1
|
Abstract
Pathological angiogenesis is a hallmark of cancer and various ischaemic and inflammatory diseases. Concentrated efforts in this area of research are leading to the discovery of a growing number of pro- and anti-angiogenic molecules, some of which are already in clinical trials. The complex interactions among these molecules and how they affect vascular structure and function in different environments are now beginning to be elucidated. This integrated understanding is leading to the development of a number of exciting and bold approaches to treat cancer and other diseases. But owing to several unanswered questions, caution is needed.
Collapse
|
Review |
25 |
6465 |
2
|
Abstract
Cells undergo a variety of biological responses when placed in hypoxic conditions, including activation of signalling pathways that regulate proliferation, angiogenesis and death. Cancer cells have adapted these pathways, allowing tumours to survive and even grow under hypoxic conditions, and tumour hypoxia is associated with poor prognosis and resistance to radiation therapy. Many elements of the hypoxia-response pathway are therefore good candidates for therapeutic targeting.
Collapse
|
Review |
23 |
3949 |
3
|
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399:271-5. [PMID: 10353251 DOI: 10.1038/20459] [Citation(s) in RCA: 3823] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) has a key role in cellular responses to hypoxia, including the regulation of genes involved in energy metabolism, angiogenesis and apoptosis. The alpha subunits of HIF are rapidly degraded by the proteasome under normal conditions, but are stabilized by hypoxia. Cobaltous ions or iron chelators mimic hypoxia, indicating that the stimuli may interact through effects on a ferroprotein oxygen sensor. Here we demonstrate a critical role for the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL in HIF-1 regulation. In VHL-defective cells, HIF alpha-subunits are constitutively stabilized and HIF-1 is activated. Re-expression of pVHL restored oxygen-dependent instability. pVHL and HIF alpha-subunits co-immunoprecipitate, and pVHL is present in the hypoxic HIF-1 DNA-binding complex. In cells exposed to iron chelation or cobaltous ions, HIF-1 is dissociated from pVHL. These findings indicate that the interaction between HIF-1 and pVHL is iron dependent, and that it is necessary for the oxygen-dependent degradation of HIF alpha-subunits. Thus, constitutive HIF-1 activation may underlie the angiogenic phenotype of VHL-associated tumours. The pVHL/HIF-1 interaction provides a new focus for understanding cellular oxygen sensing.
Collapse
|
|
26 |
3823 |
4
|
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49:1603-16. [PMID: 20840865 PMCID: PMC2990475 DOI: 10.1016/j.freeradbiomed.2010.09.006] [Citation(s) in RCA: 3648] [Impact Index Per Article: 243.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 02/06/2023]
Abstract
Extensive research during the past 2 decades has revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer, diabetes, and cardiovascular, neurological, and pulmonary diseases. Oxidative stress can activate a variety of transcription factors including NF-κB, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. Activation of these transcription factors can lead to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules. How oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion, angiogenesis, and stem cell survival is the focus of this review. Overall, observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
3648 |
5
|
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, de Sousa e Melo F, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21:1350-6. [PMID: 26457759 PMCID: PMC4636487 DOI: 10.1038/nm.3967] [Citation(s) in RCA: 3497] [Impact Index Per Article: 349.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
3497 |
6
|
Abstract
Angiogenesis--the process of new blood-vessel growth--has an essential role in development, reproduction and repair. However, pathological angiogenesis occurs not only in tumour formation, but also in a range of non-neoplastic diseases that could be classed together as 'angiogenesis-dependent diseases'. By viewing the process of angiogenesis as an 'organizing principle' in biology, intriguing insights into the molecular mechanisms of seemingly unrelated phenomena might be gained. This has important consequences for the clinical use of angiogenesis inhibitors and for drug discovery, not only for optimizing the treatment of cancer, but possibly also for developing therapeutic approaches for various diseases that are otherwise unrelated to each other.
