the role of sphingolipids as important components of the diet, (ii) the role of sphingoid base metabolites and the ceramide cycle in expression of genes regulating cell growth, differentiation, and apoptosis, (iii) the use of cerebroside synthase inhibitors as tools for understanding the role of sphingolipids as mediators of cell cycle progression, renal disease, and stress responses, and (iv) the involvement of disrupted sphingolipid metabolism in animal disease and cellular deregulation associated with exposure to inhibitors of ceramide synthase and serine palmitoyltransferase, key enzymes in de novo sphingolipid biosynthesis. These findings illustrate how an understanding of the function of sphingolipids can help solve questions in toxicology and this is undoubtedly only the beginning of this story.
Collapse
|
Review |
28 |
479 |
13
|
Gelderblom WC, Kriek NP, Marasas WF, Thiel PG. Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis 1991; 12:1247-51. [PMID: 1649015 DOI: 10.1093/carcin/12.7.1247] [Citation(s) in RCA: 446] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A semi-purified corn-based diet containing 50 mg/kg of pure (not less than 90%) fumonisin B1 (FB1), isolated from culture material of Fusarium moniliforme strain MRC 826, was fed to a group of 25 rats over a period of 26 months. A control group of 25 rats received the same diet without FB1. Five rats from each group were killed at 6, 12, 20 and 26 months. The liver was the main target organ in the FB1-treated rats and the hepatic pathological changes were identical to those previously reported in rats fed culture material of F.moniliforme MRC 826. All FB1-treated rats that died or were killed from 18 months onwards suffered from a micro- and macronodular cirrhosis and had large expansile nodules of cholangiofibrosis at the hilus of the liver. Ten out of 15 FB1-treated rats (66%) that were killed and/or died between 18 and 26 months developed primary hepatocellular carcinoma. Metastases to the heart, lungs or kidneys were present in four of the rats with hepatocellular carcinoma. No neoplastic changes were observed in any of the control rats. Chronic interstitial nephritis was present in the kidneys of FB1-treated rats killed after 26 months. No lesions were observed in the esophagus, heart or forestomach of FB1-treated rats and this is contrary to previous findings when culture material of the fungus was fed to rats. It is concluded that FB1 is responsible for the hepatocarcinogenic and the hepatotoxic but not all the other toxic effects of culture material of F.moniliforme MRC 826 in rats.
Collapse
|
|
34 |
446 |
14
|
Streit E, Schatzmayr G, Tassis P, Tzika E, Marin D, Taranu I, Tabuc C, Nicolau A, Aprodu I, Puel O, Oswald IP. Current situation of mycotoxin contamination and co-occurrence in animal feed--focus on Europe. Toxins (Basel) 2012; 4:788-809. [PMID: 23162698 PMCID: PMC3496989 DOI: 10.3390/toxins4100788] [Citation(s) in RCA: 438] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi especially those belonging to the genus Aspergillus, Penicillum and Fusarium. Mycotoxin contamination can occur in all agricultural commodities in the field and/or during storage, if conditions are favourable to fungal growth. Regarding animal feed, five mycotoxins (aflatoxins, deoxynivalenol, zearalenone, fumonisins and ochratoxin A) are covered by EU legislation (regulation or recommendation). Transgressions of these limits are rarely observed in official monitoring programs. However, low level contamination by Fusarium toxins is very common (e.g., deoxynivalenol (DON) is typically found in more than 50% of the samples) and co-contamination is frequently observed. Multi-mycotoxin studies reported 75%-100% of the samples to contain more than one mycotoxin which could impact animal health at already low doses. Co-occurrence of mycotoxins is likely to arise for at least three different reasons (i) most fungi are able to simultaneously produce a number of mycotoxins, (ii) commodities can be contaminated by several fungi, and (iii) completed feed is made from various commodities. In the present paper, we reviewed the data published since 2004 concerning the contamination of animal feed with single or combinations of mycotoxins and highlighted the occurrence of these co-contaminations.
