1
|
Abstract
Neuroblastoma is a solid tumour that arises from the developing sympathetic nervous system. Over the past decade, our understanding of this disease has advanced tremendously. The future challenge is to apply the knowledge gained to developing risk-based therapies and, ultimately, improving outcome. In this Review we discuss the key discoveries in the developmental biology, molecular genetics and immunology of neuroblastoma, as well as new translational tools for bringing these promising scientific advances into the clinic.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
609 |
2
|
Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 2010; 466:133-7. [PMID: 20596026 PMCID: PMC2898751 DOI: 10.1038/nature09161] [Citation(s) in RCA: 553] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 05/07/2010] [Indexed: 12/20/2022]
Abstract
The question of whether tumorigenic cancer stem cells exist in human melanomas has arisen in the last few years. Here we show that in melanomas, tumour stem cells (MTSCs, for melanoma tumour stem cells) can be isolated prospectively as a highly enriched CD271(+) MTSC population using a process that maximizes viable cell transplantation. The tumours sampled in this study were taken from a broad spectrum of sites and stages. High-viability cells isolated by fluorescence-activated cell sorting and re-suspended in a matrigel vehicle were implanted into T-, B- and natural-killer-deficient Rag2(-/-)gammac(-/-) mice. The CD271(+) subset of cells was the tumour-initiating population in 90% (nine out of ten) of melanomas tested. Transplantation of isolated CD271(+) melanoma cells into engrafted human skin or bone in Rag2(-/-)gammac(-/-) mice resulted in melanoma; however, melanoma did not develop after transplantation of isolated CD271(-) cells. We also show that in mice, tumours derived from transplanted human CD271(+) melanoma cells were capable of metastatsis in vivo. CD271(+) melanoma cells lacked expression of TYR, MART1 and MAGE in 86%, 69% and 68% of melanoma patients, respectively, which helps to explain why T-cell therapies directed at these antigens usually result in only temporary tumour shrinkage.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
553 |
3
|
Steingrímsson E, Moore KJ, Lamoreux ML, Ferré-D'Amaré AR, Burley SK, Zimring DC, Skow LC, Hodgkinson CA, Arnheiter H, Copeland NG. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 1994; 8:256-63. [PMID: 7874168 DOI: 10.1038/ng1194-256] [Citation(s) in RCA: 386] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in the mouse microphthalmia (mi) gene affect the development of a number of cell types including melanocytes, osteoclasts and mast cells. Recently, mutations in the human mi gene (MITF) were found in patients with Waardenburg Syndrome type 2 (WS2), a dominantly inherited syndrome associated with hearing loss and pigmentary disturbances. We have characterized the molecular defects associated with eight murine mi mutations, which vary in both their mode of inheritance and in the cell types they affect. These molecular data, combined with the extensive body of genetic data accumulated for murine mi, shed light on the phenotypic and developmental consequences of mi mutations and offer a mouse model for WS2.
Collapse
|
Comparative Study |
31 |
386 |
4
|
White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, Langdon E, Tomlinson ML, Mosher J, Kaufman C, Chen F, Long HK, Kramer M, Datta S, Neuberg D, Granter S, Young RA, Morrison S, Wheeler GN, Zon LI. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 2011; 471:518-22. [PMID: 21430780 PMCID: PMC3759979 DOI: 10.1038/nature09882] [Citation(s) in RCA: 373] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 01/31/2011] [Indexed: 12/26/2022]
Abstract
Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
373 |
5
|
Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, Besmer P. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice--evidence for an impaired c-kit kinase in mutant mice. Genes Dev 1989; 3:816-26. [PMID: 2473008 DOI: 10.1101/gad.3.6.816] [Citation(s) in RCA: 356] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The proto-oncogene c-kit, a transmembrane tyrosine protein kinase receptor for an unknown ligand, was shown recently to map to the dominant white spotting locus (W) of the mouse. Mutations at the W locus affect various aspects of hematopoiesis, as well as the proliferation and/or migration of primordial germ cells and melanoblasts during development. Here, we show that c-kit is expressed in tissues known to be affected by W mutations in fetal and adult erythropoietic tissues, mast cells, and neural-crest-derived melanocytes. We demonstrate that the c-kit associated tyrosine-specific protein kinase is functionally impaired in W/WV mast cells, thus providing a molecular basis for understanding the developmental defects that result from these mutations.