Collapse
|
Review |
18 |
1656 |
7
|
Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, Xu W, Tan B, Goldschmidt N, Iqbal J, Vose J, Bast M, Fu K, Weisenburger DD, Greiner TC, Armitage JO, Kyle A, May L, Gascoyne RD, Connors JM, Troen G, Holte H, Kvaloy S, Dierickx D, Verhoef G, Delabie J, Smeland EB, Jares P, Martinez A, Lopez-Guillermo A, Montserrat E, Campo E, Braziel RM, Miller TP, Rimsza LM, Cook JR, Pohlman B, Sweetenham J, Tubbs RR, Fisher RI, Hartmann E, Rosenwald A, Ott G, Muller-Hermelink HK, Wrench D, Lister TA, Jaffe ES, Wilson WH, Chan WC, Staudt LM, Lymphoma/Leukemia Molecular Profiling Project. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359:2313-23. [PMID: 19038878 PMCID: PMC9103713 DOI: 10.1056/nejmoa0802885] [Citation(s) in RCA: 1381] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The addition of rituximab to combination chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), or R-CHOP, has significantly improved the survival of patients with diffuse large-B-cell lymphoma. Whether gene-expression signatures correlate with survival after treatment of diffuse large-B-cell lymphoma is unclear. METHODS We profiled gene expression in pretreatment biopsy specimens from 181 patients with diffuse large-B-cell lymphoma who received CHOP and 233 patients with this disease who received R-CHOP. A multivariate gene-expression-based survival-predictor model derived from a training group was tested in a validation group. RESULTS A multivariate model created from three gene-expression signatures--termed "germinal-center B-cell," "stromal-1," and "stromal-2"--predicted survival both in patients who received CHOP and patients who received R-CHOP. The prognostically favorable stromal-1 signature reflected extracellular-matrix deposition and histiocytic infiltration. By contrast, the prognostically unfavorable stromal-2 signature reflected tumor blood-vessel density. CONCLUSIONS Survival after treatment of diffuse large-B-cell lymphoma is influenced by differences in immune cells, fibrosis, and angiogenesis in the tumor microenvironment.
Collapse
MESH Headings
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal, Murine-Derived
- Antineoplastic Combined Chemotherapy Protocols
- Cyclophosphamide
- Disease Progression
- Doxorubicin
- Extracellular Matrix/genetics
- Gene Expression
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, MHC Class II
- Germinal Center
- Humans
- Immunologic Factors/administration & dosage
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Middle Aged
- Multivariate Analysis
- Neovascularization, Pathologic/genetics
- Prednisone
- Prognosis
- Rituximab
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Vincristine
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1381 |
8
|
St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science 2000; 289:1197-202. [PMID: 10947988 DOI: 10.1126/science.289.5482.1197] [Citation(s) in RCA: 1373] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.
Collapse
MESH Headings
- Biomarkers, Tumor
- Cell Separation
- Cells, Cultured
- Colon/blood supply
- Colon/metabolism
- Colorectal Neoplasms/blood supply
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Corpus Luteum/blood supply
- Corpus Luteum/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Extracellular Matrix Proteins/genetics
- Female
- Gene Expression
- Gene Expression Profiling
- Humans
- Intestinal Mucosa/blood supply
- Intestinal Mucosa/cytology
- Intestinal Mucosa/pathology
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Physiologic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rectum/blood supply
- Rectum/metabolism
- Tumor Cells, Cultured
Collapse
|
Comparative Study |
25 |
1373 |
9
|
Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7:1194-201. [PMID: 11689883 DOI: 10.1038/nm1101-1194] [Citation(s) in RCA: 1372] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and growth. We detected donor-derived CEPs throughout the neovessels of tumors and Matrigel-plugs in an Id1+/-Id3-/- host, which were associated with VEGF-receptor-1-positive (VEGFR1+) myeloid cells. The angiogenic defect in Id-mutant mice was due to impaired VEGF-driven mobilization of VEGFR2+ CEPs and impaired proliferation and incorporation of VEGFR1+ cells. Although targeting of either VEGFR1 or VEGFR2 alone partially blocks the growth of tumors, inhibition of both VEGFR1 and VEGFR2 was necessary to completely ablate tumor growth. These data demonstrate that recruitment of VEGF-responsive BM-derived precursors is necessary and sufficient for tumor angiogenesis and suggest new clinical strategies to block tumor growth.
