1
|
|
Review |
28 |
3580 |
2
|
Abstract
The nuclear factor-kappaB (NF-kappaB)/REL family of transcription factors has a central role in coordinating the expression of a wide variety of genes that control immune responses. There has been intense scientific activity in the NF-kappaB field owing to the involvement of these factors in the activation and regulation of key molecules that are associated with diseases ranging from inflammation to cancer. In this review, we focus on our current understanding of NF-kappaB regulation and its role in the immune system and inflammatory diseases. We also discuss the role of NF-kappaB proteins as potential therapeutic targets in clinical applications.
Collapse
|
Review |
23 |
3196 |
3
|
Abstract
The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.
Collapse
|
Review |
21 |
3148 |
4
|
Abstract
Studies on mice deficient in nuclear factor kappa B (NF-kappaB) subunits have shown that this transcription factor is important for lymphocyte responses to antigens and cytokine-inducible gene expression. In particular, the RelA (p65) subunit is required for induction of tumor necrosis factor-alpha (TNF-alpha)-dependent genes. Treatment of RelA-deficient (RelA-/-) mouse fibroblasts and macrophages with TNF-alpha resulted in a significant reduction in viability, whereas RelA+/+ cells were unaffected. Cytotoxicity to both cell types was mediated by TNF receptor 1. Reintroduction of RelA into RelA-/- fibroblasts resulted in enhanced survival, demonstrating that the presence of RelA is required for protection from TNF-alpha. These results have implications for the treatment of inflammatory and proliferative diseases.
Collapse
|
|
29 |
2483 |
5
|
Abstract
Apoptosis induced by TNF-receptor I (TNFR1) is thought to proceed via recruitment of the adaptor FADD and caspase-8 to the receptor complex. TNFR1 signaling is also known to activate the transcription factor NF-kappa B and promote survival. The mechanism by which this decision between cell death and survival is arbitrated is not clear. We report that TNFR1-induced apoptosis involves two sequential signaling complexes. The initial plasma membrane bound complex (complex I) consists of TNFR1, the adaptor TRADD, the kinase RIP1, and TRAF2 and rapidly signals activation of NF-kappa B. In a second step, TRADD and RIP1 associate with FADD and caspase-8, forming a cytoplasmic complex (complex II). When NF-kappa B is activated by complex I, complex II harbors the caspase-8 inhibitor FLIP(L) and the cell survives. Thus, TNFR1-mediated-signal transduction includes a checkpoint, resulting in cell death (via complex II) in instances where the initial signal (via complex I, NF-kappa B) fails to be activated.
Collapse
|
|
22 |
2088 |
6
|
Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005; 11:183-90. [PMID: 15685173 PMCID: PMC1440292 DOI: 10.1038/nm1166] [Citation(s) in RCA: 1727] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/21/2004] [Indexed: 12/13/2022]
Abstract
We show that NF-kappaB and transcriptional targets are activated in liver by obesity and high-fat diet (HFD). We have matched this state of chronic, subacute 'inflammation' by low-level activation of NF-kappaB in the liver of transgenic mice, designated LIKK, by selectively expressing constitutively active IKK-b in hepatocytes. These mice exhibit a type 2 diabetes phenotype, characterized by hyperglycemia, profound hepatic insulin resistance, and moderate systemic insulin resistance, including effects in muscle. The hepatic production of proinflammatory cytokines, including IL-6, IL-1beta and TNF-alpha, was increased in LIKK mice to a similar extent as induced by HFD in in wild-type mice. Parallel increases were observed in cytokine signaling in liver and mucscle of LIKK mice. Insulin resistance was improved by systemic neutralization of IL-6 or salicylate inhibition of IKK-beta. Hepatic expression of the IkappaBalpha superrepressor (LISR) reversed the phenotype of both LIKK mice and wild-type mice fed an HFD. These findings indicate that lipid accumulation in the liver leads to subacute hepatic 'inflammation' through NF-kappaB activation and downstream cytokine production. This causes insulin resistance both locally in liver and systemically.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1727 |
7
|
Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006; 114:597-605. [PMID: 16894049 DOI: 10.1161/circulationaha.106.621854] [Citation(s) in RCA: 1582] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs) are proteins or lipids that become glycated after exposure to sugars. AGEs are prevalent in the diabetic vasculature and contribute to the development of atherosclerosis. The presence and accumulation of AGEs in many different cell types affect extracellular and intracellular structure and function. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Activation of RAGE by AGEs causes upregulation of the transcription factor nuclear factor-kappaB and its target genes. Soluble AGEs activate monocytes, and AGEs in the basement membrane inhibit monocyte migration. AGE-bound RAGE increases endothelial permeability to macromolecules. AGEs block nitric oxide activity in the endothelium and cause the production of reactive oxygen species. Because of the emerging evidence about the adverse effects of AGEs on the vasculature of patients with diabetes, a number of different therapies to inhibit AGEs are under investigation.