Collapse
|
|
36 |
356 |
6
|
Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 2003; 23:4013-25. [PMID: 12748302 PMCID: PMC155222 DOI: 10.1128/mcb.23.11.4013-4025.2003] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) direct diverse cellular and developmental responses by stimulating a relatively small number of overlapping signaling pathways. Specificity may be determined by RTK expression patterns or by differential activation of individual signaling pathways. To address this issue we generated knock-in mice in which the extracellular domain of the mouse platelet-derived growth factor alpha receptor (PDGFalphaR) is fused to the cytosolic domain of Drosophila Torso (alpha(Tor)) or the mouse fibroblast growth factor receptor 1 (alpha(FR)). alpha(Tor) homozygous embryos exhibit significant rescue of neural crest and angiogenesis defects normally found in PDGFalphaR-null embryos yet fail to rescue skeletal or extraembryonic defects. This phenotype was associated with the ability of alpha(Tor) to stimulate the mitogen-activated protein (MAP) kinase pathway to near wild-type levels but failure to completely activate other pathways, such as phosphatidylinositol (PI) 3-kinase. The alpha(FR) chimeric receptor fails to rescue any aspect of the PDGFalphaR-null phenotype. Instead, alpha(FR) expression leads to a gain-of-function phenotype highlighted by ectopic bone development. The alpha(FR) phenotype was associated with a failure to limit MAP kinase signaling and to engage significant PI3-kinase response. These results suggest that precise regulation of divergent downstream signaling pathways is critical for specification of RTK function.
Collapse
MESH Headings
- Animals
- Blood Vessels/anatomy & histology
- Blood Vessels/growth & development
- Bone and Bones/abnormalities
- Bone and Bones/physiology
- Cell Line
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Embryo, Mammalian/abnormalities
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Embryo, Nonmammalian
- Evolution, Molecular
- Fibroblasts/cytology
- Fibroblasts/physiology
- Genes, Reporter
- Mice
- Mice, Transgenic
- Neural Crest/growth & development
- Neural Crest/pathology
- Phenotype
- Placenta/abnormalities
- Placentation
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
Collapse
|
research-article |
22 |
354 |
7
|
Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF. Mouse tumor model for neurofibromatosis type 1. Science 1999; 286:2176-9. [PMID: 10591653 PMCID: PMC3079436 DOI: 10.1126/science.286.5447.2176] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by increased incidence of benign and malignant tumors of neural crest origin. Mutations that activate the protooncogene ras, such as loss of Nf1, cooperate with inactivating mutations at the p53 tumor suppressor gene during malignant transformation. One hundred percent of mice harboring null Nf1 and p53 alleles in cis synergize to develop soft tissue sarcomas between 3 and 7 months of age. These sarcomas exhibit loss of heterozygosity at both gene loci and express phenotypic traits characteristic of neural crest derivatives and human NF1 malignancies.
Collapse
|
research-article |
26 |
266 |
8
|
Ma Y, Erkner A, Gong R, Yao S, Taipale J, Basler K, Beachy PA. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 2002; 111:63-75. [PMID: 12372301 DOI: 10.1016/s0092-8674(02)00977-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dispatched (disp) gene is required for long-range Hedgehog (Hh) signaling in Drosophila. Here, we demonstrate that one of two murine homologs, mDispA, can rescue disp function in Drosophila and is essential for all Hh patterning activities examined in the early mouse embryo. Embryonic fibroblasts lacking mDispA respond normally to exogenously provided Sonic hedgehog (Shh) signal, but are impaired in stimulation of other responding cells when expressing Shh. We have developed a biochemical assay that directly measures the activity of Disp proteins in release of soluble Hh proteins. This activity is disrupted by alteration of residues functionally conserved in Patched and in a related family of bacterial transmembrane transporters, thus suggesting similar mechanisms of action for all of these proteins.