Collapse
|
|
24 |
1372 |
10
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 1002] [Impact Index Per Article: 200.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
|
Review |
5 |
1002 |
11
|
Abstract
Angiogenesis inhibitors for the treatment of cancer have now been approved by the Food and Drug Administration in the United States, and in 28 other countries including China. Clinical application of this new class of drugs is informed by certain principles from angiogenesis research. Oncogenic mutations initiate tumorigenesis, but angiogenesis is necessary for expansion of tumor mass. Two angiogenesis inhibitors have been developed that have a broad spectrum of anticancer activity, yet virtually no side effects. Endogenous angiogenesis inhibitors act as tumor suppressor proteins. The angiogenic response in vivo is based on the genetic background of the host. Several types of angiogenesis inhibitors reveal a biphasic, U-shaped curve of efficacy. "Antiangiogenic chemotherapy" is a novel approach to the treatment of drug resistance.
Collapse
|
Review |
19 |
1001 |
12
|
Abstract
Vascular endothelial growth factor (VEGF) is a fundamental regulator of normal and abnormal angiogenesis. Recent evidence indicates that VEGF is essential for embryonic vasculogenesis and angiogenesis. Furthermore, VEGF is required for the cyclical blood vessel proliferation in the female reproductive tract and for longitudinal bone growth and endochondral bone formation. Substantial experimental evidence also implicates VEGF in pathological angiogenesis. Anti-VEGF monoclonal antibodies or other VEGF inhibitors block the growth of many tumor cell lines in nude mice. Furthermore, the concentrations of VEGF are elevated in the aqueous and vitreous humors of patients with proliferative retinopathies such as the diabetic retinopathy. In addition, VEGF-induced angiogenesis results in a therapeutic benefit in several animal models of myocardial or limb ischemia. Currently, both therapeutic angiogenesis using recombinant VEGF or VEGF gene transfer and inhibition of VEGF-mediated pathological angiogenesis are being pursued.
Collapse
|
Review |
26 |
872 |
13
|
|
Comment |
29 |
867 |
14
|
Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38:1060-5. [PMID: 16878133 PMCID: PMC2669546 DOI: 10.1038/ng1855] [Citation(s) in RCA: 818] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 06/29/2006] [Indexed: 12/18/2022]
Abstract
Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2'-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92-encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92-transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non-cell-autonomous Myc-induced tumor phenotypes.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Transformed
- Cell Transformation, Viral
- Cells, Cultured
- Connective Tissue Growth Factor
- Culture Media, Conditioned/analysis
- Gene Expression Regulation, Neoplastic
- Genetic Vectors
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- In Vitro Techniques
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- Neoplasms/blood supply
- Neoplasms/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Oligonucleotides, Antisense/pharmacology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/physiology
- RNA, Neoplasm/metabolism
- Retroviridae/genetics
- Stem Cells/cytology
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Transplantation, Homologous
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/metabolism
Collapse
|
Comparative Study |
19 |
818 |
15
|
Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006; 66:11238-46. [PMID: 17114237 DOI: 10.1158/0008-5472.can-06-1278] [Citation(s) in RCA: 805] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of a tumor vasculature or access to the host vasculature is a crucial step for the survival and metastasis of malignant tumors. Although therapeutic strategies attempting to inhibit this step during tumor development are being developed, the biological regulation of this process is still largely unknown. Using a transgenic mouse susceptible to mammary cancer, PyMT mice, we have characterized the development of the vasculature in mammary tumors during their progression to malignancy. We show that the onset of the angiogenic switch, identified as the formation of a high-density vessel network, is closely associated with the transition to malignancy. More importantly, both the angiogenic switch and the progression to malignancy are regulated by infiltrated macrophages in the primary mammary tumors. Inhibition of the macrophage infiltration into the tumor delayed the angiogenic switch and malignant transition whereas genetic restoration of the macrophage population specifically in these tumors rescued the vessel phenotype. Furthermore, premature induction of macrophage infiltration into premalignant lesions promoted an early onset of the angiogenic switch independent of tumor progression. Taken together, this study shows that tumor-associated macrophages play a key role in promoting tumor angiogenesis, an essential step in the tumor progression to malignancy.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
