1
|
Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332:1317-22. [PMID: 21659604 PMCID: PMC3177140 DOI: 10.1126/science.1199498] [Citation(s) in RCA: 856] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
856 |
2
|
Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, Huser N, Proffitt C, Bliesath J, Haddach M, Schwaebe MK, Ryckman DM, Rice WG, Schmitt C, Lowe SW, Johnstone RW, Pearson RB, McArthur GA, Hannan RD. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 2012; 22:51-65. [PMID: 22789538 PMCID: PMC3749732 DOI: 10.1016/j.ccr.2012.05.019] [Citation(s) in RCA: 448] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 12/18/2022]
Abstract
Increased transcription of ribosomal RNA genes (rDNA) by RNA Polymerase I is a common feature of human cancer, but whether it is required for the malignant phenotype remains unclear. We show that rDNA transcription can be therapeutically targeted with the small molecule CX-5461 to selectively kill B-lymphoma cells in vivo while maintaining a viable wild-type B cell population. The therapeutic effect is a consequence of nucleolar disruption and activation of p53-dependent apoptotic signaling. Human leukemia and lymphoma cell lines also show high sensitivity to inhibition of rDNA transcription that is dependent on p53 mutational status. These results identify selective inhibition of rDNA transcription as a therapeutic strategy for the cancer specific activation of p53 and treatment of hematologic malignancies.
Collapse
|
research-article |
13 |
448 |
3
|
Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O'Neil NJ, Santos ND, Silvester J, Wei V, Garcia J, Kabeer F, Lai D, Soriano P, Banáth J, Chiu DS, Yap D, Le DD, Ye FB, Zhang A, Thu K, Soong J, Lin SC, Tsai AHC, Osako T, Algara T, Saunders DN, Wong J, Xian J, Bally MB, Brenton JD, Brown GW, Shah SP, Cescon D, Mak TW, Caldas C, Stirling PC, Hieter P, Balasubramanian S, Aparicio S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun 2017; 8:14432. [PMID: 28211448 PMCID: PMC5321743 DOI: 10.1038/ncomms14432] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022] Open
Abstract
G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).
Collapse
|
research-article |
8 |
390 |
4
|
Roma G, Di Braccio M, Grossi G, Mattioli F, Ghia M. 1,8-Naphthyridines IV. 9-substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1, 8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur J Med Chem 2000; 35:1021-35. [PMID: 11137230 DOI: 10.1016/s0223-5234(00)01175-2] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The title compounds (8) were synthesized through the cyclocondensation of the corresponding N-substituted 4-amino-2-chloro-1,8-naphthyridine-3-carboxamides (4) with the proper hydrazides, in order to evaluate their anti-inflammatory and anti-aggressive properties. Several compounds 8 exhibited high anti-inflammatory activity (carrageenin-induced paw edema assay in the rat) along with appreciable anti-aggressive properties (isolation-induced aggressiveness test in mice). With respect to anti-inflammatory activity, the most active compounds (8n and 8c) produced a 61% edema inhibition at the 25 mg/kg dose, and 50 or 35% inhibition, respectively, at the 12.5 mg/kg dose. The structure-activity relationships are discussed.
Collapse
|
|
25 |
348 |
5
|
Zhou J, Tan SH, Nicolas V, Bauvy C, Yang ND, Zhang J, Xue Y, Codogno P, Shen HM. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res 2013; 23:508-23. [PMID: 23337583 PMCID: PMC3616426 DOI: 10.1038/cr.2013.11] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 12/11/2022] Open
Abstract
Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.