Collapse
|
Review |
13 |
438 |
15
|
Smith MC, Madec S, Coton E, Hymery N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins (Basel) 2016; 8:94. [PMID: 27023609 PMCID: PMC4848621 DOI: 10.3390/toxins8040094] [Citation(s) in RCA: 374] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/16/2022] Open
Abstract
Some foods and feeds are often contaminated by numerous mycotoxins, but most studies have focused on the occurrence and toxicology of a single mycotoxin. Regulations throughout the world do not consider the combined effects of mycotoxins. However, several surveys have reported the natural co-occurrence of mycotoxins from all over the world. Most of the published data has concerned the major mycotoxins aflatoxins (AFs), ochratoxin A (OTA), zearalenone (ZEA), fumonisins (FUM) and trichothecenes (TCTs), especially deoxynivalenol (DON). Concerning cereals and derived cereal product samples, among the 127 mycotoxin combinations described in the literature, AFs+FUM, DON+ZEA, AFs+OTA, and FUM+ZEA are the most observed. However, only a few studies specified the number of co-occurring mycotoxins with the percentage of the co-contaminated samples, as well as the main combinations found. Studies of mycotoxin combination toxicity showed antagonist, additive or synergic effects depending on the tested species, cell model or mixture, and were not necessarily time- or dose-dependent. This review summarizes the findings on mycotoxins and their co-occurrence in various foods and feeds from all over the world as well as in vitro experimental data on their combined toxicity.
Collapse
|
Review |
9 |
374 |
16
|
Czárán TL, Hoekstra RF, Pagie L. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A 2002; 99:786-90. [PMID: 11792831 PMCID: PMC117383 DOI: 10.1073/pnas.012399899] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2001] [Indexed: 11/18/2022] Open
Abstract
Evolutionary processes generating biodiversity and ecological mechanisms maintaining biodiversity seem to be diverse themselves. Conventional explanations of biodiversity such as niche differentiation, density-dependent predation pressure, or habitat heterogeneity seem satisfactory to explain diversity in communities of macrobial organisms such as higher plants and animals. For a long time the often high diversity among microscopic organisms in seemingly uniform environments, the famous "paradox of the plankton," has been difficult to understand. The biodiversity in bacterial communities has been shown to be sometimes orders of magnitudes higher than the diversity of known macrobial systems. Based on a spatially explicit game theoretical model with multiply cyclic dominance structures, we suggest that antibiotic interactions within microbial communities may be very effective in maintaining diversity.
Collapse
|
research-article |
23 |
346 |
17
|
Abstract
It is known for many years that several food items, derived from plants infected by fungi in the field during growing of the plant or during harvest and storage of the food item, can contain concomitantly different mycotoxins. As these combined mycotoxins occur simultaneously in the food item, consumption of the food will lead to a combined intake depending on the absorption rates of the different mycotoxins. Therefore, the question is justified whether such a combined intake of mycotoxins would lead to a possible higher risk for adverse health effects than the intake of one of these mycotoxins alone. It will be dealt with on the basis of some practical cases of such combined intake of mycotoxins of which research data are available. This is the case for citrinin and ochratoxin A, but as the workshop focuses on trichotecenes and so this paper concentrates on these. When the mycotoxins are of similar structure and of the same species, or of the same families, it is likely to expect that the mode of action of the mycotoxins and or the toxicity profiles will be quite similar. This indicates that such related mycotoxins are likely to exert only additive effects, which is important to know. In terms of risk assessment, these mycotoxins could be dealt with by establishing a group daily tolerable intake (TDI) or a provisional tolerable weekly intake (PTWI). In terms of risk assessment those mycotoxins which interact in synergistic manner are of more concern. It is concluded that, at present tools are not fully developed to establish the type of interaction or whether there is any interaction at all.
