1
|
Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 1992; 115 ( Pt 5):1249-73. [PMID: 1422788 DOI: 10.1093/brain/115.5.1249] [Citation(s) in RCA: 489] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurological dysfunction, seizures and brain atrophy occur in a broad spectrum of acute and chronic neurological diseases. In certain instances, over-stimulation of N-methyl-D-aspartate receptors has been implicated. Quinolinic acid (QUIN) is an endogenous N-methyl-D-aspartate receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction. Conversely, the related metabolite, kynurenic acid, is an antagonist of N-methyl-D-aspartate receptors and could modulate the neurotoxic effects of QUIN as well as disrupt excitatory amino acid neurotransmission. In the present study, markedly increased concentrations of QUIN were found in both lumbar cerebrospinal fluid (CSF) and post-mortem brain tissue of patients with inflammatory diseases (bacterial, viral, fungal and parasitic infections, meningitis, autoimmune diseases and septicaemia) independent of breakdown of the blood-brain barrier. The concentrations of kynurenic acid were also increased, but generally to a lesser degree than the increases in QUIN. In contrast, no increases in CSF QUIN were found in chronic neurodegenerative disorders, depression or myoclonic seizure disorders, while CSF kynurenic acid concentrations were significantly lower in Huntington's disease and Alzheimer's disease. In inflammatory disease patients, proportional increases in CSF L-kynurenine and reduced L-tryptophan accompanied the increases in CSF QUIN and kynurenic acid. These responses are consistent with induction of indoleamine-2,3-dioxygenase, the first enzyme of the kynurenine pathway which converts L-tryptophan to kynurenic acid and QUIN. Indeed, increases in both indoleamine-2,3-dioxygenase activity and QUIN concentrations were observed in the cerebral cortex of macaques infected with retrovirus, particularly those with local inflammatory lesions. Correlations between CSF QUIN, kynurenic acid and L-kynurenine with markers of immune stimulation (neopterin, white blood cell counts and IgG levels) indicate a relationship between accelerated kynurenine pathway metabolism and the degree of intracerebral immune stimulation. We conclude that inflammatory diseases are associated with accumulation of QUIN, kynurenic acid and L-kynurenine within the central nervous system, but that the available data do not support a role for QUIN in the aetiology of Huntington's disease or Alzheimer's disease. In conjunction with our previous reports that CSF QUIN concentrations are correlated to objective measures of neuropsychological deficits in HIV-1-infected patients, we hypothesize that QUIN and kynurenic acid are mediators of neuronal dysfunction and nerve cell death in inflammatory diseases. Therefore, strategies to attenuate the neurological effects of kynurenine pathway metabolites or attenuate the rate of their synthesis offer new approaches to therapy.
Collapse
|
|
33 |
489 |
2
|
Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 2007; 150:963-76. [PMID: 17339843 PMCID: PMC2013918 DOI: 10.1038/sj.bjp.0707167] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/12/2006] [Accepted: 01/11/2007] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the elderly, although a small proportion of PD patients develop the illness at a much younger age. In the former group, idiopathic PD patients, the causes of the illness have been the subject of longstanding debate with environmental toxins, mitochondrial dysfunction, abnormal protein handling and oxidative stress being suggested. One problem has been that the epidemiology of PD has offered few clues to provide evidence for a single major causative factor. Comparatively recently it has been found that in both patients and experimental models of PD in animals neuroinflammation appears to be a ubiquitous finding. These cases present with all of the classical features of inflammation including phagocyte activation, increased synthesis and release of proinflammatory cytokines and complement activation. Although this process is vital for normal function and protection in both the CNS, as in the periphery, it is postulated that in the aetiology of PD this process may spiral out of control with over activation of microglia, over production of cytokines and other proinflammatory mediators as well as the release of destructive molecules such as reactive oxygen species. Given that dopaminergic neurons in the substantia nigra are relatively vulnerable to 'stress' and the region has a large population of microglia in comparison to other CNS structures, these events may easily trigger neurodegeneration. These factors are examined in this review along with a consideration of the possible use of anti-inflammatory drugs in PD.
Collapse
|
Review |
18 |
479 |
3
|
Honore P, Rogers SD, Schwei MJ, Salak-Johnson JL, Luger NM, Sabino MC, Clohisy DR, Mantyh PW. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 2000; 98:585-98. [PMID: 10869852 DOI: 10.1016/s0306-4522(00)00110-x] [Citation(s) in RCA: 434] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this investigation was to determine whether murine models of inflammatory, neuropathic and cancer pain are each characterized by a unique set of neurochemical changes in the spinal cord and sensory neurons. All models were generated in C3H/HeJ mice and hyperalgesia and allodynia behaviorally characterized. A variety of neurochemical markers that have been implicated in the generation and maintenance of chronic pain were then examined in spinal cord and primary afferent neurons.Three days after injection of complete Freund's adjuvant into the hindpaw (a model of persistent inflammatory pain) increases in substance P, calcitonin gene-related peptide, protein kinase C gamma, and substance P receptor were observed in the spinal cord. Following sciatic nerve transection or L5 spinal nerve ligation (a model of persistent neuropathic pain) significant decreases in substance P and calcitonin gene-related peptide and increases in galanin and neuropeptide Y were observed in both primary afferent neurons and the spinal cord. In contrast, in a model of cancer pain induced by injection of osteolytic sarcoma cells into the femur, there were no detectable changes in any of these markers in either primary afferent neurons or the spinal cord. However, in this cancer-pain model, changes including massive astrocyte hypertrophy without neuronal loss, increase in the neuronal expression of c-Fos, and increase in the number of dynorphin-immunoreactive neurons were observed in the spinal cord, ipsilateral to the limb with cancer. These results indicate that a unique set of neurochemical changes occur with inflammatory, neuropathic and cancer pain in C3H/HeJ mice and further suggest that cancer induces a unique persistent pain state. Determining whether these neurochemical changes are involved in the generation and maintenance of each type of persistent pain may provide insight into the mechanisms that underlie each of these pain states.