805 |
16
|
Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 2005; 115:2108-18. [PMID: 16075055 PMCID: PMC1180541 DOI: 10.1172/jci24682] [Citation(s) in RCA: 765] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 05/17/2005] [Indexed: 12/18/2022] Open
Abstract
Although increased external load initially induces cardiac hypertrophy with preserved contractility, sustained overload eventually leads to heart failure through poorly understood mechanisms. Here we describe a conditional transgenic system in mice characterized by the sequential development of adaptive cardiac hypertrophy with preserved contractility in the acute phase and dilated cardiomyopathy in the chronic phase following the induction of an activated Akt1 gene in the heart. Coronary angiogenesis was enhanced during the acute phase of adaptive cardiac growth but reduced as hearts underwent pathological remodeling. Enhanced angiogenesis in the acute phase was associated with mammalian target of rapamycin-dependent induction of myocardial VEGF and angiopoietin-2 expression. Inhibition of angiogenesis by a decoy VEGF receptor in the acute phase led to decreased capillary density, contractile dysfunction, and impaired cardiac growth. Thus, both heart size and cardiac function are angiogenesis dependent, and disruption of coordinated tissue growth and angiogenesis in the heart contributes to the progression from adaptive cardiac hypertrophy to heart failure.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
765 |
17
|
Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, Mucke L. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 1993; 90:10061-5. [PMID: 7694279 PMCID: PMC47713 DOI: 10.1073/pnas.90.21.10061] [Citation(s) in RCA: 751] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytokines are thought to be important mediators in physiologic and pathophysiologic processes affecting the central nervous system (CNS). To explore this hypothesis, transgenic mice were generated in which the cytokine interleukin 6 (IL-6), under the regulatory control of the glial fibrillary acidic protein gene promoter, was overexpressed in the CNS. A number of transgenic founder mice and their offspring exhibited a neurologic syndrome the severity of which correlated with the levels of cerebral IL-6 expression. Transgenic mice with high levels of IL-6 expression developed severe neurologic disease characterized by runting, tremor, ataxia, and seizure. Neuropathologic manifestations included neuro-degeneration, astrocytosis, angiogenesis, and induction of acute-phase-protein production. These findings indicate that cytokines such as IL-6 can have a direct pathogenic role in inflammatory, infectious, and neurodegenerative CNS diseases.
Collapse
|
research-article |
32 |
751 |
18
|
Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJC, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Karikó K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zhang K, Smith JR, Taylor EW, Ambati J. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008; 452:591-7. [PMID: 18368052 PMCID: PMC2642938 DOI: 10.1038/nature06765] [Citation(s) in RCA: 692] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/31/2008] [Indexed: 12/15/2022]
Abstract
Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro- and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-alpha/beta activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-gamma and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3-RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world's population, and that siRNAs might induce unanticipated vascular or immune effects.
Collapse
MESH Headings
- Animals
- Cell Line
- Endothelial Cells/metabolism
- Genetic Therapy/methods
- Humans
- Immunity, Innate/immunology
- Interferon-gamma/immunology
- Interleukin-12/immunology
- Macular Degeneration/complications
- Macular Degeneration/genetics
- Macular Degeneration/therapy
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/prevention & control
- Neovascularization, Pathologic/therapy
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- RNA, Small Interfering/metabolism
- Toll-Like Receptor 3/chemistry
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
- Vascular Endothelial Growth Factor A/genetics
Collapse
|
Research Support, N.I.H., Extramural |
17 |
692 |
19
|
Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J. Vascular Development in the Retina and Inner Ear. Cell 2004; 116:883-95. [PMID: 15035989 DOI: 10.1016/s0092-8674(04)00216-8] [Citation(s) in RCA: 669] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/20/2004] [Accepted: 01/23/2004] [Indexed: 11/28/2022]
Abstract