Collapse
|
|
21 |
338 |
18
|
Gardiner DM, Waring P, Howlett BJ. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology (Reading) 2005; 151:1021-1032. [PMID: 15817772 DOI: 10.1099/mic.0.27847-0] [Citation(s) in RCA: 324] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epipolythiodioxopiperazines (ETPs) are toxic secondary metabolites made only by fungi. The best-known ETP is gliotoxin, which appears to be a virulence factor associated with invasive aspergillosis of immunocompromised patients. The toxicity of ETPs is due to the presence of a disulphide bridge, which can inactivate proteins via reaction with thiol groups, and to the generation of reactive oxygen species by redox cycling. With the availability of complete fungal genome sequences and efficient gene-disruption techniques for fungi, approaches are now feasible to delineate biosynthetic pathways for ETPs and to gain insights into the evolution of such gene clusters.
Collapse
|
|
20 |
324 |
19
|
el Khoury A, Atoui A. Ochratoxin a: general overview and actual molecular status. Toxins (Basel) 2010; 2:461-93. [PMID: 22069596 PMCID: PMC3153212 DOI: 10.3390/toxins2040461] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by several species of Aspergillus and Penicillium fungi that structurally consists of a para-chlorophenolic group containing a dihydroisocoumarin moiety that is amide-linked to L-phenylalanine. OTA is detected worldwide in various food and feed sources. Studies show that this molecule can have several toxicological effects such as nephrotoxic, hepatotoxic, neurotoxic, teratogenic and immunotoxic. A role in the etiology of Balkan endemic nephropathy and its association to urinary tract tumors has been also proved. In this review, we will explore the general aspect of OTA: physico-chemical properties, toxicological profile, OTA producing fungi, contaminated food, regulation, legislation and analytical methods. Due to lack of sufficient information related to the molecular background, this paper will discuss in detail the recent advances in molecular biology of OTA biosynthesis, based on information and on new data about identification and characterization of ochratoxin biosynthetic genes in both Penicillium and Aspergillus species. This review will also cover the development of the molecular methods for the detection and quantification of OTA producing fungi in various foodstuffs.
Collapse
|
Review |
15 |
283 |
20
|
Streit E, Naehrer K, Rodrigues I, Schatzmayr G. Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2892-2899. [PMID: 23670211 DOI: 10.1002/jsfa.6225] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/12/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
During an 8-year period, 17 316 samples of feed and feed raw materials from all over the world were analysed for contamination with aflatoxins, ochratoxin A, zearalenone, deoxynivalenol and fumonisins. Overall, 72% of the samples tested positive for at least one mycotoxin and 38% were found to be co-contaminated. Mycotoxin concentrations were generally low and the majority of the samples were compliant with the most stringent EU guidance values or maximum levels for mycotoxins in feed. However, in their present state these regulations do not address co-contamination and associated risks. Long-term trends are difficult to establish as strong yearly variations were observed regarding mycotoxin prevalence and contamination levels. In some cases unusual weather conditions can be linked with high observed mycotoxin loads. An exception to this rule is South-East Asia, where a steady increase of aflatoxin prevalence has been observed. The percentage of aflatoxin-positive samples in this region rose from 32% in 2005 to 71% in 2011.
Collapse
|
Review |
12 |
275 |
21
|
Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 2004; 198:315-28. [PMID: 15138058 DOI: 10.1016/j.tox.2004.02.008] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article gives an overview of the results of genotoxicity tests, which have been conducted within the last 5 years with the human liver cell line HepG2. It is an update of an earlier review from 1998 (by Knasmüller et al.). In addition, a number of publications are discussed which are relevant for the use of human derived liver cell lines in genetic toxicology. They concern the establishment of new endpoints, the development of new cell lines and possible pitfalls and problems. HepG2 cells have been used to test a wide variety of compounds over the last years. The most interesting observations are that the cells are highly sensitive toward polycyclic aromatic hydrocarbons and that genotoxic effects are seen with a number of carcinogenic mycotoxins, that give negative results in other in vitro assays. Carcinogenic metals such as As and Cd caused positive results as well, whereas only marginal or negative results were seen with nitrosamines. The low sensitivity toward these latter carcinogens is probably due to a lack of cytochrome P4502E1 which catalyses their activation. Also, a number of structurally different synthetic pesticides as well as bioactive plant constituents ("natural pesticides") have been tested and with some of them genotoxic effects were found. In most experiments, the formation of micronuclei was used as an endpoint; however also the single cell gel electrophoresis assay is increasingly used. Several transfectant lines of HepG2 have been constructed which express increased levels of phase I enzymes (such as CYP1A1, CYP1A2, CYP2E1 etc.); furthermore, cell lines became available which express human glutathione-S-transferases. These new clones might be particularly useful for the investigation of specific classes of genotoxicants and also for mechanistic studies. Apart from HepG2 cells, a number of other human derived liver cell lines have been isolated, but so far no data from genotoxicity experiments are available, except for Hep3B cells, which were compared with HepG2 and found to be less sensitive in general. Studies with HepG2 clones of a different origin indicate that the cells differ in regard to their sensitivity toward genotoxicants; also medium effects and the cultivation time might affect the outcome of genotoxicity studies. Overall, the results support the assumption that HepG2 cells are a suitable tool for genotoxicity testing.