Collapse
MESH Headings
- Animals
- Astrocytes/pathology
- Axotomy
- Behavior, Animal/physiology
- Disease Models, Animal
- Dynorphins/analysis
- Dynorphins/metabolism
- Fluorescent Antibody Technique
- Freund's Adjuvant
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Male
- Mice
- Mice, Inbred C3H
- Neoplasm Transplantation
- Neuralgia/chemically induced
- Neuralgia/metabolism
- Neuralgia/pathology
- Neuritis/metabolism
- Neuritis/pathology
- Neurons, Afferent/chemistry
- Neurons, Afferent/metabolism
- Osteolysis/metabolism
- Osteolysis/pathology
- Pain/etiology
- Pain/metabolism
- Pain/pathology
- Palpation
- Physical Stimulation
- Proto-Oncogene Proteins c-fos/analysis
- Proto-Oncogene Proteins c-fos/metabolism
- Receptors, Neurokinin-1/analysis
- Receptors, Neurokinin-1/metabolism
- Sarcoma, Experimental/complications
- Sarcoma, Experimental/metabolism
- Sarcoma, Experimental/pathology
- Sciatic Nerve/injuries
- Sciatic Nerve/metabolism
- Spinal Cord/cytology
- Spinal Cord/metabolism
- Spinal Nerves/injuries
- Spinal Nerves/metabolism
- Tumor Cells, Cultured/transplantation
Collapse
|
|
25 |
434 |
4
|
Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res 1999; 829:209-21. [PMID: 10350552 DOI: 10.1016/s0006-8993(99)01326-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Our laboratory has previously shown that glial activation and increased proinflammatory cytokine expression are observed in the rat spinal cord following peripheral nerve injuries that result in neuropathic pain behaviors. In the present study, we sought to determine whether acute peripheral inflammation induces changes in central glial and cytokine (Interleukin-1beta) expression similar to those seen following peripheral spinal nerve transection. Two models of peripheral inflammation were used in this study: formalin (5% solution) or zymosan (25 mg/ml) injected subcutaneously into the plantar portion of the left hind paw of male Holtzman-strain Sprague-Dawley rats. The rats were euthanized at 1 h, 6 h, and 1, 3, 7 days post-injection (n=4 or 5/group/time point). As expected, the animals treated with formalin showed a spontaneous pain response and mechanical allodynia that persisted for approximately 60 min following injection. The animals treated with zymosan exhibited mild spontaneous pain responses during the first hour and mechanical allodynia at 6 h and 1 day following injection. Immunohistochemistry for glial activation and cytokine expression was performed on L4-L5 spinal levels in all rats. Spinal sections from both formalin and zymosan treated animals exhibited microglial and astrocytic activation and increased Interleukin-1beta immunoreactivity at 1 and 6 h, respectively. Spinal glial activation and upregulation of Interleukin-1beta appear to parallel the development and maintenance of zymosan and formalin-induced mechanical allodynia. These findings support a unifying theory that glial activation and cytokine expression have a similar, if not related, role in producing hyperalgesia following either peripheral inflammation or peripheral nerve injury.
Collapse
|
Comparative Study |
26 |
264 |
5
|
Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer's disease. Brain Res 1998; 780:294-303. [PMID: 9507169 DOI: 10.1016/s0006-8993(97)01215-8] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory processes may play a critical role in the pathogenesis of the degenerative changes and cognitive impairments associated with Alzheimer's disease (AD). In the present study, lipopolysaccharide (LPS) from the cell wall of gram-negative bacteria was used to produce chronic, global inflammation within the brain of young rats. Chronic infusion of LPS (0.25 microgram/h) into the 4th ventricle for four weeks produced (1) an increase in the number of glial fibrillary acidic protein-positive activated astrocytes and OX-6-positive reactive microglia distributed throughout the brain, with the greatest increase occurring within the temporal lobe, particularly the hippocampus, (2) an induction in interleukin-1 beta, tumor necrosis factor-alpha and beta-amyloid precursor protein mRNA levels within the basal forebrain region and hippocampus, (3) the degeneration of hippocampal CA3 pyramidal neurons, and (4) a significant impairment in spatial memory as determined by decreased spontaneous alternation behavior on a T-maze.