Collapse
|
Review |
19 |
1582 |
8
|
Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 2003; 17:2205-32. [PMID: 12975316 DOI: 10.1101/gad.1102703] [Citation(s) in RCA: 1545] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
Review |
22 |
1545 |
9
|
Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 2005; 19:727-40. [PMID: 16153868 DOI: 10.1016/j.molcel.2005.08.014] [Citation(s) in RCA: 1544] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 08/08/2005] [Accepted: 08/15/2005] [Indexed: 01/10/2023]
Abstract
Viral infection or stimulation of TLR3 triggers signaling cascades, leading to activation of the transcription factors IRF-3 and NF-kappaB, which collaborate to induce transcription of type I interferon (IFN) genes. In this study, we identified a protein termed VISA (for virus-induced signaling adaptor) as a critical component in the IFN-beta signaling pathways. VISA recruits IRF-3 to the cytoplasmic viral dsRNA sensor RIG-I. Depletion of VISA inhibits virus-triggered and RIG-I-mediated activation of IRF-3, NF-kappaB, and the IFN-beta promoter, suggesting that VISA plays a central role in virus-triggered TLR3-independent IFN-beta signaling. Our data also indicate that VISA interacts with TRIF and TRAF6 and mediates bifurcation of the TLR3-triggered NF-kappaB and IRF-3 activation pathways. These findings suggest that VISA is critically involved in both virus-triggered TLR3-independent and TLR3-mediated antiviral IFN signaling.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
1544 |
10
|
Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995; 376:167-70. [PMID: 7603567 DOI: 10.1038/376167a0] [Citation(s) in RCA: 1416] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
NF-kappa B, which consists of two polypeptides, p50 (M(r) 50K) and p65/RelA (M(r) 65K), is thought to be a key regulator of genes involved in responses to infection, inflammation and stress. Indeed, although developmentally normal, mice deficient in p50 display functional defects in immune responses. Here we describe the generation of mice deficient in the RelA subunit of NF-kappa B. Disruption of the relA locus leads to embryonic lethality at 15-16 days of gestation, concomitant with a massive degeneration of the liver by programmed cell death or apoptosis. Embryonic fibroblasts from RelA-deficient mice are defective in the tumour necrosis factor (TNF)-mediated induction of messenger RNAs for I kappa B alpha and granulocyte/macrophage colony stimulating factor (GM-CSF), although basal levels of these transcripts are unaltered. These results indicate that RelA controls inducible, but not basal, transcription in NF-kappa B-regulated pathways.