Collapse
|
research-article |
12 |
330 |
6
|
Blaser J, Stone BB, Groner MC, Zinner SH. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31:1054-60. [PMID: 3116917 PMCID: PMC174871 DOI: 10.1128/aac.31.7.1054] [Citation(s) in RCA: 327] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An in vitro pharmacokinetic model was used to study the comparative antibacterial activities of multiple-dose regimens of enoxacin and netilmicin. Strains of Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus were exposed to changing drug concentrations, mimicking human two-compartment pharmacokinetics. Oral administration was simulated for the quinolone, and intravenous administration was simulated for the aminoglycoside. Similar ratios of peak concentration to MIC resulted in similar changes in bacterial concentrations over time with both compounds. Following the initial dose, a rapid bactericidal effect occurred, with a greater than 99% reduction of the bacterial counts within 4 h at peak concentrations more than three times the MIC. However, bacterial regrowth occurred within 24 h unless the peak concentration/MIC ratio exceeded 8:1 (P less than 0.01). For the regrowing bacteria, MICs were four- to eightfold higher, and little or no bactericidal effect occurred following the second and subsequent doses. These data demonstrate the equally potent bactericidal activity of orally administered enoxacin and intravenously administered netilmicin. Selection of resistant subpopulations was similar with each drug. The peak concentration/MIC ratio may be an important parameter in the clinical use of quinolone and aminoglycoside antibiotics.
Collapse
|
research-article |
38 |
327 |
7
|
Abstract
Approximately 40% of the world population live in areas with the risk of malaria. Each year, 300-500 million people suffer from acute malaria, and 0.5-2.5 million die from the disease. Although malaria has been widely eradicated in many parts of the world, the global number of cases continues to rise. The most important reason for this alarming situation is the rapid spread of malaria parasites that are resistant to antimalarial drugs, especially chloroquine, which is by far the most frequently used. The development of new antimalarial drugs has been neglected since the 1970s owing to the end colonialism, changes in the areas of military engagement, and the restricted market potential. Only in recent years, in part supported by public funding programs, has interest in the development of antimalarial drugs been renewed. New data available from the recently sequenced genome of the malaria parasite Plasmodium falciparum and the application of methods of modern drug design promise to bring significant development in the fight against this disease.
Collapse
|
Review |
21 |
310 |
8
|
Hooper DC, Wolfson JS. The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans. Antimicrob Agents Chemother 1985; 28:716-21. [PMID: 2936302 PMCID: PMC176369 DOI: 10.1128/aac.28.5.716] [Citation(s) in RCA: 286] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
research-article |
40 |
286 |
9
|
Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, Guare JP, Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen IW, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, Summa V, Holloway MK, Young SD. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc Natl Acad Sci U S A 2004; 101:11233-8. [PMID: 15277684 PMCID: PMC509174 DOI: 10.1073/pnas.0402357101] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increasing incidence of resistance to current HIV-1 therapy underscores the need to develop antiretroviral agents with new mechanisms of action. Integrase, one of three viral enzymes essential for HIV-1 replication, presents an important yet unexploited opportunity for drug development. We describe here the identification and characterization of L-870,810, a small-molecule inhibitor of HIV-1 integrase with potent antiviral activity in cell culture and good pharmacokinetic properties. L-870,810 is an inhibitor with an 8-hydroxy-(1,6)-naphthyridine-7-carboxamide pharmacophore. The compound inhibits HIV-1 integrase-mediated strand transfer, and its antiviral activity in vitro is a direct consequence of this ascribed effect on integration. L-870,810 is mechanistically identical to previously described inhibitors from the diketo acid series; however, viruses selected for resistance to L-870,810 contain mutations (integrase residues 72, 121, and 125) that uniquely confer resistance to the naphthyridine. Conversely, mutations associated with resistance to the diketo acid do not engender naphthyridine resistance. Importantly, the mutations associated with resistance to each of these inhibitors map to distinct regions within the integrase active site. Therefore, we propose a model of the two inhibitors that is consistent with this observation and suggests specific interactions with discrete binding sites for each ligand. These studies provide a structural basis and rationale for developing integrase inhibitors with the potential for unique and nonoverlapping resistance profiles.