Collapse
|
|
27 |
259 |
6
|
Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience 2000; 95:425-32. [PMID: 10658622 DOI: 10.1016/s0306-4522(99)00455-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virtually any neurological disorder leads to activation of resident microglia and invasion of blood-borne macrophages, which are accompanied by an increase in number and change in phenotype of astrocytes, a phenomenon generally termed reactive astrocytosis. One of the functions attributed to activation of astrocytes is thought to involve restoration of tissue damage. Hitherto, the role of astrocytes in the inflammatory reaction occurring in Parkinson's disease has not received much attention. In the present study, we examined the inflammatory events in autopsies of the substantia nigra and putamen from Parkinson's disease patients using age-matched autopsies from normal patients as controls. In the substantia nigra, activation of microglia was consistently observed in all Parkinson's disease autopsies as verified from immunohistochemical detection of CR3/43 and ferritin. Activation of resident microglia was not observed in the putamen. No differences were observed between controls and Parkinson's disease autopsies from the substantia nigra and putamen, in terms of distribution, cellular density or cellular morphology of astrocytes stained for glial fibrillary acidic protein or metallothioneins I and II, the latter sharing high affinity for metal ions and known to be induced in reactive astrocytes, possibly to exert anti-oxidative effects. Together, these findings indicate that the inflammatory process in Parkinson's disease is characterized by activation of resident microglia without reactive astrocytosis, suggesting that the progressive loss of dopaminergic neurons in Parkinson's disease is an ongoing neurodegenerative process with a minimum of involvement of the surrounding nervous tissue. The absence of reactive astrocytosis in Parkinson's disease contrasts what follows in virtually any other neurological disorder and may indicate that the inflammatory process in Parkinson's disease is a unique phenomenon.
Collapse
|
|
25 |
232 |
7
|
di Penta A, Moreno B, Reix S, Fernandez-Diez B, Villanueva M, Errea O, Escala N, Vandenbroeck K, Comella JX, Villoslada P. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One 2013; 8:e54722. [PMID: 23431360 PMCID: PMC3576396 DOI: 10.1371/journal.pone.0054722] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/14/2012] [Indexed: 12/12/2022] Open
Abstract
Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines. This model may both facilitate understanding of the events involved in neuroinflammation and aid in the development of neuroprotective therapies for the treatment of MS and other neurodegenerative diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
196 |
8
|
Jahnke U, Fischer EH, Alvord EC. Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 1985; 229:282-4. [PMID: 2409602 DOI: 10.1126/science.2409602] [Citation(s) in RCA: 189] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Post-infectious or post-vaccinal demyelinating encephalomyelitis and neuritis may be due to immunological cross-reactions evoked by specific viral antigenic determinants (epitopes) that are homologous to regions in the target myelins of the central and peripheral nervous systems. Such homologies have been found by computer searches in which decapeptides in two human myelin proteins were compared with proteins of viruses known to infect humans. These viruses include measles, Epstein-Barr, influenza A and B, and others that cause upper respiratory infections. Several regions identified in myelin basic protein and P2 protein can be related to experimental allergic encephalomyelitis or neuritis in laboratory animals.
Collapse
|
|
40 |
189 |
9
|
Weber M, Birklein F, Neundörfer B, Schmelz M. Facilitated neurogenic inflammation in complex regional pain syndrome. Pain 2001; 91:251-257. [PMID: 11275381 DOI: 10.1016/s0304-3959(00)00445-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex regional pain syndrome (CRPS) is characterized by a variety of clinical features including spontaneous pain and hyperalgesia. Increased neuropeptide release from peripheral nociceptors has been suggested as a possible pathophysiologic mechanism triggering the combination of trophic changes, edema, vasodilatation and pain. In order to verify the increased neuropeptide release in CRPS, electrically induced neurogenic vasodilatation and protein extravasation were evaluated in patients and controls. We performed a prospective study on 10 patients with acute and untreated CRPS and 10 matched healthy controls. Neurogenic inflammation was elicited by strong transcutaneous electrical stimulation via intradermal microdialysis capillaries which simultaneously enabled measurement of protein extravasation. Laser-Doppler scanning was used to assess axon reflex vasodilatation. Axon reflex vasodilatation was significantly increased in CRPS patients (438 +/- 68% of baseline vs. 306 +/- 52%; P < 0.05) and transcutaneous electrical stimulation provoked protein extravasation only in the patients (before, 0.28 +/- 0.03 mg/ml; during stimulation, 0.34 +/- 0.04 mg/ml), whereas protein concentration steadily declined during stimulation in the healthy controls (before, 0.23 +/- 0.04 mg/ml; during stimulation, 0.18 +/- 0.04; P < 0.001). The time course of electrically induced protein extravasation in the patients resembled the one observed following application of exogenous substance P (SP). We conclude that neurogenic inflammation is facilitated in CRPS. Our results suggest an increased releasability of neuropeptides in CRPS.
Collapse
|
Clinical Trial |
24 |
182 |
10
|
Frankola KA, Greig NH, Luo W, Tweedie D. Targeting TNF-α to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2011; 10:391-403. [PMID: 21288189 PMCID: PMC4663975 DOI: 10.2174/187152711794653751] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/30/2010] [Indexed: 12/21/2022]
Abstract
Inflammatory signals generated within the brain and peripheral nervous system direct diverse biological processes. Key amongst the inflammatory molecules is tumor necrosis factor-α (TNF-α), a potent pro-inflammatory cytokine that, via binding to its associated receptors, is considered to be a master regulator of cellular cascades that control a number of diverse processes coupled to cell viability, gene expression, synaptic integrity and ion homeostasis. Whereas a self-limiting neuroinflammatory response generally results in the resolution of an intrinsically or extrinsically triggered insult by the elimination of toxic material or injured tissue to restore brain homeostasis and function, in the event of an unregulated reaction, where the immune response persists, inappropriate chronic neuroinflammation can ensue. Uncontrolled neuroinflammatory activity can induce cellular dysfunction and demise, and lead to a self-propagating cascade of harmful pathogenic events. Such chronic neuroinflammation is a typical feature across a range of debilitating common neurodegenerative diseases, epitomized by Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, in which TNF-α expression appears to be upregulated and may represent a valuable target for intervention. Elaboration of the protective homeostasis signaling cascades from the harmful pathogenic ones that likely drive disease onset and progression could aid in the clinical translation of approaches to lower brain and peripheral nervous system TNF-α levels, and amelioration of inappropriate neuroinflammation.