Collapse
|
|
30 |
1416 |
11
|
Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11:191-8. [PMID: 15685170 DOI: 10.1038/nm1185] [Citation(s) in RCA: 1387] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 01/03/2005] [Indexed: 02/06/2023]
Abstract
Inflammation may underlie the metabolic disorders of insulin resistance and type 2 diabetes. IkappaB kinase beta (IKK-beta, encoded by Ikbkb) is a central coordinator of inflammatory responses through activation of NF-kappaB. To understand the role of IKK-beta in insulin resistance, we used mice lacking this enzyme in hepatocytes (Ikbkb(Deltahep)) or myeloid cells (Ikbkb(Deltamye)). Ikbkb(Deltahep) mice retain liver insulin responsiveness, but develop insulin resistance in muscle and fat in response to high fat diet, obesity or aging. In contrast, Ikbkb(Deltamye) mice retain global insulin sensitivity and are protected from insulin resistance. Thus, IKK-beta acts locally in liver and systemically in myeloid cells, where NF-kappaB activation induces inflammatory mediators that cause insulin resistance. These findings demonstrate the importance of liver cell IKK-beta in hepatic insulin resistance and the central role of myeloid cells in development of systemic insulin resistance. We suggest that inhibition of IKK-beta, especially in myeloid cells, may be used to treat insulin resistance.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1387 |
12
|
Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E. Involvement of Toll-like Receptors 2 and 4 in Cellular Activation by High Mobility Group Box 1 Protein. J Biol Chem 2004; 279:7370-7. [PMID: 14660645 DOI: 10.1074/jbc.m306793200] [Citation(s) in RCA: 1246] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) protein, originally described as a DNA-binding protein that stabilizes nucleosomes and facilitates transcription, can also be released extracellularly during acute inflammatory responses. Exposure of neutrophils, monocytes, or macrophages to HMGB1 results in increased nuclear translocation of NF-kappaB and enhanced expression of proinflammatory cytokines. Although the receptor for advanced glycation end products (RAGE) has been shown to interact with HMGB1, other putative HMGB1 receptors are known to exist but have not been characterized. In the present experiments, we explored the role of RAGE, Toll-like receptor (TLR) 2, and TLR 4, as well as associated kinases, in HMGB1-induced cellular activation. Culture of neutrophils or macrophages with HMGB1 produced activation of NF-kappaB through TLR 4-independent mechanisms. Unlike lipopolysaccharide (LPS), which primarily increased the activity of IKKbeta, HMGB1 exposure resulted in activation of both IKKalpha and IKKbeta. Kinases and scaffolding proteins downstream of TLR 2 and TLR 4, but not TLR/interleukin-1 receptor (IL-1R)-independent kinases such as tumor necrosis factor receptor-associated factor 2, were involved in the enhancement of NF-kappaB-dependent transcription by HMGB1. Transfections with dominant negative constructs demonstrated that TLR 2 and TLR 4 were both involved in HMGB1-induced activation of NF-kappaB. In contrast, RAGE played only a minor role in macrophage activation by HMGB1. Interactions of HMGB1 with TLR 2 and TLR 4 may provide an explanation for the ability of HMGB1 to generate inflammatory responses that are similar to those initiated by LPS.
Collapse
|
|
21 |
1246 |
13
|
Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 1995; 270:283-6. [PMID: 7569975 DOI: 10.1126/science.270.5234.283] [Citation(s) in RCA: 1218] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucocorticoids are potent immunosuppressive drugs, but their mechanism is poorly understood. Nuclear factor kappa B (NF-kappa B), a regulator of immune system and inflammation genes, may be a target for glucocorticoid-mediated immunosuppression. The activation of NF-kappa B involves the targeted degradation of its cytoplasmic inhibitor, I kappa B alpha, and the translocation of NF-kappa B to the nucleus. Here it is shown that the synthetic glucocorticoid dexamethasone induces the transcription of the I kappa B alpha gene, which results in an increased rate of I kappa B alpha protein synthesis. Stimulation by tumor necrosis factor causes the release of NF-kappa B from I kappa B alpha. However, in the presence of dexamethasone this newly released NF-kappa B quickly reassociates with newly synthesized I kappa B alpha, thus markedly reducing the amount of NF-kappa B that translocates to the nucleus. This decrease in nuclear NF-kappa B is predicted to markedly decrease cytokine secretion and thus effectively block the activation of the immune system.