Collapse
|
Journal Article |
21 |
258 |
10
|
Hazuda DJ, Young SD, Guare JP, Anthony NJ, Gomez RP, Wai JS, Vacca JP, Handt L, Motzel SL, Klein HJ, Dornadula G, Danovich RM, Witmer MV, Wilson KAA, Tussey L, Schleif WA, Gabryelski LS, Jin L, Miller MD, Casimiro DR, Emini EA, Shiver JW. Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 2004; 305:528-32. [PMID: 15247437 DOI: 10.1126/science.1098632] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe the efficacy of L-870812, an inhibitor of HIV-1 and SIV integrase, in rhesus macaques infected with the simian-human immunodeficiency virus (SHIV) 89.6P. When initiated before CD4 cell depletion, L-870812 therapy mediated a sustained suppression of viremia, preserving CD4 levels and permitting the induction of virus-specific cellular immunity. L-870812 was also active in chronic infection; however, the magnitude and durability of the effect varied in conjunction with the pretreatment immune response and viral load. These studies demonstrate integrase inhibitor activity in vivo and suggest that cellular immunity facilitates chemotherapeutic efficacy in retroviral infections.
Collapse
|
|
21 |
224 |
11
|
Zhuang L, Wai JS, Embrey MW, Fisher TE, Egbertson MS, Payne LS, Guare JP, Vacca JP, Hazuda DJ, Felock PJ, Wolfe AL, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryelski LJ, Leonard YM, Lynch JJ, Michelson SR, Young SD. Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. J Med Chem 2003; 46:453-6. [PMID: 12570367 DOI: 10.1021/jm025553u] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Naphthyridine 7 inhibits the strand transfer of the integration process catalyzed by integrase with an IC50 of 10 nM and inhibits 95% of the spread of HIV-1 infection in cell culture at 0.39 microM. It does not exhibit cytotoxicity in cell culture at < or =12.5 microM and shows a good pharmacokinetic profile when dosed orally to rats. The antiviral activity of 7 and its effect on integration were confirmed using viruses with specific integrase mutations.
Collapse
|
|
22 |
210 |
12
|
Bauernfeind A. Comparison of the antibacterial activities of the quinolones Bay 12-8039, gatifloxacin (AM 1155), trovafloxacin, clinafloxacin, levofloxacin and ciprofloxacin. J Antimicrob Chemother 1997; 40:639-51. [PMID: 9421311 DOI: 10.1093/jac/40.5.639] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The in-vitro activities of the quinolones Bay 12-8039, gatifloxacin (AM 1155), trovafloxacin, clinafloxacin, levofloxacin and ciprofloxacin were compared. Gram-positive cocci were most susceptible to Bay 12-8039, clinafloxacin and trovafloxacin; Enterobacteriaceae and fastidious organisms were most susceptible to clinafloxacin [corrected]; Pseudomonas spp. were most susceptible to clinafloxacin and ciprofloxacin; anaerobes, Helicobacter pylori and Campylobacter jejuni were most susceptible to gatifloxacin, clinafloxacin and trovafloxacin. Against gram-positive cocci, the only agents that were more active than ciprofloxacin were those carrying an azabicyclo (trovafloxacin, Bay 12-8039), 3-amino-pyrrolidinyl (clinafloxacin) or 3-methyl-piperazinyl (gatifloxacin) moiety at position C7.
Collapse
|
Comparative Study |
28 |
203 |
13
|
Ewing AG, Bigelow JC, Wightman RM. Direct in vivo monitoring of dopamine released from two striatal compartments in the rat. Science 1983; 221:169-71. [PMID: 6857277 DOI: 10.1126/science.6857277] [Citation(s) in RCA: 202] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microvoltammetric electrodes were used to monitor dopamine released in the caudate nucleus of the rat after electrical stimulation of the medial forebrain bundle. The time resolution of the technique is sufficient to determine in vivo concentration changes on a time scale of seconds. Direct evidence identifying the substance released as dopamine was obtained both voltammetrically and pharmacologically. Administration of alpha-methyl-p-tyrosine terminates the release of dopamine, although tissue stores of dopamine are still present. Thus there appears to be a compartment for dopamine storage that is not available for immediate release. This compartment appears to be mobilized by amfonelic acid, since administration of this agent after alpha-methyl-p-tyrosine returns the concentration of dopamine released by electrical stimulation to 75 percent of the original amount.