Collapse
|
Research Support, N.I.H., Intramural |
14 |
181 |
11
|
Hartung HP, Jung S, Stoll G, Zielasek J, Schmidt B, Archelos JJ, Toyka KV. Inflammatory mediators in demyelinating disorders of the CNS and PNS. J Neuroimmunol 1992; 40:197-210. [PMID: 1331168 DOI: 10.1016/0165-5728(92)90134-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Work in both experimental models and human disorders of the central and peripheral nervous system has delineated multiple effector mechanisms that operate to produce inflammatory demyelination. The role of various soluble inflammatory mediators generated and released by both blood-borne and resident cells in this process will be reviewed. Cytokines such as interleukin (IL)-1, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha are pivotal in orchestrating immune and inflammatory cell-cell interactions and represent potentially noxious molecules to the myelin sheath, Schwann cells, and/or oligodendrocytes. Arachidonic acid metabolites, synthesized by and liberated from astrocytes, microglial cells and macrophages, are intimately involved in the inflammatory process by enhancing vascular permeability, providing chemotactic signals and modulating inflammatory cell activities. Reactive oxygen species can damage myelin by lipid peroxidation and may be cytotoxic to myelin-producing cells. They are released from macrophages and microglial cells in response to inflammatory cytokines. Activation of complement yields a number of inflammatory mediators and results in the assembly of the membrane attack complex that inserts into the myelin sheath-creating pores. Activated complement may contribute both to functional disturbance of neural impulse propagation, and to full-blown demyelination. Proteases, abundantly present at inflammatory foci, can degrade myelin. Vasoactive amines may play an important role in breaching of the blood-brain/blood-nerve barrier. The importance of nitric oxide metabolites in inflammatory demyelination merits investigation. A better understanding of the multiple effector mechanisms operating in inflammatory demyelination may help to devise more efficacious antigen non-specific therapy.
Collapse
|
Review |
33 |
160 |
12
|
Mehlhorn G, Hollborn M, Schliebs R. Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci 2000; 18:423-31. [PMID: 10817926 DOI: 10.1016/s0736-5748(00)00012-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
beta-Amyloid plaque deposition observed in brains from Alzheimer patients, might function as immune stimulus for glial/macrophages activation, which is supported by observations of activated microglia expressing interleukin (IL)-1beta and elevated IL-6 immunoreactivity in close proximity to amyloid plaques. To elucidate the mechanisms involved in beta-amyloid-mediated inflammation, transgenic mice (Tg2576) expressing high levels of the Swedish double mutation of human amyloid precursor protein and progressively developing typical beta-amyloid plaques in cortical brain regions including gliosis and astrocytosis, were examined for the expression pattern of a number of cytokines. Using ribonuclease protection assay, interleukin (IL)-1alpha,-beta, IL-1 receptor antagonist, IL-6, IL-10, IL-12, IL-18, interferon-gamma, and macrophage migration inhibitory factor (MIF) mRNA were not induced in a number of cortical areas of Tg2576 mice regardless of the postnatal ages studied ranging between 2 and 13 months. Using immunocytochemistry for IL-1alpha,beta, IL-6, tumor necrosis factor (TNF)-alpha, and macrophage chemotactic protein (MCP)-1, only IL-1beta was found to be induced in reactive astrocytes surrounding beta-amyloid deposits detected in 14-month-old Tg2576 mice. Using non-radioactive in situ hybridization glial fibrillary acidic protein (GFAP) mRNA was detected to be expressed by reactive astrocytes in close proximity to beta-amyloid plaques. The local immune response detected around cortical beta-amyloid deposits in transgenic Tg2576 mouse brain is seemingly different to that observed in brains from Alzheimer patients but may represent an initial event of chronic neuroinflammation at later stages of the disease.
Collapse
|
|
25 |
157 |
13
|
Kadlubowski M, Hughes RA, Gregson NA. Experimental allergic neuritis in the Lewis rat: characterization of the activity of peripheral myelin and its major basic protein,P2. Brain Res 1980; 184:439-54. [PMID: 6153287 DOI: 10.1016/0006-8993(80)90811-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Experimental allergic neuritis has been produced in the inbred Lewis rat in the absence of experimental allergic encephalomyelitis (EAE) using bovine intradural root myelin. The lack of EAE is probably because P1 is only weakly encephalitogenic in the rat. One of the basic proteins of bovine peripheral myelin, P2, was isolated and demonstrated to be pure by amino acid analysis and SDS PAGE. It was found to have a molecular weight of 15,400 and contained 4 mol 1/2-cystine/mol. This P2 was found to be highly neuritogenic and is probably the sole neuritogenic antigen in this system. The successful demonstration of its neuritogenicity must be due in large part to the use of the inbred Lewis rat and bovine P2, but an explanation could also involve the omission of denaturing organic solvents, the prevention of oxidative denaturation and presumably the fact that any changes which may occur are not sufficient to prevent recognition of the active site by the immune system of the inbred Lewis rat. P2 was neuritogenic down to 5 micrograms/animal. Its activity was enhanced by but not dependent on the presence of Mycobacterium in the adjuvant. This suggested that release of P2 could possibly break tolerance and produce an auto-immune disease such as the Guillain--Barre syndrome.