Collapse
|
|
23 |
233 |
9
|
Davy A, Aubin J, Soriano P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 2004; 18:572-83. [PMID: 15037550 PMCID: PMC374238 DOI: 10.1101/gad.1171704] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eph receptors and ephrin ligands are key players in many developmental processes including embryo patterning, angiogenesis, and axon guidance. Eph/ephrin interactions lead to the generation of a bidirectional signal, in which both the Eph receptors and the ephrins activate downstream signaling cascades simultaneously. To understand the role of ephrin-B1 and the importance of ephrin-B1-induced reverse signaling during embryonic development, we have generated mouse lines carrying mutations in the efnb1 gene. Complete ablation of ephrin-B1 resulted in perinatal lethality associated with a range of phenotypes, including defects in neural crest cell (NCC)-derived tissues, incomplete body wall closure, and abnormal skeletal patterning. Conditional deletion of ephrin-B1 demonstrated that ephrin-B1 acts autonomously in NCCs, and controls their migration. Last, a mutation in the PDZ binding domain indicated that ephrin-B1-induced reverse signaling is required in NCCs. Our results demonstrate that ephrin-B1 acts both as a ligand and as a receptor in a tissue-specific manner during embryogenesis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
232 |
10
|
Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 2006; 18:101-10. [PMID: 17224285 PMCID: PMC1858673 DOI: 10.1016/j.semcdb.2006.12.004] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neural crest cells are multipotential cells that delaminate from the dorsal neural tube and migrate widely throughout the body. A subregion of the cranial neural crest originating between the otocyst and somite 3 has been called "cardiac neural crest" because of the importance of these cells in heart development. Much of what we know about the contribution and function of the cardiac neural crest in cardiovascular development has been learned in the chick embryo using quail-chick chimeras to study neural crest migration and derivatives as well as using ablation of premigratory neural crest cells to study their function. These studies show that cardiac neural crest cells are absolutely required to form the aorticopulmonary septum dividing the cardiac arterial pole into systemic and pulmonary circulations. They support the normal development and patterning of derivatives of the caudal pharyngeal arches and pouches, including the great arteries and the thymus, thyroid and parathyroids. Recently, cardiac neural crest cells have been shown to modulate signaling in the pharynx during the lengthening of the outflow tract by the secondary heart field. Most of the genes associated with cardiac neural crest function have been identified using mouse models. These studies show that the neural crest cells may not be the direct cause of abnormal cardiovascular development but they are a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Since, cardiac neural crest cells span from the caudal pharynx into the outflow tract, they are especially susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations as represented by the DiGeorge syndrome will necessarily require understanding development of the cardiac neural crest.
Collapse
|
Review |
19 |
231 |
11
|
Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 2001; 90:105-56. [PMID: 11578655 DOI: 10.1016/s0163-7258(01)00132-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current cancer therapies are highly toxic and often nonspecific. A potentially less toxic approach to treating this prevalent disease employs agents that modify cancer cell differentiation, termed 'differentiation therapy.' This approach is based on the tacit assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment, results in tumor reprogramming and a concomitant loss in proliferative capacity and induction of terminal differentiation or apoptosis (programmed cell death). Laboratory studies that focus on elucidating mechanisms of action are demonstrating the effectiveness of 'differentiation therapy,' which is now beginning to show translational promise in the clinical setting.
Collapse
|
Review |
24 |
217 |
12
|
Marshall GM, Carter DR, Cheung BB, Liu T, Mateos MK, Meyerowitz JG, Weiss WA. The prenatal origins of cancer. Nat Rev Cancer 2014; 14:277-89. [PMID: 24599217 PMCID: PMC4041218 DOI: 10.1038/nrc3679] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The concept that some childhood malignancies arise from postnatally persistent embryonal cells has a long history. Recent research has strengthened the links between driver mutations and embryonal and early postnatal development. This evidence, coupled with much greater detail on the cell of origin and the initial steps in embryonal cancer initiation, has identified important therapeutic targets and provided renewed interest in strategies for the early detection and prevention of childhood cancer.