Collapse
|
Comment |
30 |
1218 |
14
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1163] [Impact Index Per Article: 232.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
|
Review |
5 |
1163 |
15
|
Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277:15028-34. [PMID: 11836257 DOI: 10.1074/jbc.m200497200] [Citation(s) in RCA: 1120] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).
Collapse
|
|
23 |
1120 |
16
|
Cai D, Frantz JD, Tawa NE, Melendez PA, Oh BC, Lidov HGW, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004; 119:285-98. [PMID: 15479644 DOI: 10.1016/j.cell.2004.09.027] [Citation(s) in RCA: 1037] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 08/31/2004] [Accepted: 09/02/2004] [Indexed: 01/04/2023]
Abstract
Muscle wasting accompanies aging and pathological conditions ranging from cancer, cachexia, and diabetes to denervation and immobilization. We show that activation of NF-kappaB, through muscle-specific transgenic expression of activated IkappaB kinase beta (MIKK), causes profound muscle wasting that resembles clinical cachexia. In contrast, no overt phenotype was seen upon muscle-specific inhibition of NF-kappaB through expression of IkappaBalpha superrepressor (MISR). Muscle loss was due to accelerated protein breakdown through ubiquitin-dependent proteolysis. Expression of the E3 ligase MuRF1, a mediator of muscle atrophy, was increased in MIKK mice. Pharmacological or genetic inhibition of the IKKbeta/NF-kappaB/MuRF1 pathway reversed muscle atrophy. Denervation- and tumor-induced muscle loss were substantially reduced and survival rates improved by NF-kappaB inhibition in MISR mice, consistent with a critical role for NF-kappaB in the pathology of muscle wasting and establishing it as an important clinical target for the treatment of muscle atrophy.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1037 |
17
|
Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998; 1:661-71. [PMID: 9660950 DOI: 10.1016/s1097-2765(00)80066-0] [Citation(s) in RCA: 983] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The transcriptional activity of NF-kappa B is stimulated upon phosphorylation of its p65 subunit on serine 276 by protein kinase A (PKA). The transcriptional coactivator CPB/p300 associates with NF-kappa B p65 through two sites, an N-terminal domain that interacts with the C-terminal region of unphosphorylated p65, and a second domain that only interacts with p65 phosphorylated on serine 276. Accessibility to both sites is blocked in unphosphorylated p65 through an intramolecular masking of the N terminus by the C-terminal region of p65. Phosphorylation by PKA both weakens the interaction between the N- and C-terminal regions of p65 and creates an additional site for interaction with CBP/p300. Therefore, PKA regulates the transcriptional activity of NF-kappa B by modulating its interaction with CBP/p300.
Collapse
|
|
27 |
983 |
18
|
Sun SC, Ganchi PA, Ballard DW, Greene WC. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 1993; 259:1912-5. [PMID: 8096091 DOI: 10.1126/science.8096091] [Citation(s) in RCA: 927] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B) participates in many parts of the genetic program mediating T lymphocyte activation and growth. Nuclear expression of NF-kappa B occurs after its induced dissociation from its cytoplasmic inhibitor I kappa B alpha. Phorbol ester and tumor necrosis factor-alpha induction of nuclear NF-kappa B is associated with both the degradation of performed I kappa B alpha and the activation of I kappa B alpha gene expression. Transfection studies indicate that the I kappa B alpha gene is specifically induced by the 65-kilodalton transactivating subunit of NF-kappa B. Association of the newly synthesized I kappa B alpha with p65 restores intracellular inhibition of NF-kappa B DNA binding activity and prolongs the survival of this labile inhibitor. Together, these results show that NF-kappa B controls the expression of I kappa B alpha by means of an inducible autoregulatory pathway.
