1
|
Abstract
The microbiome has received increasing attention over the last 15 years. Although gut microbes have been explored for several decades, investigations of the role of microorganisms that reside in the human gut has attracted much attention beyond classical infectious diseases. For example, numerous studies have reported changes in the gut microbiota during not only obesity, diabetes, and liver diseases but also cancer and even neurodegenerative diseases. The human gut microbiota is viewed as a potential source of novel therapeutics. Between 2013 and 2017, the number of publications focusing on the gut microbiota was, remarkably, 12 900, which represents four-fifths of the total number of publications over the last 40 years that investigated this topic. This review discusses recent evidence of the impact of the gut microbiota on metabolic disorders and focus on selected key mechanisms. This review also aims to provide a critical analysis of the current knowledge in this field, identify putative key issues or problems and discuss misinterpretations. The abundance of metagenomic data generated on comparing diseased and healthy subjects can lead to the erroneous claim that a bacterium is causally linked with the protection or the onset of a disease. In fact, environmental factors such as dietary habits, drug treatments, intestinal motility and stool frequency and consistency are all factors that influence the composition of the microbiota and should be considered. The cases of the bacteria Prevotella copri and Akkermansia muciniphila will be discussed as key examples.
Collapse
|
Review |
7 |
922 |
2
|
Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017; 595:489-503. [PMID: 27641441 PMCID: PMC5233671 DOI: 10.1113/jp273106] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022] Open
Abstract
There is a growing realisation that the gut-brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age-related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long-term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics.
Collapse
|
Review |
8 |
513 |
3
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
|
Review |
6 |
403 |
4
|
Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021; 13:nu13062099. [PMID: 34205336 PMCID: PMC8234057 DOI: 10.3390/nu13062099] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that gut microbiota is important in the regulation of brain activity and cognitive functions. Microbes mediate communication among the metabolic, peripheral immune, and central nervous systems via the microbiota–gut–brain axis. However, it is not well understood how the gut microbiome and neurons in the brain mutually interact or how these interactions affect normal brain functioning and cognition. We summarize the mechanisms whereby the gut microbiota regulate the production, transportation, and functioning of neurotransmitters. We also discuss how microbiome dysbiosis affects cognitive function, especially in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
Collapse
|
Review |
4 |
389 |
5
|
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 2017; 74:3769-3787. [PMID: 28643167 PMCID: PMC11107790 DOI: 10.1007/s00018-017-2550-9] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/05/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut-brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis-all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson's and Alzheimer's diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.
Collapse
|
Review |
8 |
348 |
6
|
Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. Microbiome-microglia connections via the gut-brain axis. J Exp Med 2019; 216:41-59. [PMID: 30385457 PMCID: PMC6314531 DOI: 10.1084/jem.20180794] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/08/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident immune cells in the brain, are essential for modulating neurogenesis, influencing synaptic remodeling, and regulating neuroinflammation by surveying the brain microenvironment. Microglial dysfunction has been implicated in the onset and progression of several neurodevelopmental and neurodegenerative diseases; however, the multitude of factors and signals influencing microglial activity have not been fully elucidated. Microglia not only respond to local signals within the brain but also receive input from the periphery, including the gastrointestinal (GI) tract. Recent preclinical findings suggest that the gut microbiome plays a pivotal role in regulating microglial maturation and function, and altered microbial community composition has been reported in neurological disorders with known microglial involvement in humans. Collectively, these findings suggest that bidirectional crosstalk between the gut and the brain may influence disease pathogenesis. Herein, we discuss recent studies showing a role for the gut microbiome in modulating microglial development and function in homeostatic and disease conditions and highlight possible future research to develop novel microbial treatments for disorders of the brain.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