Collapse
|
|
42 |
202 |
14
|
Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 2010; 53:7146-55. [PMID: 20860370 PMCID: PMC3893826 DOI: 10.1021/jm101144f] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mTOR protein is a master regulator of cell growth and proliferation, and inhibitors of its kinase activity have the potential to become new class of anticancer drugs. Starting from quinoline 1, which was identified in a biochemical mTOR assay, we developed a tricyclic benzonaphthyridinone inhibitor 37 (Torin1), which inhibited phosphorylation of mTORC1 and mTORC2 substrates in cells at concentrations of 2 and 10 nM, respectively. Moreover, Torin1 exhibits 1000-fold selectivity for mTOR over PI3K (EC(50) = 1800 nM) and exhibits 100-fold binding selectivity relative to 450 other protein kinases. Torin1 was efficacious at a dose of 20 mg/kg in a U87MG xenograft model and demonstrated good pharmacodynamic inhibition of downstream effectors of mTOR in tumor and peripheral tissues. These results demonstrate that Torin1 is a useful probe of mTOR-dependent phenomena and that benzonaphthridinones represent a promising scaffold for the further development of mTOR-specific inhibitors with the potential for clinical utility.
Collapse
|
research-article |
15 |
197 |
15
|
Domagala JM, Hanna LD, Heifetz CL, Hutt MP, Mich TF, Sanchez JP, Solomon M. New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. J Med Chem 1986; 29:394-404. [PMID: 3005575 DOI: 10.1021/jm00153a015] [Citation(s) in RCA: 192] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of 60 newly synthesized and known quinolone antibacterials, including quinoline- and 1,8-naphthyridine-3-carboxylic acids, pyrido[2,3-d]pyrimidine-6-carboxylic acids, and some monocyclic 4-pyridone-3-carboxylic acids, were tested and compared in a newly established, easy to perform, DNA gyrase assay. The results were correlated with minimum inhibitory concentrations (MICs) against a variety of organisms. Among the known quinolones were 14 clinically significant drugs (oxolinic acid, norfloxacin, ciprofloxacin, enoxacin, etc.) which were used as standards and compared side-by-side. The study focused on the changes in DNA gyrase inhibition brought about by certain features of the molecules, namely, the C6-fluorine or the nature of the C7 substituent. The intrinsic gyrase inhibition of the fused parent rings, quinoline vs. naphthyridine vs. pyrido[2,3-d]pyrimidine, was also explored. In all cases, loss of enzyme inhibition produced poor MICs, but some compounds with good DNA gyrase inhibition did not correspondingly inhibit bacterial growth. Possible explanations for this phenomena and the benefits of a DNA gyrase-MIC strategy for developing future structure-activity relationships are discussed.
Collapse
|
|
39 |
192 |
16
|
Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta Mol Basis Dis 2014; 1842:802-16. [PMID: 24389329 DOI: 10.1016/j.bbadis.2013.12.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
The contribution of the nucleolus to cancer is well established with respect to its traditional role in facilitating ribosome biogenesis and proliferative capacity. More contemporary studies however, infer that nucleoli contribute a much broader role in malignant transformation. Specifically, extra-ribosomal functions of the nucleolus position it as a central integrator of cellular proliferation and stress signaling, and are emerging as important mechanisms for modulating how oncogenes and tumor suppressors operate in normal and malignant cells. The dependence of certain tumor cells to co-opt nucleolar processes to maintain their cancer phenotypes has now clearly been demonstrated by the application of small molecule inhibitors of RNA Polymerase I to block ribosomal DNA transcription and disrupt nucleolar function (Bywater et al., 2012 [1]). These drugs, which selectively kill tumor cells in vivo while sparing normal cells, have now progressed to clinical trials. It is likely that we have only just begun to scratch the surface of the potential of the nucleolus as a new target for cancer therapy, with "suppression of nucleolar stress" representing an emerging "hallmark" of cancer. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