Collapse
|
|
45 |
157 |
14
|
Brown CM, Mulcahey TA, Filipek NC, Wise PM. Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors alpha and beta. Endocrinology 2010; 151:4916-25. [PMID: 20685874 PMCID: PMC2946152 DOI: 10.1210/en.2010-0371] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroinflammation is a common feature of many neurological disorders, and it is often accompanied by the release of proinflammatory cytokines and chemokines. Estradiol-17β (E2) exhibits antiinflammatory properties, including the suppression of proinflammatory cytokines, in the central nervous system. However, the mechanisms employed by E2 and the role(s) of estrogen receptors (ERs) ERα and ERβ are unclear. To investigate these mechanisms, we employed an in vivo lipopolysaccharide (LPS) model of systemic inflammation in ovariectomized (OVX) and OVX and E2-treated (OVX+E2) mice. Brain levels of proinflammatory cytokines (IL-1β, IL-6, and IL-12p40) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, and CXCL1/KC) were quantified in mice at 0 (sham), 3, 6, 12, and 24 h after infection using multiplex protein analysis. E2 treatment inhibited LPS-induced increases in all cytokines. In contrast, E2 treatment only suppressed CCL/RANTES chemokine concentrations. To determine whether ERα and ERβ regulate brain cytokine and chemokine levels, parallel experiments were conducted using ERα knockout and ERβ knockout mice. Our results revealed that both ERα and ERβ regulated proinflammatory cytokine and chemokine production through E2-dependent and E2-independent mechanisms. To assess whether breakdown of the blood-brain barrier is an additional target of E2 against LPS-induced neuroinflammation, we measured Evan's blue extravasation and identified distinct roles for ERα and ERβ. Taken together, these studies identify a dramatic cytokine- and chemokine-mediated neuroinflammatory response that is regulated through ERα- and ERβ-mediated ligand-dependent and ligand-independent mechanisms.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
138 |
15
|
Kim SY, Bae JC, Kim JY, Lee HL, Lee KM, Kim DS, Cho HJ. Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport 2002; 13:2483-6. [PMID: 12499853 DOI: 10.1097/00001756-200212200-00021] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The intrathecal administration of p38 MAP kinase (p38) inhibitor has been shown to reduce hyperalgesia. In the present study, we investigated the activation of p38 in the rat dorsal root ganglion (DRG) and spinal cord following peripheral tissue inflammation and nerve injury immunohistochemically. Peripheral inflammation and chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the percentage of phosphorylated (P-) p38-immunoreactive (IR) neurons, primarily small sized ones in bilateral DRGs. In contrast, following axotomy, a significant decrease in the percentage of IR neurons was observed in ipsilateral DRGs. In addition, a marked increase was observed in the number of P-p38-IR microglia in the ipsilateral laminae I-IV and IX of the spinal cord following peripheral inflammation, CCI or axotomy. These findings suggest that p38 may play an important role in hyperalgesia and the activation of the spinal microglia.
Collapse
|
|
23 |
133 |
16
|
Dothel G, Barbaro MR, Boudin H, Vasina V, Cremon C, Gargano L, Bellacosa L, De Giorgio R, Le Berre-Scoul C, Aubert P, Neunlist M, De Ponti F, Stanghellini V, Barbara G. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 2015; 148:1002-1011.e4. [PMID: 25655556 DOI: 10.1053/j.gastro.2015.01.042] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mediators released by the intestinal mucosa of patients with irritable bowel syndrome (IBS) affect the function of enteric and extrinsic sensory nerves, which can contribute to the development of symptoms. Little is known about the effects of mucosal mediators on intestinal neuroplasticity. We investigated how these mediators affect the phenotypes of colonic mucosa nerve fibers, neuron differentiation, and fiber outgrowth. METHODS We analyzed mucosal biopsy samples collected from 101 patients with IBS and 23 asymptomatic healthy individuals (controls). We measured levels of neuronal-specific enolase, growth-associated protein 43, nerve growth factor (NGF), and tyrosine kinase receptor A (NTRK1) by immunohistochemistry and enzyme-linked immunosorbent assay. Primary rat enteric neurons and human SH-SY5Y cells were incubated with supernatants from the mucosal biopsies and analyzed by morphometric and polymerase chain reaction analyses. RESULTS Compared with mucosal tissues of controls, mucosa from patients with IBS had a significant increase in the area of lamina propria occupied by neuronal-specific enolase-positive (57.7% increase) and growth-associated protein 43-positive fibers (56.1% increase) and staining density of NGF (89.3% increase) (P < .05 for all). Levels of NGF protein were also increased in tissues from patients with IBS vs controls (18% increase; P = .16) along with levels of NTRK1 (64% increase; P < .05). Mucosal supernatants from tissues of patients with IBS induced higher levels of neuritogenesis in primary culture of enteric neurons, compared with controls, and more NGF-dependent neuronal sprouting in SH-SY5Y cells. CONCLUSIONS Nerve fiber density and sprouting, as well as expression of NGF and NTRK1, are significantly increased in mucosal tissues of patients with IBS. Mucosal mediators participate to these neuroplastic changes.