299 |
7
|
Rook GAW. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the 'hygiene' or 'old friends' hypothesis. Clin Exp Immunol 2010; 160:70-9. [PMID: 20415854 PMCID: PMC2841838 DOI: 10.1111/j.1365-2249.2010.04133.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2010] [Indexed: 12/18/2022] Open
Abstract
The current synthesis of the 'hygiene hypothesis' suggests that the recent increase in chronic inflammatory disorders is at least partly attributable to immunodysregulation resulting from lack of exposure to microorganisms that have evolved an essential role in the establishment of the immune system. This document provides a background for discussion of the following propositions. 1. The essential role of these organisms is an example of 'evolved dependence'. 2. The most relevant organisms are those that co-evolved with mammals, and already accompanied early hominids in the Paleolithic. 3. More recently evolved 'childhood infections' are not likely to have evolved this role, and recent epidemiology supports this contention. 4. This mechanism is interacting with other modern environmental changes that also lead to enhanced inflammatory responses [inappropriate diet, obesity, psychological stress, vitamin D deficiency, pollution (dioxins), etc.]. 5. The range of chronic inflammatory disorders that is affected is potentially larger than usually assumed [allergies, autoimmunity, inflammatory bowel disease, but also vascular disease, some cancers, depression/anxiety (when accompanied by raised inflammatory cytokines), and perhaps neurodegenerative disorders and type 2 diabetes].
Collapse
|
research-article |
15 |
209 |
8
|
Gerhardt S, Mohajeri MH. Changes of Colonic Bacterial Composition in Parkinson's Disease and Other Neurodegenerative Diseases. Nutrients 2018; 10:E708. [PMID: 29857583 PMCID: PMC6024871 DOI: 10.3390/nu10060708] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years evidence has emerged that neurodegenerative diseases (NDs) are strongly associated with the microbiome composition in the gut. Parkinson's disease (PD) is the most intensively studied neurodegenerative disease in this context. In this review, we performed a systematic evaluation of the published literature comparing changes in colonic microbiome in PD to the ones observed in other NDs including Alzheimer's disease (AD), multiple system atrophy (MSA), multiple sclerosis (MS), neuromyelitis optica (NMO) and amyotrophic lateral sclerosis (ALS). To enhance the comparability of different studies, only human case-control studies were included. Several studies showed an increase of Lactobacillus, Bifidobacterium, Verrucomicrobiaceae and Akkermansia in PD. A decrease of Faecalibacterium spp., Coprococcus spp., Blautia spp., Prevotella spp. and Prevotellaceae was observed in PD. On a low taxonomic resolution, like the phylum level, the changes are not disease-specific and are inconsistent. However, on a higher taxonomic resolution like genus or species level, a minor overlap was observed between PD and MSA, both alpha synucleinopathies. We show that standardization of sample collection and analysis is necessary for ensuring the reproducibility and comparability of data. We also provide evidence that assessing the microbiota composition at high taxonomic resolution reveals changes in relative abundance that may be specific to or characteristic of one disease or disease group, and might evolve discriminative power. The interactions between bacterial species and strains and the co-abundances must be investigated before assumptions about the effects of specific bacteria on the host can be made with certainty.
Collapse
|
Review |
7 |
199 |
9
|
Pellegrini C, Antonioli L, Colucci R, Blandizzi C, Fornai M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol 2018; 136:345-361. [PMID: 29797112 DOI: 10.1007/s00401-018-1856-5] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022]
Abstract
Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.