|
Review |
11 |
180 |
17
|
Liu Q, Wang J, Kang SA, Thoreen CC, Hur W, Ahmed T, Sabatini DM, Gray NS. Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J Med Chem 2011; 54:1473-80. [PMID: 21322566 PMCID: PMC3090687 DOI: 10.1021/jm101520v] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mTOR mediated PI3K/AKT/mTOR signal transduction pathway has been demonstrated to play a key role in a broad spectrum of cancers. Starting from the mTOR selective inhibitor 1 (Torin1), a focused medicinal chemistry effort led to the discovery of an improved mTOR inhibitor 3 (Torin2), which possesses an EC(50) of 0.25 nM for inhibiting cellular mTOR activity. Compound 3 exhibited 800-fold selectivity over PI3K (EC(50): 200 nM) and over 100-fold binding selectivity relative to 440 other protein kinases. Compound 3 has significantly improved bioavailability (54%), metabolic stability, and plasma exposure relative to compound 1.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
168 |
18
|
Bachar-Wikstrom E, Wikstrom JD, Ariav Y, Tirosh B, Kaiser N, Cerasi E, Leibowitz G. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013; 62:1227-37. [PMID: 23274896 PMCID: PMC3609555 DOI: 10.2337/db12-1474] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulation of misfolded proinsulin in the β-cell leads to dysfunction induced by endoplasmic reticulum (ER) stress, with diabetes as a consequence. Autophagy helps cellular adaptation to stress via clearance of misfolded proteins and damaged organelles. We studied the effects of proinsulin misfolding on autophagy and the impact of stimulating autophagy on diabetes progression in Akita mice, which carry a mutation in proinsulin, leading to its severe misfolding. Treatment of female diabetic Akita mice with rapamycin improved diabetes, increased pancreatic insulin content, and prevented β-cell apoptosis. In vitro, autophagic flux was increased in Akita β-cells. Treatment with rapamycin further stimulated autophagy, evidenced by increased autophagosome formation and enhancement of autophagosome-lysosome fusion. This was associated with attenuation of cellular stress and apoptosis. The mammalian target of rapamycin (mTOR) kinase inhibitor Torin1 mimicked the rapamycin effects on autophagy and stress, indicating that the beneficial effects of rapamycin are indeed mediated via inhibition of mTOR. Finally, inhibition of autophagy exacerbated stress and abolished the anti-ER stress effects of rapamycin. In conclusion, rapamycin reduces ER stress induced by accumulation of misfolded proinsulin, thereby improving diabetes and preventing β-cell apoptosis. The beneficial effects of rapamycin in this context strictly depend on autophagy; therefore, stimulating autophagy may become a therapeutic approach for diabetes.
Collapse
|
research-article |
12 |
165 |
19
|
Gellibert F, Woolven J, Fouchet MH, Mathews N, Goodland H, Lovegrove V, Laroze A, Nguyen VL, Sautet S, Wang R, Janson C, Smith W, Krysa G, Boullay V, De Gouville AC, Huet S, Hartley D. Identification of 1,5-Naphthyridine Derivatives as a Novel Series of Potent and Selective TGF-β Type I Receptor Inhibitors. J Med Chem 2004; 47:4494-506. [PMID: 15317461 DOI: 10.1021/jm0400247] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optimization of the screening hit 1 led to the identification of novel 1,5-naphthyridine aminothiazole and pyrazole derivatives, which are potent and selective inhibitors of the transforming growth factor-beta type I receptor, ALK5. Compounds 15 and 19, which inhibited ALK5 autophosphorylation with IC50 = 6 and 4 nM, respectively, showed potent activities in both binding and cellular assays and exhibited selectivity over p38 mitogen-activated protein kinase. The X-ray crystal structure of 19 in complex with human ALK5 is described, confirming the binding mode proposed from docking studies.