Collapse
|
Review |
11 |
191 |
13
|
Monferrer E, Burgos-Panadero R, Blanquer-Maceiras M, Cañete A, Navarro S, Noguera R. High Oct4 expression: implications in the pathogenesis of neuroblastic tumours. BMC Cancer 2019; 19:1. [PMID: 30606139 PMCID: PMC6318846 DOI: 10.1186/s12885-018-5219-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Neuroblastic tumours (NBTs) are paediatric solid tumours derived from embryonic neural crest cells which harbour their own cancer stem cells (CSC). There is evidence indicating that CSC may be responsible for tumour progression, chemotherapy resistance and recurrence in NBTs. Oct4 is a transcription factor which plays a key role in mammal embryonic development and stem cell fate regulation. The aim of the study is to elucidate the clinical significance of Oct4 in NBTs. METHODS We studied Oct4 expression in 563 primary NBTs using digital image quantification. Chi-square test was applied to analyse the correlation between histopathology and the Oct4+ cell percentage. Survival analysis was carried out with Kaplan-Meier curves and log-rank test. Additionally, a multivariate Cox regression analysis with the stepwise backwards (Wald) method was undertaken to calculate the impact of Oct4 expression level on survival. RESULTS We found that tumours with a high proportion of cells expressing Oct4 correlated statistically with undifferentiated and poorly differentiated neuroblastoma / nodular ganglioneuroblastoma, and that Oct4 expression was not present in ganglioneuroma (p < 0.05). Statistical analysis also indicated a relationship between high Oct4 expression levels, high-risk patients according to the International Neuroblastoma Risk Group pre-treatment classification parameters, larger blood vessels and low survival rates. CONCLUSIONS These results suggest that the Oct4 gene may regulate NBT pathogenic differentiation pathways, and should thus be considered as a target for knockdown when developing novel therapies for high-risk NBT patients.
Collapse
|
research-article |
6 |
189 |
14
|
Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, Afar D, Burdach SEG. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 2005; 64:8213-21. [PMID: 15548687 DOI: 10.1158/0008-5472.can-03-4059] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ewing family tumors (EFTs) are small round blue cell tumors that show features of neuroectodermal differentiation. However, the histogenetic origin of EFTs is still a matter of debate. We used high-density DNA microarrays for the identification of EFT-specific gene expression profiles in comparison with normal tissues of diverse origin. We identified 37 genes that are up-regulated in EFTs compared with normal tissues and validated expression of these genes in EFTs by both conventional and quantitative reverse transcription-polymerase chain reaction. The expression pattern of EFT-associated genes in normal tissues indicated a high similarity between EFTs and fetal and neuronal as well as endothelial tissues and supports the concept that a primitive neural crest-derived progenitor at the transition to mesenchymal and endothelial differentiation is transformed in EFTs. EFT-associated genes could be used for molecular discrimination between EFTs and other small round blue cell tumors and clearly identified a cell line (SK-N-MC) that was initially established as neuroblastoma as being an EFT. Ectopic expression of the EFT-specific EWS-FLI1 fusion protein in human embryonic kidney (HEK293) cells was not sufficient to induce the complete EFT-specific gene expression signature, suggesting that the EFT-specific gene expression profile is not just a consequence of EWS-FLI1 expression but depends on the histogenetic background of the EFT stem cell.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
161 |
15
|
Tobin JL, Di Franco M, Eichers E, May-Simera H, Garcia M, Yan J, Quinlan R, Justice MJ, Hennekam RC, Briscoe J, Tada M, Mayor R, Burns AJ, Lupski JR, Hammond P, Beales PL. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung's disease in Bardet-Biedl syndrome. Proc Natl Acad Sci U S A 2008; 105:6714-9. [PMID: 18443298 PMCID: PMC2373327 DOI: 10.1073/pnas.0707057105] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Indexed: 01/31/2023] Open
Abstract