Collapse
|
Review |
21 |
270 |
22
|
Pinton P, Nougayrède JP, Del Rio JC, Moreno C, Marin DE, Ferrier L, Bracarense AP, Kolf-Clauw M, Oswald IP. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol Appl Pharmacol 2009; 237:41-8. [PMID: 19289138 DOI: 10.1016/j.taap.2009.03.003] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 12/15/2022]
|
|
16 |
259 |
23
|
Gruber-Dorninger C, Novak B, Nagl V, Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7052-7070. [PMID: 27599910 DOI: 10.1021/acs.jafc.6b03413] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Modern analytical techniques can determine a multitude of fungal metabolites contaminating food and feed. In addition to known mycotoxins, for which maximum levels in food are enforced, also currently unregulated, so-called "emerging mycotoxins" were shown to occur frequently in agricultural products. The aim of this review is to critically discuss the relevance of selected emerging mycotoxins to food and feed safety. Acute and chronic toxicity as well as occurrence data are presented for enniatins, beauvericin, moniliformin, fusaproliferin, fusaric acid, culmorin, butenolide, sterigmatocystin, emodin, mycophenolic acid, alternariol, alternariol monomethyl ether, and tenuazonic acid. By far not all of the detected compounds are toxicologically relevant at their naturally occurring levels and are therefore of little or no health concern to consumers. Still, gaps in knowledge have been identified for several compounds. These gaps should be closed by the scientific community in the coming years to allow a proper risk assessment.
Collapse
|
Review |
8 |
255 |
24
|
Liew WPP, Mohd-Redzwan S. Mycotoxin: Its Impact on Gut Health and Microbiota. Front Cell Infect Microbiol 2018; 8:60. [PMID: 29535978 PMCID: PMC5834427 DOI: 10.3389/fcimb.2018.00060] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria-xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and mycotoxicosis.
Collapse
|
Review |
7 |
247 |
25
|
Li Y, Wang Z, Beier RC, Shen J, De Smet D, De Saeger S, Zhang S. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3441-3453. [PMID: 21417259 DOI: 10.1021/jf200767q] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This review focuses on the toxicity and metabolism of T-2 toxin and analytical methods used for the determination of T-2 toxin. Among the naturally occurring trichothecenes in food and feed, T-2 toxin is a cytotoxic fungal secondary metabolite produced by various species of Fusarium. Following ingestion, T-2 toxin causes acute and chronic toxicity and induces apoptosis in the immune system and fetal tissues. T-2 toxin is usually metabolized and eliminated after ingestion, yielding more than 20 metabolites. Consequently, there is a possibility of human consumption of animal products contaminated with T-2 toxin and its metabolites. Several methods for the determination of T-2 toxin based on traditional chromatographic, immunoassay, or mass spectroscopy techniques are described. This review will contribute to a better understanding of T-2 toxin exposure in animals and humans and T-2 toxin metabolism, toxicity, and analytical methods, which may be useful in risk assessment and control of T-2 toxin exposure.
Collapse
|
Review |
14 |
247 |