Collapse
|
|
21 |
160 |
20
|
Liu Q, Xu C, Kirubakaran S, Zhang X, Hur W, Liu Y, Kwiatkowski NP, Wang J, Westover KD, Gao P, Ercan D, Niepel M, Thoreen CC, Kang SA, Patricelli MP, Wang Y, Tupper T, Altabef A, Kawamura H, Held KD, Chou DM, Elledge SJ, Janne PA, Wong KK, Sabatini DM, Gray NS. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res 2013; 73:2574-86. [PMID: 23436801 PMCID: PMC3760004 DOI: 10.1158/0008-5472.can-12-1702] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mTOR is a highly conserved serine/threonine protein kinase that serves as a central regulator of cell growth, survival, and autophagy. Deregulation of the PI3K/Akt/mTOR signaling pathway occurs commonly in cancer and numerous inhibitors targeting the ATP-binding site of these kinases are currently undergoing clinical evaluation. Here, we report the characterization of Torin2, a second-generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. Torin2 inhibited mTORC1-dependent T389 phosphorylation on S6K (RPS6KB1) with an EC(50) of 250 pmol/L with approximately 800-fold selectivity for cellular mTOR versus phosphoinositide 3-kinase (PI3K). Torin2 also exhibited potent biochemical and cellular activity against phosphatidylinositol-3 kinase-like kinase (PIKK) family kinases including ATM (EC(50), 28 nmol/L), ATR (EC(50), 35 nmol/L), and DNA-PK (EC(50), 118 nmol/L; PRKDC), the inhibition of which sensitized cells to Irradiation. Similar to the earlier generation compound Torin1 and in contrast to other reported mTOR inhibitors, Torin2 inhibited mTOR kinase and mTORC1 signaling activities in a sustained manner suggestive of a slow dissociation from the kinase. Cancer cell treatment with Torin2 for 24 hours resulted in a prolonged block in negative feedback and consequent T308 phosphorylation on Akt. These effects were associated with strong growth inhibition in vitro. Single-agent treatment with Torin2 in vivo did not yield significant efficacy against KRAS-driven lung tumors, but the combination of Torin2 with mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor AZD6244 yielded a significant growth inhibition. Taken together, our findings establish Torin2 as a strong candidate for clinical evaluation in a broad number of oncologic settings where mTOR signaling has a pathogenic role.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
154 |
21
|
Montané MH, Menand B. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4361-74. [PMID: 23963679 PMCID: PMC3808319 DOI: 10.1093/jxb/ert242] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The TOR (target of rapamycin) protein, a large phosphatidylinositol 3-kinase-like protein kinase (PIKK) that is conserved in eukaryotes and is a central regulator of growth and metabolism. The analysis of function of TOR in plant growth and development has been limited by the fact that plants are very poorly sensitive to rapamycin. As the kinase domain of TOR is highly conserved, this study analysed the dose-dependent effect of three sets of first- and second-generation ATP-competitive inhibitors (called asTORis for active-site TOR inhibitors) recently developed for the human TOR kinase on Arabidopsis thaliana growth. All six asTORis inhibited plant root growth in a dose-dependent manner, with 50% growth inhibitory doses (GI50) of <10 μM and <1 μM for the first- and second-generation inhibitors, respectively, similarly to the values in mammalian cells. A genetic approach further demonstrated that only asTORis inhibited root growth in an AtTOR gene-dosage-dependent manner. AsTORis decreased the length of: (i) the meristematic zone (MZ); (ii) the division zone in the MZ; (iii) epidermal cells in the elongation zone; and (iv) root hair cells. Whereas meristematic cells committed to early differentiation, the pattern of cell differentiation was not affected per se. AsTORis-induced root hair growth phenotype was shown to be specific by using other growth inhibitors blocking the cell cycle or translation. AsTORis dose-dependent inhibition of growth and root hairs was also observed in diverse groups of flowering plants, indicating that asTORis can be used to study the TOR pathway in other angiosperms, including crop plants.