Facial recognition is central to the diagnosis of many syndromes, and craniofacial patterns may reflect common etiologies. In the pleiotropic Bardet-Biedl syndrome (BBS), a primary ciliopathy with intraflagellar transport dysfunction, patients have a characteristic facial "gestalt" that dysmorphologists have found difficult to characterize. Here, we use dense surface modeling (DSM) to reveal that BBS patients and mouse mutants have mid-facial defects involving homologous neural crest-derived structures shared by zebrafish morphants. These defects of the craniofacial (CF) skeleton arise from aberrant cranial neural crest cell (NCC) migration. These effects are not confined to the craniofacial region, but vagal-derived NCCs fail to populate the enteric nervous system, culminating in disordered gut motility. Furthermore, morphants display hallmarks of disrupted Sonic Hedgehog (Shh) signaling from which NCCs take positional cues. We propose a model whereby Bbs proteins modulate NCC migration, contributing to craniofacial morphogenesis and development of the enteric nervous system. These migration defects also explain the association of Hirschsprung's disease (HD) with BBS. Moreover, this is a previously undescribed method of using characterization of facial dysmorphology as a basis for investigating the pathomechanism of CF development in dysmorphic syndromes.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
156 |
16
|
Kapur RP. Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10(Dom)/Sox10(Dom) mouse embryos. Pediatr Dev Pathol 1999; 2:559-69. [PMID: 10508880 DOI: 10.1007/s100249900162] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intestinal aganglionosis results from homologous genetic defects in humans and mice, including mutations of Sox10, which encodes a transcription factor expressed in neural crest cells. To gain insight into the embryological basis for this condition, the phenotype and pathogenesis of intestinal aganglionosis in Sox10(Dom)/Sox10(Dom) embryos were studied. The distribution of enteric neural precursors and other neural crest derivatives in Sox10(Dom)/Sox10(Dom) embryos was analyzed with immunochemical and transgenic markers. The ability of wild-type neural crest cells to colonize Sox10(Dom)/Sox10(Dom) intestinal explants was evaluated by appositional grafts under the renal capsule. Apoptosis was studied by TUNEL labeling. Sox10(Dom)/Sox10(Dom) embryos died pre- or perinatally with total enteric aganglionosis and hypoplasia or agenesis of nonenteric ganglia. Mutant crest cells failed to colonize any portion of the Sox10(Dom)/Sox10(Dom) gut, but wild-type neural crest cells were able to colonize explanted segments of Sox10(Dom)/Sox10(Dom) embryonic intestine. In Sox10(Dom)/Sox10(Dom) embryos, apoptosis was increased in sites of early neural crest cell development, before these cells enter the gut. Sox10(Dom)/Sox10(Dom) embryos are one of many genetic animal models for human Hirschsprung disease. The underlying problem is probably not the enteric microenvironment, since Sox10(Dom)/Sox10(Dom) intestine supports colonization and neuronal differentiation by wild-type neural crest cells. Instead, excessive cell death occurs in mutant neural crest cells early in their migratory pathway. Comparison with other models suggests that genetic heterogeneity of aganglionosis correlates with different pathogenetic mechanisms.
Collapse
|
Comparative Study |
26 |
147 |
17
|
Abstract
Neuroblastoma, the most common extracranial solid tumor in children, is derived from neural crest cells. Nearly half of patients present with metastatic disease and have a 5-year event-free survival of <50%. New approaches with targeted therapy may improve efficacy without increased toxicity. In this review we evaluate 3 promising targeted therapies: (i) (131)I-metaiodobenzylguanidine (MIBG), a radiopharmaceutical that is taken up by human norepinephrine transporter (hNET), which is expressed in 90% of neuroblastomas; (ii) immunotherapy with monoclonal antibodies targeting the GD2 ganglioside, which is expressed on 98% of neuroblastoma cells; and (iii) inhibitors of anaplastic lymphoma kinase (ALK), a tyrosine kinase that is mutated or amplified in ~10% of neuroblastomas and expressed on the surface of most neuroblastoma cells. Early-phase trials have confirmed the activity of (131)I-MIBG in relapsed neuroblastoma, with response rates of ~30%, but the technical aspects of administering large amounts of radioactivity in young children and limited access to this agent have hindered its incorporation into treatment of newly diagnosed patients. Anti-GD2 antibodies have also shown activity in relapsed disease, and a recent phase III randomized trial showed a significant improvement in event-free survival for patients receiving chimeric anti-GD2 (ch14.18) combined with cytokines and isotretinoin after myeloablative consolidation therapy. A recently approved small-molecule inhibitor of ALK has shown promising preclinical activity for neuroblastoma and is currently in phase I and II trials. This is the first agent directed to a specific mutation in neuroblastoma, and marks a new step toward personalized therapy for neuroblastoma. Further clinical development of targeted treatments offers new hope for children with neuroblastoma.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