Collapse
|
Review |
7 |
194 |
10
|
Abstract
The gut microbiome is increasingly implicated in modifying susceptibility to and progression of neurodegenerative diseases (NDs). In this review, we discuss roles for the microbiome in aging and in NDs. In particular, we summarize findings from human studies on microbiome alterations in Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We assess animal studies of genetic and environmental models for NDs that investigate how manipulations of the microbiome causally impact the development of behavioral and neuropathological endophenotypes of disease. We additionally evaluate the likely immunological, neuronal, and metabolic mechanisms for how the gut microbiota may modulate risk for NDs. Finally, we speculate on cross-cutting features for microbial influences across multiple NDs and consider the potential for microbiome-targeted interventions for NDs.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
158 |
11
|
Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber JR, Golenbock DT, Vartanian T. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. THE JOURNAL OF IMMUNOLOGY 2006; 177:583-92. [PMID: 16785556 DOI: 10.4049/jimmunol.177.1.583] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Group B Streptococcus (GBS) is a major cause of bacterial meningitis and neurological morbidity in newborn infants. The cellular and molecular mechanisms by which this common organism causes CNS injury are unknown. We show that both heat-inactivated whole GBS and a secreted proteinaceous factor from GBS (GBS-F) induce neuronal apoptosis via the activation of murine microglia through a TLR2-dependent and MyD88-dependent pathway in vitro. Microglia, astrocytes, and oligodendrocytes, but not neurons, express TLR2. GBS as well as GBS-F induce the synthesis of NO in microglia derived from wild-type but not TLR2(-/-) or MyD88(-/-) mice. Neuronal death in neuronal cultures complemented with wild-type microglia is NO-dependent. We show for the first time a TLR-mediated mechanism of neuronal injury induced by a clinically relevant bacterium. This study demonstrates a causal molecular relationship between infection with GBS, activation of the innate immune system in the CNS through TLR2, and neurodegeneration. We suggest that this process contributes substantially to the serious morbidity associated with neonatal GBS meningitis and may provide a potential therapeutic target.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
133 |
12
|
Luan H, Wang X, Cai Z. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. MASS SPECTROMETRY REVIEWS 2019; 38:22-33. [PMID: 29130504 DOI: 10.1002/mas.21553] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/12/2017] [Indexed: 05/10/2023]
Abstract
Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the investigation of underlying mechanism of therapeutic strategies.
Collapse
|
Review |
6 |
127 |
13
|
Török N, Tanaka M, Vécsei L. Searching for Peripheral Biomarkers in Neurodegenerative Diseases: The Tryptophan-Kynurenine Metabolic Pathway. Int J Mol Sci 2020; 21:E9338. [PMID: 33302404 PMCID: PMC7762583 DOI: 10.3390/ijms21249338] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a central role for tailoring a personalized therapeutic plan for patients who suffered from neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, among others. Nevertheless, the use of biomarkers in clinical practice is still underappreciated and data presented in biomarker research for clinical use is still uncompelling, compared to the abundant data available for drug research and development. So is the case with kynurenines (KYNs) and the kynurenine pathway (KP) enzymes, which have been associated with a wide range of diseases including cancer, autoimmune diseases, inflammatory diseases, neurologic diseases, and psychiatric disorders. This review article discusses current knowledge of KP alterations observed in the central nervous system as well as the periphery, its involvement in pathogenesis and disease progression, and emerging evidence of roles of microbiota in the gut-brain axis, searching for practical peripheral biomarkers which ensure personalized treatment plans for neurodegenerative diseases.
Collapse
|
Review |
5 |
87 |
14
|
Peterson CT. Dysfunction of the Microbiota-Gut-Brain Axis in Neurodegenerative Disease: The Promise of Therapeutic Modulation With Prebiotics, Medicinal Herbs, Probiotics, and Synbiotics. J Evid Based Integr Med 2020; 25:2515690X20957225. [PMID: 33092396 PMCID: PMC7586271 DOI: 10.1177/2515690x20957225] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/12/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022] Open
Abstract
Recent data suggest gut microbiota dysbiosis as a contributing factor in neurodegenerative diseases, such as Parkinson's Disease (PD) and Alzheimer's Disease (AD), and these pathologies may manifest via the microbiota-gut-brain-axis, which comprises bidirectional communication through neuroimmune, neuroendocrine, and direct neural pathways such as the vagus nerve. Preclinical and human clinical trial data reveal exciting potential for novel treatment targets and therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics in health, aging, and neurodegeneration and are reviewed here. While greater insights and characterization of the microbiota-gut-brain axis have been revealed over the past decade, salient questions related to the pathology, pathogenesis and clinical treatment of the axis in the context of both health and neurodegenerative disease remain and are discussed in this review. Future directions such as additional well-controlled, large scale, longitudinal human clinical trials are urgently needed to further elucidate both mechanism and therapeutic opportunity in health, neurological disease, and disease subpopulations to ensure that the next decade ushers the dawn of targeted therapeutic modulation of the microbiota-gut-brain axis.