Collapse
|
research-article |
12 |
139 |
22
|
Filippatos G, Anker SD, Agarwal R, Ruilope LM, Rossing P, Bakris GL, Tasto C, Joseph A, Kolkhof P, Lage A, Pitt B. Finerenone Reduces Risk of Incident Heart Failure in Patients With Chronic Kidney Disease and Type 2 Diabetes: Analyses From the FIGARO-DKD Trial. Circulation 2022; 145:437-447. [PMID: 34775784 PMCID: PMC8812430 DOI: 10.1161/circulationaha.121.057983] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic kidney disease and type 2 diabetes are independently associated with heart failure (HF), a leading cause of morbidity and mortality. In the FIDELIO-DKD (Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease) and FIGARO-DKD (Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease) trials, finerenone (a selective, nonsteroidal mineralocorticoid receptor antagonist) improved cardiovascular outcomes in patients with albuminuric chronic kidney disease and type 2 diabetes. These prespecified analyses from FIGARO-DKD assessed the effect of finerenone on clinically important HF outcomes. METHODS Patients with type 2 diabetes and albuminuric chronic kidney disease (urine albumin-to-creatinine ratio ≥30 to <300 mg/g and estimated glomerular filtration rate ≥25 to ≤90 mL per min per 1.73 m2, or urine albumin-to-creatinine ratio ≥300 to ≤5000 mg/g and estimated glomerular filtration rate ≥60 mL per min per 1.73 m2), without symptomatic HF with reduced ejection fraction, were randomized to finerenone or placebo. Time-to-first-event outcomes included new-onset HF (first hospitalization for HF [HHF] in patients without a history of HF at baseline); cardiovascular death or first HHF; HF-related death or first HHF; first HHF; cardiovascular death or total (first or recurrent) HHF; HF-related death or total HHF; and total HHF. Outcomes were evaluated in the overall population and in prespecified subgroups categorized by baseline HF history (as reported by the investigators). RESULTS Overall, 7352 patients were included in these analyses; 571 (7.8%) had a history of HF at baseline. New-onset HF was significantly reduced with finerenone versus placebo (1.9% versus 2.8%; hazard ratio [HR], 0.68 [95% CI, 0.50-0.93]; P=0.0162). In the overall population, the incidences of all HF outcomes analyzed were significantly lower with finerenone than placebo, including an 18% lower risk of cardiovascular death or first HHF (HR, 0.82 [95% CI, 0.70-0.95]; P=0.011), a 29% lower risk of first HHF (HR, 0.71 [95% CI, 0.56-0.90]; P=0.0043) and a 30% lower rate of total HHF (rate ratio, 0.70 [95% CI, 0.52-0.94]). The effects of finerenone on improving HF outcomes were not modified by a history of HF. The incidence of treatment-emergent adverse events was balanced between treatment groups. CONCLUSIONS The results from these FIGARO-DKD analyses demonstrate that finerenone reduces new-onset HF and improves other HF outcomes in patients with chronic kidney disease and type 2 diabetes, irrespective of a history of HF. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02545049.
Collapse
|
Clinical Trial, Phase III |
3 |
138 |
23
|
Su MA, Huang YT, Chen IT, Lee DY, Hsieh YC, Li CY, Ng TH, Liang SY, Lin SY, Huang SW, Chiang YA, Yu HT, Khoo KH, Chang GD, Lo CF, Wang HC. An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog 2014; 10:e1004196. [PMID: 24945378 PMCID: PMC4055789 DOI: 10.1371/journal.ppat.1004196] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 05/05/2014] [Indexed: 01/20/2023] Open
Abstract
In this study, we used a systems biology approach to investigate changes in the proteome and metabolome of shrimp hemocytes infected by the invertebrate virus WSSV (white spot syndrome virus) at the viral genome replication stage (12 hpi) and the late stage (24 hpi). At 12 hpi, but not at 24 hpi, there was significant up-regulation of the markers of several metabolic pathways associated with the vertebrate Warburg effect (or aerobic glycolysis), including glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, glutaminolysis and amino acid biosynthesis. We show that the PI3K-Akt-mTOR pathway was of central importance in triggering this WSSV-induced Warburg effect. Although dsRNA silencing of the mTORC1 activator Rheb had only a relatively minor impact on WSSV replication, in vivo chemical inhibition of Akt, mTORC1 and mTORC2 suppressed the WSSV-induced Warburg effect and reduced both WSSV gene expression and viral genome replication. When the Warburg effect was suppressed by pretreatment with the mTOR inhibitor Torin 1, even the subsequent up-regulation of the TCA cycle was insufficient to satisfy the virus's