Collapse
|
|
32 |
927 |
19
|
Sha WC, Liou HC, Tuomanen EI, Baltimore D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 1995; 80:321-30. [PMID: 7834752 DOI: 10.1016/0092-8674(95)90415-8] [Citation(s) in RCA: 912] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NF-kappa B, a heterodimeric transcription factor composed of p50 and p65 subunits, can be activated in many cell types and is thought to regulate a wide variety of genes involved in immune function and development. Mice lacking the p50 subunit of NF-kappa B show no developmental abnormalities, but exhibit multifocal defects in immune responses involving B lymphocytes and nonspecific responses to infection. B cells do not proliferate in response to bacterial lipopolysaccharide and are defective in basal and specific antibody production. Mice lacking p50 are unable effectively to clear L. monocytogenes and are more susceptible to infection with S. pneumoniae, but are more resistant to infection with murine encephalomyocarditis virus. These data support the role of NF-kappa B as a vital transcription factor for both specific and nonspecific immune responses, but do not indicate a developmental role for the factor.
Collapse
|
|
30 |
912 |
20
|
Abstract
Rel/NF-kappaB transcription factors are key regulators of immune, inflammatory and acute phase responses and are also implicated in the control of cell proliferation and apoptosis. Remarkable progress has been made in understanding the signal transduction pathways that lead to the activation of Rel/NF-kappaB factors and the consequent induction of gene expression. Evidence linking deregulated Rel/NF-kappaB activity to oncogenesis in mammalian systems has emerged in recent years, consistent with the acute oncogenicity of the viral oncoprotein v-Rel in animal models. Chromosomal amplification, overexpression and rearrangement of genes coding for Rel/NF-kappaB factors have been noted in many human hematopoietic and solid tumors. Persistent nuclear NF-kappaB activity was also described in several human cancer cell types, as a result of constitutive activation of upstream signaling kinases or mutations inactivating inhibitory IkappaB subunits. Studies point to a correlation between the activation of cellular gene expression by Rel/NF-kappaB factors and their participation in the malignant process. Experiments implicating NF-kappaB in the control of the apoptotic response also support a role in oncogenesis and in the resistance of tumor cells to chemotherapy. This review focuses on the status of the rel, nfkb and ikb genes and their activity in human tumors and their association with the onset or progression of malignancies.
Collapse
|
Review |
26 |
868 |
21
|
De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJA, Velloso LA. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005; 146:4192-9. [PMID: 16002529 DOI: 10.1210/en.2004-1520] [Citation(s) in RCA: 848] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obesity has reached epidemic proportions in several regions of the world. General changes in lifestyle, including consumption of fat-rich food, are among the most important factors leading to an unprecedented increase in the prevalence of this disease. Weight gain results from an imbalance between caloric intake and energy expenditure. Both of these parameters are under the tight control of specialized neurons of the hypothalamus that respond to peripheral anorexigenic and adipostatic signals carried by leptin and insulin. Here we show, by macroarray analysis, that high-fat feeding [hyperlipidic diet (HL)] induces the expression of several proinflammatory cytokines and inflammatory responsive proteins in hypothalamus. This phenomenon is accompanied by increased activation of c-Jun N-terminal kinase and nuclear factor-kappaB. In addition, HL feeding leads to impaired functional and molecular activation of the insulin-signaling pathway, which is paralleled by increased serine phosphorylation of the insulin receptor and insulin receptor substrate-2. Intracerebroventricular treatment of HL rats with a specific inhibitor of c-Jun N-terminal kinase (SP600125) restores insulin signaling and leads to a reduced caloric intake and weight loss. We conclude that HL feeding induces a local proinflammatory status in the hypothalamus, which results in impaired anorexigenic insulin signaling.