Incomplete retinal vascularization occurs in both Norrie disease and familial exudative vitreoretinopathy (FEVR). Norrin, the protein product of the Norrie disease gene, is a secreted protein of unknown biochemical function. One form of FEVR is caused by defects in Frizzled-4 (Fz4), a presumptive Wnt receptor. We show here that Norrin and Fz4 function as a ligand-receptor pair based on (1) the similarity in vascular phenotypes caused by Norrin and Fz4 mutations in humans and mice, (2) the specificity and high affinity of Norrin-Fz4 binding, (3) the high efficiency with which Norrin induces Fz4- and Lrp-dependent activation of the classical Wnt pathway, and (4) the signaling defects displayed by disease-associated variants of Norrin and Fz4. These data define a Norrin-Fz4 signaling system that plays a central role in vascular development in the eye and ear, and they indicate that ligands unrelated to Wnts can act through Fz receptors.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- Cells, Cultured
- Cerebellum/blood supply
- Cerebellum/cytology
- Cerebellum/growth & development
- Ear, Inner/blood supply
- Ear, Inner/cytology
- Ear, Inner/growth & development
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Female
- Frizzled Receptors
- Humans
- LDL-Receptor Related Proteins
- Ligands
- Low Density Lipoprotein Receptor-Related Protein-5
- Male
- Mice
- Mice, Knockout
- Microscopy, Electron
- Mutation/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organ Culture Techniques
- Pedigree
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Retinal Diseases/genetics
- Retinal Diseases/pathology
- Retinal Diseases/physiopathology
- Retinal Vessels/growth & development
- Retinal Vessels/metabolism
- Retinal Vessels/pathology
- Signal Transduction/genetics
- Wnt Proteins
- Zebrafish Proteins
Collapse
|
|
21 |
669 |
20
|
Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004; 6:447-58. [PMID: 15542429 DOI: 10.1016/j.ccr.2004.09.028] [Citation(s) in RCA: 649] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 08/24/2004] [Accepted: 09/14/2004] [Indexed: 12/12/2022]
Abstract
The role of Ras oncogenes in promoting cellular transformation is well established. However, the contribution of Ras signaling to interactions between tumor cells and their host environment remains poorly characterized. Here, we demonstrate that the inflammatory mediator interleukin-8 (CXCL-8/IL-8) is a transcriptional target of Ras signaling. Using a tumor xenograft model, we show that Ras-dependent CXCL-8 secretion is required for the initiation of tumor-associated inflammation and neovascularization. Collectively, our data identify a novel mechanism by which the Ras oncogene can elicit a stromal response that fosters cancer progression.
Collapse
|
|
21 |
649 |
21
|
Horak ER, Leek R, Klenk N, LeJeune S, Smith K, Stuart N, Greenall M, Stepniewska K, Harris AL. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 1992; 340:1120-4. [PMID: 1279332 DOI: 10.1016/0140-6736(92)93150-l] [Citation(s) in RCA: 629] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animal models suggest a role for new vessel formation (angiogenesis) in tumours with metastatic potential, and there is some evidence that this is true for human tumours. What is needed is a sensitive and specific label for endothelial cells, and one candidate would be a monoclonal antibody to platelet/endothelial cell adhesion molecule (PECAM). We have counted microvessels in 103 primary breast cancers using the JC70 antibody to PECAM (or CD31). We compared our findings with various pathological indicators (lymph node status and tumour grade, size, and type and markers (oestrogen receptor, and c-erbB-2 expression and detection of mutant p53). Tumours showed significantly higher vascularisation than normal breast tissue and the number of blood vessels/mm2 was significantly associated with node metastasis. Only 2 out of 50 tumours with 99 vessel/mm2 or less were node positive whereas 31 out of 39 tumours with counts above 140/mm2 were positive (p < 0.0001). Tumour size and grade also correlated with node metastasis and vascularisation also increased with the size of the primary and with poor differentiation. However, within each subgroup of size or differentiation tumours without node involvement had much lower vascular counts, and multivariate analysis showed that vascular count alone explains the association of size and grade with node metastasis. Other markers, conventional or novel, did not correlate with vascularisation. Even with the short follow-up in this series, vascular counts correlated with early death. These results suggest that angiogenesis is closely linked to metastasis, that it is acquired at a critical density of vessels, and that this process occurs as tumours enlarge or become more poorly differentiated. Counting of newly formed microvessels stained with endothelium-specific antibodies may prove to be a useful tool in the early detection of metastatic potential and in the selection of patients for whom anti-angiogenesis drugs might be beneficial.