Collapse
|
|
10 |
128 |
17
|
Sugiura S, Lahav R, Han J, Kou SY, Banner LR, de Pablo F, Patterson PH. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur J Neurosci 2000; 12:457-66. [PMID: 10712626 DOI: 10.1046/j.1460-9568.2000.00922.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytokine leukaemia inhibitory factor (LIF) is up-regulated in glial cells after injury to the peripheral and central nervous systems. In addition, LIF is required for the changes in neuropeptide expression that normally occur when the axons of sympathetic and sensory neurons are transected. We investigated whether LIF is also necessary for the initial inflammatory response that follows mechanical injury to the sciatic nerve and cerebral cortex of adult mice. We find that inflammatory cell infiltration into crushed sciatic nerve is significantly slower in LIF knock-out (KO) mice compared with wild-type (WT) mice. Similarly, the microglial and astroglial responses to surgical injury of the cortex are significantly slower in LIF KO mice compared with WT mice. Consistent with these in vivo results, LIF is chemotactic for peritoneal macrophages in a microchamber culture assay. Thus, LIF is a key regulator of neural injury in vivo, where it is produced by glia and can act directly on neurons, glia and inflammatory cells. We also find that the initial inflammatory response to cortical injury is diminished in interleukin (IL)-6 KO mice. Surprisingly, however, the inflammatory response in LIF-IL-6 double KO mice is very similar to that of the single KO mice, suggesting that these cytokines may act in series rather than in parallel in this response.
Collapse
|
|
25 |
126 |
18
|
Consilvio C, Vincent AM, Feldman EL. Neuroinflammation, COX-2, and ALS—a dual role? Exp Neurol 2004; 187:1-10. [PMID: 15081582 DOI: 10.1016/j.expneurol.2003.12.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 12/10/2003] [Accepted: 12/30/2003] [Indexed: 11/21/2022]
Abstract
Although the root cause of many neurodegenerative diseases is unknown, neuroinflammation may play a key role in these types of disease, including amyotrophic lateral sclerosis (ALS). In the context of neurodegeneration, it is unclear if the disease is propagated through inflammation, or whether in contrast, evidence of inflammation reflects an attempt to protect against further cellular injury. Inflammatory pathways involving the cyclooxygenase (COX) enzymes and subsequent generation of prostaglandins are potential target sites for treatments to halt the progression of ALS. In the CNS, COX enzymes are localized to neurons, astrocytes, and microglia and can be induced under various conditions. In addition, there appears to be a dual role for the prostaglandin products of COX enzymes in the nervous system. Some prostaglandins promote the survival of neurons, while others promote apoptosis. In this review, the pathways of COX activity and prostaglandin production form the center of the debate regarding the dual nature of neuroinflammation. We will also discuss how this duality may affect future treatments for neurodegenerative diseases such as ALS.
Collapse
|
|
21 |
124 |
19
|
Olsson T. Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma. J Neuroimmunol 1992; 40:211-8. [PMID: 1430152 DOI: 10.1016/0165-5728(92)90135-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many cytokines must be considered as effector and immunoregulatory molecules in neuroinflammatory diseases such as multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). We have studied the potential role of interferon-gamma (IFN-gamma) in the pathogenesis of these diseases, since this cytokine has a number of important effects such as macrophage activation, induction of MHC class I and class I antigens, and T cell homing. An immunospot assay that allows enumeration of single cells secreting IFN-gamma after short-term culture in vitro of mononuclear cell suspensions has been used. In EAE, increased numbers of IFN-gamma-secreting cells (IFN-gamma-sc) appear in the central nervous system shortly before onset of clinical signs. Such cells also increased during pharmacologically induced relapse of EAE. In later stages of EAE, memory T cells that produced IFN-gamma in response to presented antigen, recognized multiple regions of the myelin basic protein (MBP), showing that (i) myelin autoreactive T cells have the functional ability to produce this cytokine, (ii) the concept of immunodominance as to autoantigen peptide reactivity is non-absolute and time-dependent. In multiple sclerosis (MS) there are increased numbers of IFN-gamma-sc among the CSF cells. Also, there are increased numbers of memory T cells, strongly enriched to the cerebrospinal fluid, which upon recognition of several myelin antigens and several MBP peptide stretches, produce IFN-gamma. Taken together, the data are consistent with a role for IFN-gamma as a key mediator in inflammatory demyelinating diseases.