141 |
18
|
Maka M, Stolt CC, Wegner M. Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Dev Biol 2005; 277:155-69. [PMID: 15572147 DOI: 10.1016/j.ydbio.2004.09.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Revised: 09/07/2004] [Accepted: 09/09/2004] [Indexed: 12/28/2022]
Abstract
Mice carrying heterozygous mutations in the Sox10 gene display aganglionosis of the colon and represent a model for human Hirschsprung disease. Here, we show that the closely related Sox8 functions as a modifier gene for Sox10-dependent enteric nervous system defects as it increases both penetrance and severity of the defect in Sox10 heterozygous mice despite having no detectable influence on enteric nervous system development on its own. Sox8 exhibits an expression pattern very similar to Sox10 with occurrence in vagal and enteric neural crest cells and later confinement to enteric glia. Loss of Sox8 alleles in Sox10 heterozygous mice impaired colonization of the gut by enteric neural crest cells already at early times. Whereas proliferation, apoptosis, and neuronal differentiation were normal for enteric neural crest cells in the gut of mutant mice, apoptosis was dramatically increased in vagal neural crest cells outside the gut. The defects in enteric nervous system development of mice with Sox10 and Sox8 mutations are therefore likely caused by a reduction of the pool of undifferentiated vagal neural crest cells. Our study suggests that Sox8 and Sox10 are jointly required for the maintenance of these vagal neural crest stem cells.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
136 |
19
|
Bryden MP, McManus IC, Bulman-Fleming MB. Evaluating the empirical support for the Geschwind-Behan-Galaburda model of cerebral lateralization. Brain Cogn 1994; 26:103-67. [PMID: 7531983 DOI: 10.1006/brcg.1994.1045] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Geschwind-Behan-Galaburda (GBG) model of cerebral lateralization provides a complex but testable theory of the origins and associates of cerebral lateralization. An overall evaluation of the model suggest that it is not well supported by empirical evidence and that in the case of several key theoretical areas, the evidence that does exist is inconsistent with the theory. In particular: the concept of "anomalous dominance" is shown to be theoretically and methodologically flawed; a meta-analysis of the relationship between handedness and immune disorders finds a marginal overall association, and while three conditions (allergies, asthma, and ulcerative colitis) do show significant associations with left-handedness, two other conditions (myasthenia gravis and arthritis) show significant negative associations with left-handedness. Finally, a review of the origins of the neural crest, and its associations, suggests there is almost no empirical support for the GBG theoretical model in this area.
Collapse
|
Meta-Analysis |
31 |
134 |
20
|
Gitler AD, Zhu Y, Ismat FA, Lu MM, Yamauchi Y, Parada LF, Epstein JA. Nf1 has an essential role in endothelial cells. Nat Genet 2003; 33:75-9. [PMID: 12469121 PMCID: PMC3079412 DOI: 10.1038/ng1059] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 11/06/2002] [Indexed: 11/08/2022]
Abstract
Neurofibromatosis type 1 (NF1) or von Recklinghausen neurofibromatosis is a genetic disorder that occurs in 1 of 4000 births and is characterized by benign and malignant tumors. Cardiovascular defects also contribute to NF1, though the pathogenesis is still unclear. Deficiency in neurofibromin (encoded by Nf1) in mice results in mid-embryonic lethality owing to cardiac abnormalities previously thought to be secondary to cardiac neural-crest defects. Using tissue-specific gene inactivation, we show that endothelial-specific inactivation of Nf1 recapitulates key aspects of the complete null phenotype, including multiple cardiovascular abnormalities involving the endocardial cushions and myocardium. This phenotype is associated with an elevated level of ras signaling in Nf1(-/-) endothelial cells and greater nuclear localization of the transcription factor Nfatc1. Inactivation of Nf1 in the neural crest does not cause cardiac defects but results in tumors of neural-crest origin resembling those seen in humans with NF1. These results establish a new and essential role for Nf1 in endothelial cells and confirm the requirement for neurofibromin in the neural crest.