requirements for energy and macromolecular precursors. The WSSV-induced Warburg effect therefore appears to be essential for successful viral replication. The Warburg effect (or aerobic glycolysis) is a metabolic shift that was first found in cancer cells, but has also recently been discovered in vertebrate cells infected by viruses. The Warburg effect facilitates the production of more energy and building blocks to meet the enormous biosynthetic requirements of cancerous and virus-infected cells. To date, all of our knowledge of the Warburg effect comes from vertebrate cell systems and our previous paper was the first to suggest that the Warburg effect may also occur in invertebrates. Here, we use a state-of-the-art systems biology approach to show the global metabolomic and proteomic changes that are triggered in shrimp hemocytes by a shrimp virus, white spot syndrome virus (WSSV). We characterize several critical metabolic properties of the invertebrate Warburg effect and show that they are similar to the vertebrate Warburg effect. WSSV triggers aerobic glycolysis via the PI3K-Akt-mTOR pathway, and during the WSSV genome replication stages, we show that the Warburg effect is essential for the virus, because even when the TCA cycle is boosted in mTOR-inactivated shrimp, this fails to provide enough energy and materials for successful viral replication. Our study provides new insights into the rerouting of the host metabolome that is triggered by an invertebrate virus.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
135 |
24
|
Takahata M, Mitsuyama J, Yamashiro Y, Yonezawa M, Araki H, Todo Y, Minami S, Watanabe Y, Narita H. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob Agents Chemother 1999; 43:1077-84. [PMID: 10223917 PMCID: PMC89114 DOI: 10.1128/aac.43.5.1077] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro and in vivo activities of T-3811ME, a novel des-F(6)-quinolone, were evaluated in comparison with those of some fluoroquinolones, including a newly developed one, trovafloxacin. T-3811, a free base of T-3811ME, showed a wide range of antimicrobial spectra, including activities against Chlamydia trachomatis, Mycoplasma pneumoniae, and Mycobacterium tuberculosis. In particular, T-3811 exhibited potent activity against various gram-positive cocci, with MICs at which 90% of the isolates are inhibited (MIC90s) of 0.025 to 6.25 microgram/ml. T-3811 was the most active agent against methicillin-resistant Staphylococcus aureus and streptococci, including penicillin-resistant Streptococcus pneumoniae (PRSP). T-3811 also showed potent activity against quinolone-resistant gram-positive cocci with GyrA and ParC (GrlA) mutations. The activity of T-3811 against members of the family Enterobacteriaceae and nonfermentative gram-negative rods was comparable to that of trovafloxacin. In common with other fluoroquinolones, T-3811 was highly active against Haemophilus influenzae, Moraxella catarrhalis, and Legionella sp., with MIC90s of 0.0125 to 0.1 microgram/ml. T-3811 showed a potent activity against anaerobic bacteria, such as Bacteroides fragilis and Clostridium difficile. T-3811 was the most active agent against C. trachomatis (MIC, 0.008 microgram/ml) and M. pneumoniae (MIC90, 0.0313 microgram/ml). The activity of T-3811 against M. tuberculosis (MIC90, 0.0625 microgram/ml) was potent and superior to that of trovafloxacin. In experimental systemic infection with a GrlA mutant of S. aureus and experimental pneumonia with PRSP in mice, T-3811ME showed excellent therapeutic efficacy in oral and subcutaneous administrations.
Collapse
|
research-article |
26 |
122 |
25
|
Wirtshafter D, Asin KE, Pitzer MR. Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula. Brain Res 1994; 633:21-6. [PMID: 8137158 DOI: 10.1016/0006-8993(94)91517-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In rats treated systemically with either amphetamine, amfonelic acid or apomorphine, large numbers of cells displaying Fos-like immunoreactivity (FLI) could be seen in the lateral zone of the lateral habenula. The induction of FLI by amphetamine could be blocked either by pretreatment with haloperidol or by 6-hydroxydopamine lesions of ascending dopamine fibers at the level of the lateral hypothalamus. In contrast, a variety of stressors selectively induced FLI in the most medial portion of the lateral habenula. These findings support the concept of a functional differentiation of the medial and lateral regions of the lateral habenula and provide further evidence for involvement of the habenula in the circuitry of the basal ganglia.
Collapse
|
|
31 |
120 |