Collapse
|
Review |
33 |
118 |
20
|
Galeazza MT, Garry MG, Yost HJ, Strait KA, Hargreaves KM, Seybold VS. Plasticity in the synthesis and storage of substance P and calcitonin gene-related peptide in primary afferent neurons during peripheral inflammation. Neuroscience 1995; 66:443-58. [PMID: 7477885 DOI: 10.1016/0306-4522(94)00545-g] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several indices of peptidergic, primary afferent neural transmission in rat at the level of the lumbar spinal cord exhibited differential changes over time in response to adjuvant-induced inflammation of the hindpaw. The indices were measurements of the production of messenger RNA encoding the precursors for substance P and calcitonin gene-related peptide in dorsal root ganglia, the storage of substance P and calcitonin gene-related peptide in the dorsal spinal cord and the release of the peptides evoked by application of capsaicin to the dorsal spinal cord. A 47% decrease in the content of immunoreactive substance P in the dorsal half of the lumbar spinal cord, as determined by radioimmunoassay, was measured at 6 h following the injection of complete Freund's adjuvant into the hindpaw. Decreased content of immunoreactive SP persisted for four days, but was no longer present at eight days after the adjuvant injection. The content of immunoreactive calcitonin gene-related peptide in the dorsal spinal cord was decreased by 29% at one day following the injection of adjuvant into the rat hindpaw and 43% at two days; the content then increased to a level greater than that of control animals at eight days. The amount of messenger RNA encoding preprotachykinin and prepro-calcitonin gene-related peptide in L4-L6 dorsal root ganglia was determined from northern blot analysis of the total messenger RNA extracted from the dorsal root ganglia. Each species of messenger RNA had increased compared to the control animals at two days following the injection of adjuvant into the rat hindpaws and remained elevated after eight days. Thus, an increase in the messenger RNAs encoding substance P and calcitonin gene-related peptide in the dorsal root ganglia preceeded the recovery of the content of the peptides in the spinal cord. Morphometric studies of calcitonin gene-related peptide-immunoreactive perikarya in the L4 dorsal root ganglia indicated that the increase in messenger RNA occurred in neurons of the size that normally express calcitonin gene-related protein. Radioimmunoassay of the superfusate of the dorsal half of the lumbar spinal cord was used to measure the release of immunoreactive substance P and immunoreactive calcitonin gene-related protein in vitro. Although the basal release of immunoreactive substance P and immunoreactive calcitonin-gene related protein from the dorsal spinal cord was constant throughout the time points examined, changes occurred in the release of peptide evoked by 10 microM capsaicin. The capsaicin-evoked release of immunoreactive substance P was decreased at 6 h and eight days post-injection of adjuvant.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
30 |
118 |
21
|
Birder LA, Perl ER. Expression of alpha2-adrenergic receptors in rat primary afferent neurones after peripheral nerve injury or inflammation. J Physiol 1999; 515 ( Pt 2):533-42. [PMID: 10050019 PMCID: PMC2269161 DOI: 10.1111/j.1469-7793.1999.533ac.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Immunocytochemistry with polyclonal antibodies directed against specific fragments of intracellular loops of alpha2A- and alpha2C-adrenergic receptors (alpha2A-AR, alpha2C-AR) was used to explore the possibility that expression of these receptors in dorsal root ganglion (DRG) neurones of rat alters as a result of peripheral nerve injury or localized inflammation. 2. Small numbers of neurones with positive alpha2A-AR immunoreactivity (alpha2A-AR-IR) were detected in DRG from normal animals or contralateral to nerve lesions. In contrast, after complete or partial sciatic nerve transection the numbers of ipsilateral L4 and L5 DRG somata expressing alpha2A-AR-IR sharply increased (>5-fold). There was no discernible change in the number of DRG neurones exhibiting alpha2A-AR-IR innervating a region in association with localized chemically induced inflammation. 3. After nerve injury, double labelling with Fluoro-Gold, a marker of retrograde transport from transected fibres, or by immunoreactivity for c-jun protein, an indicator of injury and regeneration, suggested that many of the neurones expressing alpha2A-AR-IR were uninjured by the sciatic lesions. 4. In general the largest proportionate increase in numbers of neurones labelled by alpha2A-AR-IR after nerve lesions appeared in the medium-large diameter range (31-40 microm), a group principally composed of cell bodies of low threshold mechanoreceptors. The number of small diameter DRG neurones labelled by alpha2A-AR-IR, a category likely to include somata of nociceptors, also increased but proportionately less. 5. Relatively few DRG neurones exhibited alpha2C-AR-IR; this population did not appear to change after either nerve lesions or inflammation. 6. These observations are considered in relation to effects of nerve injury on excitation of primary afferent neurones by sympathetic activity or adrenergic agents, sympathetically related neuropathy and reports of sprouting of sympathetic fibres in DRG.
Collapse
|
research-article |
26 |
104 |
22
|
Ferretti G, Bacchetti T, Principi F, Di Ludovico F, Viti B, Angeleri VA, Danni M, Provinciali L. Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler 2016; 11:677-82. [PMID: 16320727 DOI: 10.1191/1352458505ms1240oa] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Paraoxonase, an enzyme associated with high density lipoproteins (HDL), plays an important role in the anti-oxidant and anti-inflammatory properties exerted by HDL. Increasing evidence supports a role of free radicals and oxidative stress in the inflammatory processes and in the pathogenesis of multiple sclerosis (MS). The aim of this study was to further investigate the relationship between oxidative damage and MS; therefore we compared the paraoxonase activity and levels of cholesteryl ester hydroperoxides (CE-OOH), as marker of lipid peroxidation, in plasma isolated from healthy subjects (n=89) and from MS patients (n=24) in the early stage disability (EDSSB<3.5). Our results demonstrated for the first time that the activity of paraoxonase in the plasma of MS subjects was significantly lower with respect to controls (p<0.001). Moreover, our results showed a significant increase in the levels of CE-OOH in plasma from MS subjects (p<0.001). CE-OOH are biologically active substances derived from the oxidation of cholesteryl ester localized in the hydrophobic core of plasma lipoproteins (HDL, LDL). Therefore, our study demonstrates alterations of lipoprotein peroxidation in MS and provides further evidence that oxidative stress and impairment of the anti-oxidant system may play a role in MS.