Collapse
|
research-article |
22 |
128 |
21
|
Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, Hendricks JD, Bailey GS. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 2000; 28:705-15. [PMID: 11026607 DOI: 10.1177/019262330002800511] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using zebrafish, Danio rerio, initial pioneering work in the 1960s revealed carcinogen responsiveness of fish, yet very few subsequent tumorigenesis investigations have utilized this species. We exposed embryos (60 hours postfertilization) and fry (3 week posthatch) to 7,12-dimethylbenz[a]anthracene (DMBA) by immersion in aqueous solutions for 24 hours, at concentrations of 0-1 or 0-5 ppm (mg/L), respectively. Juvenile zebrafish 2 months posthatch were fed a diet containing 0-1,000 ppm DMBA for 4 months. Fish were sampled for histologic evaluation at 7-12 months after the onset of carcinogen treatment. Fry were most responsive to DMBA and showed the widest diversity of target tissues and histologic types of neoplasia, having several types of epithelial, mesenchymal, and neural neoplasia. The principal target tissues for carcinogenic response were liver following embryo or fry exposure, with gill and blood vessel the second and third most responsive tissues in fry. Intestine was the primary target and gill a secondary target in fish that received dietary DMBA as juveniles. These studies indicate that young zebrafish are most responsive to DMBA, showing a greater diversity of neoplasm types than rainbow trout. Thus, zebrafish are a valuable model system in which to study mechanistic aspects of the carcinogenesis process.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/administration & dosage
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Body Weight
- Carcinogens/administration & dosage
- Carcinogens/toxicity
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/pathology
- Gills/drug effects
- Gills/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Mesoderm/drug effects
- Mesoderm/pathology
- Neoplasms, Connective and Soft Tissue/chemically induced
- Neoplasms, Connective and Soft Tissue/pathology
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/epidemiology
- Neoplasms, Experimental/pathology
- Neoplasms, Glandular and Epithelial/chemically induced
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Vascular Tissue/chemically induced
- Neoplasms, Vascular Tissue/pathology
- Neural Crest/drug effects
- Neural Crest/pathology
- Sex Ratio
- Zebrafish/embryology
Collapse
|
|
25 |
127 |
22
|
Cartwright MM, Smith SM. Increased cell death and reduced neural crest cell numbers in ethanol-exposed embryos: partial basis for the fetal alcohol syndrome phenotype. Alcohol Clin Exp Res 1995; 19:378-86. [PMID: 7625573 DOI: 10.1111/j.1530-0277.1995.tb01519.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fetal alcohol syndrome (FAS) is characterized by growth retardation, craniofacial malformations, and heart and neural defects; the cellular and molecular mechanism(s) responsible for ethanol's teratogenicity remains unknown. Although the phenotype suggests that prenatal ethanol exposure perturbs neural crest cell development, direct proof that these cells are an in utero target is still lacking. Previous research suggested that cranial neural crest cells are eliminated by ethanol-induced apoptosis. We tested this hypothesis using a chick embryo model of FAS. A single dose of ethanol, chosen to achieve a concentration of 35-42 mg/dl, was injected in ovo at gastrulation and resulted in growth retardation, craniofacial foreshortening, and disrupted hindbrain segmentation. Ethanol exposure enhanced cell death within areas populated by cranial neural crest cells, particularly in the hindbrain and craniofacial mesenchyme. In contrast, control embryos had limited cell death within these regions. Subsequent immunolabeling with neural crest cell-specific antibody revealed that ethanol treatment resulted in fewer neural crest cell numbers, whereas neural crest migration patterns were unaffected by ethanol. These results suggest that prenatal ethanol exposure leads to loss of cranial neural crest cells. Such a loss could result, in part, in the phenotype characteristic of FAS.