Collapse
|
|
20 |
848 |
22
|
Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001; 194:1861-74. [PMID: 11748286 PMCID: PMC2193582 DOI: 10.1084/jem.194.12.1861] [Citation(s) in RCA: 843] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression profiling has revealed that diffuse large B cell lymphoma (DLBCL) consists of at least two distinct diseases. Patients with one DLBCL subtype, termed activated B cell-like (ABC) DLBCL, have a distinctly inferior prognosis. An untapped potential of gene expression profiling is its ability to identify pathogenic signaling pathways in cancer that are amenable to therapeutic attack. The gene expression profiles of ABC DLBCLs were notable for the high expression of target genes of the nuclear factor (NF)-kappaB transcription factors, raising the possibility that constitutive activity of the NF-kappaB pathway may contribute to the poor prognosis of these patients. Two cell line models of ABC DLBCL had high nuclear NF-kappaB DNA binding activity, constitutive IkappaB kinase (IKK) activity, and rapid IkappaB(alpha) degradation that was not seen in cell lines representing the other DLBCL subtype, germinal center B-like (GCB) DLBCL. Retroviral transduction of a super-repressor form of IkappaBalpha or dominant negative forms of IKKbeta was toxic to ABC DLBCL cells but not GCB DLBCL cells. DNA content analysis showed that NF-kappaB inhibition caused both cell death and G1-phase growth arrest. These findings establish the NF-kappaB pathway as a new molecular target for drug development in the most clinically intractable subtype of DLBCL and demonstrate that the two DLBCL subtypes defined by gene expression profiling utilize distinct pathogenetic mechanisms.
Collapse
MESH Headings
- Cell Survival/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- NF-kappa B/genetics
- Prognosis
- Signal Transduction
- Tumor Cells, Cultured
Collapse
|
research-article |
24 |
843 |
23
|
|
Review |
27 |
837 |
24
|
Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WF, Boddeke HW, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 2013; 24:331-46. [PMID: 23993863 PMCID: PMC3817560 DOI: 10.1016/j.ccr.2013.08.001] [Citation(s) in RCA: 831] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/24/2013] [Accepted: 08/01/2013] [Indexed: 01/08/2023]
Abstract
Despite extensive study, few therapeutic targets have been identified for glioblastoma (GBM). Here we show that patient-derived glioma sphere cultures (GSCs) that resemble either the proneural (PN) or mesenchymal (MES) transcriptomal subtypes differ significantly in their biological characteristics. Moreover, we found that a subset of the PN GSCs undergoes differentiation to a MES state in a TNF-α/NF-κB-dependent manner with an associated enrichment of CD44 subpopulations and radioresistant phenotypes. We present data to suggest that the tumor microenvironment cell types such as macrophages/microglia may play an integral role in this process. We further show that the MES signature, CD44 expression, and NF-κB activation correlate with poor radiation response and shorter survival in patients with GBM.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
831 |
25
|
Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J, Bergsagel PL. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12:131-44. [PMID: 17692805 PMCID: PMC2083698 DOI: 10.1016/j.ccr.2007.07.003] [Citation(s) in RCA: 818] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/09/2007] [Accepted: 07/13/2007] [Indexed: 11/24/2022]
Abstract
Activation of NF-kappaB has been noted in many tumor types, however only rarely has this been linked to an underlying genetic mutation. An integrated analysis of high-density oligonucleotide array CGH and gene expression profiling data from 155 multiple myeloma samples identified a promiscuous array of abnormalities contributing to the dysregulation of NF-kappaB in approximately 20% of patients. We report mutations in ten genes causing the inactivation of TRAF2, TRAF3, CYLD, cIAP1/cIAP2 and activation of NFKB1, NFKB2, CD40, LTBR, TACI, and NIK that result primarily in constitutive activation of the noncanonical NF-kappaB pathway, with the single most common abnormality being inactivation of TRAF3. These results highlight the critical importance of the NF-kappaB pathway in the pathogenesis of multiple myeloma.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
818 |