Collapse
|
|
9 |
102 |
23
|
Pertin M, Ji RR, Berta T, Powell AJ, Karchewski L, Tate SN, Isom LL, Woolf CJ, Gilliard N, Spahn DR, Decosterd I. Upregulation of the voltage-gated sodium channel beta2 subunit in neuropathic pain models: characterization of expression in injured and non-injured primary sensory neurons. J Neurosci 2006; 25:10970-80. [PMID: 16306410 PMCID: PMC6725885 DOI: 10.1523/jneurosci.3066-05.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of abnormal primary sensory neuron excitability and neuropathic pain symptoms after peripheral nerve injury is associated with altered expression of voltage-gated sodium channels (VGSCs) and a modification of sodium currents. To investigate whether the beta2 subunit of VGSCs participates in the generation of neuropathic pain, we used the spared nerve injury (SNI) model in rats to examine beta2 subunit expression in selectively injured (tibial and common peroneal nerves) and uninjured (sural nerve) afferents. Three days after SNI, immunohistochemistry and Western blot analysis reveal an increase in the beta2 subunit in both the cell body and peripheral axons of injured neurons. The increase persists for >4 weeks, although beta2 subunit mRNA measured by real-time reverse transcription-PCR and in situ hybridization remains unchanged. Although injured neurons show the most marked upregulation,beta2 subunit expression is also increased in neighboring non-injured neurons and a similar pattern of changes appears in the spinal nerve ligation model of neuropathic pain. That increased beta2 subunit expression in sensory neurons after nerve injury is functionally significant, as demonstrated by our finding that the development of mechanical allodynia-like behavior in the SNI model is attenuated in beta2 subunit null mutant mice. Through its role in regulating the density of mature VGSC complexes in the plasma membrane and modulating channel gating, the beta2 subunit may play a key role in the development of ectopic activity in injured and non-injured sensory afferents and, thereby, neuropathic pain.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
96 |
24
|
Poon A, Sawynok J. Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 1998; 74:235-45. [PMID: 9520238 DOI: 10.1016/s0304-3959(97)00186-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study examined the spinal antinociceptive effects of adenosine analogs and inhibitors of adenosine kinase and adenosine deaminase in the carrageenan-induced thermal hyperalgesia model in the rat. The possible enhancement of the antinociceptive effects of adenosine kinase inhibitors by an adenosine deaminase inhibitor also was investigated. Unilateral hindpaw inflammation was induced by an intraplantar injection of lambda carrageenan (2 mg/100 microl), which consistently produced significant paw swelling and thermal hyperalgesia. Drugs were administered intrathecally, either by acute percutaneous lumbar puncture (individual agents and combinations) or via an intrathecal catheter surgically implanted 7-10 days prior to drug testing (antagonist experiments). N6-cyclohexyladenosine (CHA; adenosine A1 receptor agonist; 0.01-1 nmol), 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenos ine (CGS21680; adenosine A2A receptor agonist; 0.1-10 nmol), 5'-amino-5'-deoxyadenosine (NH2dAdo; adenosine kinase inhibitor: 10-300 nmol), and 5-iodotubercidin (ITU; adenosine kinase inhibitor; 0.1-100 nmol) produced, to varying extents, dose-dependent antinociception. No analgesia was seen following injection of 2'-deoxycoformycin (dCF; an adenosine deaminase inhibitor; 100-300 nmol). Reversal of drug effects by caffeine (non-selective adenosine A1/A2 receptor antagonist; 515 nmol) confirmed the involvement of the adenosine receptor, while antagonism by 8-cyclopentyl-1,3-dimethylxanthine (CPT; adenosine A1 receptor antagonist; 242 nmol), but not 3,7-dimethyl-1-propargylxanthine (DMPX; adenosine A2A receptor antagonist; 242 nmol), evidenced an adenosine A1 receptor mediated spinal antinociception by NH2dAdo. dCF (100 nmol), which was inactive by itself, enhanced the effects of 10 nmol and 30 nmol NH2dAdo. Enhancement of the antinociceptive effect of ITU by dCF was less pronounced. None of the antinociceptive drug regimens had any effect on paw swelling. These results demonstrate that both directly and indirectly acting adenosine agents, when administered spinally, produce antinociception through activation of spinal adenosine A1 receptors in an inflammatory model of thermal hyperalgesia. The spinal antinociceptive effects of selected adenosine kinase inhibitors can be significantly augmented when administered simultaneously with an adenosine deaminase inhibitor.
Collapse
|
|
27 |
95 |
25
|
Shi TS, Winzer-Serhan U, Leslie F, Hökfelt T. Distribution and regulation of alpha(2)-adrenoceptors in rat dorsal root ganglia. Pain 2000; 84:319-30. [PMID: 10666537 DOI: 10.1016/s0304-3959(99)00224-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using in situ hybridization with riboprobes the distribution of alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptor mRNAs were studied in normal rat dorsal root ganglia and after unilateral peripheral nerve injury (total nerve transection) or inflammation. The most common adrenoceptor mRNA was of the alpha(2C) subtype (almost 80% of all neuron profiles) followed by the alpha(2A) subtype (almost 20%), whereas alpha(2B)-adrenoceptor mRNA was only found in small numbers of neuron profiles. The most dramatic effect of peripheral nerve injury was observed for the alpha(2A)-adrenoceptor mRNA, which increased to 45% of all neuron profiles. In contrast, alpha(2C) adrenoceptor mRNA showed a small decrease in this situation. Carrageenan-induced peripheral inflammation did not affect the percentage of alpha(2A)- or alpha(2C)-adrenoceptor mRNA-positive profiles. These findings suggest that, if any of the alpha(2) adrenoceptor, the alpha(2A) subtype represents the most likely candidate in DRG neurons to be involved in sympathetically maintained pain.
Collapse
|
|
25 |
92 |