Collapse
|
|
30 |
124 |
23
|
Eriksson UJ, Cederberg J, Wentzel P. Congenital malformations in offspring of diabetic mothers--animal and human studies. Rev Endocr Metab Disord 2003; 4:79-93. [PMID: 12618562 DOI: 10.1023/a:1021879504372] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
Review |
22 |
118 |
24
|
Huang GY, Wessels A, Smith BR, Linask KK, Ewart JL, Lo CW. Alteration in connexin 43 gap junction gene dosage impairs conotruncal heart development. Dev Biol 1998; 198:32-44. [PMID: 9640330 DOI: 10.1006/dbio.1998.8891] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Connexin 43 (Cx43) knockout mice and transgenic mice (CMV43) overexpressing the Cx43 gap junction gene exhibit heart defects involving the conotruncus and right ventricle. Based on the heart phenotype and Cx43 gene and transgene expression pattern, we previously proposed that the heart defects may reflect a role for gap junctions in the modulation of cardiac neural crest development. To further elucidate the mechanism by which these heart defects may arise, fetal heart structure and function in these transgenic and knockout mice were examined by magnetic resonance microscopy and Doppler echocardiography. Magnetic resonance microscopy of E14.5 fetuses revealed an enlargement of the right ventricular chamber in the heterozygous Cx43 knockout and CMV43 transgenic mice. This was accompanied by thinning of the chamber wall. In the homozygous Cx43 knockout mouse, heart malformation was also restricted to the right ventricle. This was generally characterized by two pouches at the base of the pulmonary outflow tract, but occasionally hearts with a single pouch were found. Magnetic resonance microscopy showed in some of the CMV43 and Cx43 knockout mice an attenuation of the ductus arteriosus, a phenotype which may be indicative of outflow tract obstruction. This was confirmed by the in utero Doppler echocardiography, which showed increased outflow velocity in E12.5 to 14.5 CMV43 and Cx43 knockout fetuses. In some of these fetuses, Doppler analysis also revealed arrhythmia and absence of isovolemic contraction time. Further examination of these hearts by histology and immunohistochemistry showed abnormal myocardial development in the conotruncus. Particularly interesting was the presence of abundant subendocardial fibrous tissue expressing smooth muscle actin. In the developing heart, such mesenchyme in the outflow tract is usually considered neural crest-derived tissue. Together, these results confirm the importance of Cx43 gene dosage in conotruncal heart development and suggest that this likely involves a role for Cx43 gap junctions in cardiac crest development. In future studies, these transgenic mice may serve as valuable animal models for further studying the role of gap junctions and cardiac crest cells in conotruncal heart development.
Collapse
|
|
27 |
111 |
25
|
Abstract
Associations between ethanol-induced cranial neural crest cell (NCC) damage in mammalian embryos and subsequent malformations as observed in human fetal alcohol syndrome have previously been illustrated. The vulnerability of NCCs to this teratogen may result, at least in part, from their sensitivity to free radical damage. To examine relationships between free radical generation and NCC cytotoxicity, primary culture of mouse NCCs was used. NCC viability was determined in both dose- and time-response studies involving ethanol exposure. After 48 hr of culture, cell viability was significantly diminished at all doses tested (i.e., 50, 100, 150, and 200 mM ethanol). At 100 mM ethanol (a dosage that is teratogenic in vivo and in whole embryo culture), cell viability decreased to approximately 50% of control values over the first 12 hr of culture, and decreased further, to approximately 20% by 48 hr. Using nitroblue tetrazolium as a probe, it was observed that exposure of NCCs to ethanol stimulated the production of superoxide anion radicals. Co-treatment of the ethanol-exposed NCCs with free radical scavengers including 300 units/ml of superoxide dismutase, catalase (500 units/ml), or alpha-tocopherol (300 microM) significantly improved NCC viability. These results suggest that the ethanol-induced NCC injury is mediated, at least in part, through the generation of free radicals. To test this hypothesis further, NCCs were exposed in culture to xanthine/xanthine oxidase. Exogenous free radicals generated by the xanthine/xanthine oxidase system resulted in reduced NCC viability, the severity of which increased in a time and enzyme concentration-related manner. Superoxide dismutase (300 units/ml) and catalase (500 units/ml) significantly reduced the effects of the xanthine/xanthine oxidase-generated free radicals on NCC viability. The similarity between the susceptibility of NCCs to ethanol and their susceptibility to exogenous free radicals in concert with the free radical scavenger-mediated amelioration of ethanol and exogenous free radical-induced NCC death strongly suggest that free radicals play a significant role in ethanol-induced NCC death.
Collapse
|
|
29 |
107 |