Collapse
|
|
33 |
629 |
22
|
Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. ACTA ACUST UNITED AC 2006; 54:3254-66. [PMID: 17009260 DOI: 10.1002/art.22136] [Citation(s) in RCA: 590] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Functional suitability and phenotypic stability of ectopic transplants are crucial factors in the clinical application of mesenchymal stem cells (MSCs) for articular cartilage repair, and might require a stringent control of chondrogenic differentiation. This study evaluated whether human bone marrow-derived MSCs adopt natural differentiation stages during induction of chondrogenesis in vitro, and whether they can form ectopic stable cartilage that is resistant to vascular invasion and calcification in vivo. METHODS During in vitro chondrogenesis of MSCs, the expression of 44 cartilage-, stem cell-, and bone-related genes and the deposition of aggrecan and types II and X collagen were determined. Similarly treated, expanded articular chondrocytes served as controls. MSC pellets were allowed to differentiate in chondrogenic medium for 3-7 weeks, after which the chondrocytes were implanted subcutaneously into SCID mice; after 4 weeks in vivo, samples were evaluated by histology. RESULTS The 3-stage chondrogenic differentiation cascade initiated in MSCs was primarily characterized by sequential up-regulation of common cartilage genes. Premature induction of hypertrophy-related molecules (type X collagen and matrix metalloproteinase 13) occurred before production of type II collagen and was followed by up-regulation of alkaline phosphatase activity. In contrast, hypertrophy-associated genes were not induced in chondrocyte controls. Whereas control chondrocyte pellets resisted calcification and vascular invasion in vivo, most MSC pellets mineralized, in spite of persisting proteoglycan and type II collagen content. CONCLUSION An unnatural pathway of differentiation to chondrocyte-like cells was induced in MSCs by common in vitro protocols. MSC pellets transplanted to ectopic sites in SCID mice underwent alterations related to endochondral ossification rather than adopting a stable chondrogenic phenotype. Further studies are needed to evaluate whether a more stringent control of MSC differentiation to chondrocytes can be achieved during cartilage repair in a natural joint environment.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
590 |
23
|
Linger RMA, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 2008; 100:35-83. [PMID: 18620092 PMCID: PMC3133732 DOI: 10.1016/s0065-230x(08)00002-x] [Citation(s) in RCA: 576] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tyro-3, Axl, and Mer constitute the TAM family of receptor tyrosine kinases (RTKs) characterized by a conserved sequence within the kinase domain and adhesion molecule-like extracellular domains. This small family of RTKs regulates an intriguing mix of processes, including cell proliferation/survival, cell adhesion and migration, blood clot stabilization, and regulation of inflammatory cytokine release. Genetic or experimental alteration of TAM receptor function can contribute to a number of disease states, including coagulopathy, autoimmune disease, retinitis pigmentosa, and cancer. In this chapter, we first provide a comprehensive review of the structure, regulation, biologic functions, and downstream signaling pathways of these receptors. In addition, we discuss recent evidence which suggests a role for TAM receptors in oncogenic mechanisms as family members are overexpressed in a spectrum of human cancers and have prognostic significance in some. Possible strategies for targeted inhibition of the TAM family in the treatment of human cancer are described. Further research will be necessary to evaluate the full clinical implications of TAM family expression and activation in cancer.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
576 |
24
|
Abstract
Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
564 |
25
|
Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Åkerud P, De Mol M, Salomäki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011; 19:31-44. [PMID: 21215706 DOI: 10.1016/j.ccr.2010.11.009] [Citation(s) in RCA: 557] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 08/12/2010] [Accepted: 10/25/2010] [Indexed: 11/15/2022]
Abstract
Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like) phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG) inhibits tumor growth and metastasis, while improving chemotherapy. By skewing TAM polarization away from the M2- to a tumor-inhibiting M1-like phenotype, HRG promotes antitumor immune responses and vessel normalization, effects known to decrease tumor growth and metastasis and to enhance chemotherapy. Skewing of TAM polarization by HRG relies substantially on downregulation of placental growth factor (PlGF). Besides unveiling an important role for TAM polarization in tumor vessel abnormalization, and its regulation by HRG/PlGF, these findings offer therapeutic opportunities for anticancer and antiangiogenic treatment.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chemotactic Factors/metabolism
- Clodronic Acid/pharmacology
- Culture Media, Conditioned/pharmacology
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Down-Regulation/genetics
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Gene Expression/drug effects
- Gene Expression/genetics
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Microvessels/drug effects
- Microvessels/pathology
- Microvessels/ultrastructure
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/immunology
- Neoplasm Metastasis/pathology
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Placenta Growth Factor
- Pregnancy Proteins/genetics
- Pregnancy Proteins/immunology
- Pregnancy Proteins/metabolism
- Proteins/genetics
- Proteins/metabolism
- Proteins/pharmacology
- Regional Blood Flow/drug effects
- Regional Blood Flow/genetics
- Transfection
Collapse
|
|
14 |
557 |