Collapse
|
Review |
5 |
75 |
15
|
Abstract
Amyloidogenesis is the aggregation of soluble proteins into structurally conserved fibers. Amyloid fibers are distinguished by their resistance to proteinase K, tinctorial properties and beta-sheet-rich secondary structure. Amyloid formation is a hallmark of many human diseases including Alzheimer's, Huntington's and the prion diseases. Therefore, understanding amyloidogenesis will provide insights into the development of therapeutics that target these debilitating diseases. A new class of ;functional' amyloids promises a unique glimpse at how nature has harnessed the amyloid fiber to accomplish important physiological tasks. Functional amyloids are produced by organisms spanning all aspects of cellular life. Herein we review amyloidogenesis, with special attention focused on the similarities and differences between the best characterized disease-associated amyloidogenic protein amyloid-beta and the formation of several functional amyloids. The implications of studying functional amyloidogenesis and the strategies organisms employ to limit exposure to toxic intermediates will also be discussed.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
74 |
16
|
Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME, Al Khodor S, Al-Asmakh M, Abdel-Aziz H, Cenciarelli C. Human Microbiome and its Association With Health and Diseases. J Cell Physiol 2016; 231:1688-1694. [PMID: 26660761 DOI: 10.1002/jcp.25284] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
Human microbiota are distinct communities of microorganisms that resides at different body niches. Exploration of the human microbiome has become a reality due to the availability of powerful metagenomics and metatranscriptomic analysis technologies. Recent advances in sequencing and bioinformatics over the past decade help provide a deep insight into the nature of the host-microbial interactions and identification of potential deriver genes and pathways associated with human health, well-being, and predisposition to different diseases. In the present review, we outline recent studies devoted to elucidate the possible link between the microbiota and various type of diseases. The present review also highlights the potential utilization of microbiota as a potential therapeutic option to treat a wide array of human diseases. J. Cell. Physiol. 231: 1688-1694, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
|
Review |
9 |
68 |
17
|
Hair R, Sakaki JR, Chun OK. Anthocyanins, Microbiome and Health Benefits in Aging. Molecules 2021; 26:537. [PMID: 33494165 PMCID: PMC7864342 DOI: 10.3390/molecules26030537] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The percentage of individuals over the age of 60 is projected to reach 22% by 2050; chronic diseases associated with aging can present challenges for these individuals. Anthocyanins and the gut microbiome have each been studied as independent influencers of health. Both these factors have shown to have a positive effect on cardiovascular and bone health in individuals, as well as on the prevention or treatment of certain forms of cancers. Anthocyanins have shown to modulate the composition of the gut microbiome and may have overlapping mechanisms in the prevention and treatment of cardiovascular disease, cancer, neurodegenerative disorders and aging-associated bone loss. These health outcomes are responsible for the hospitalization and deaths of millions of Americans every year and they cost the United States billions of dollars each year to maintain, prevent and treat. Alternative methods of treatment and prevention are desired since conventional methods (surgical and pharmacological methods, physical therapy, etc.) can be costly and have significant side effects; evidence suggests that anthocyanins and the gut microbiome may be potential avenues for this. This review evaluates the findings of existing literature on the role of anthocyanins and the gut microbiome on health and their potential as a natural therapeutic agent or a target organ to provide an alternative to the conventional methods of disease prevention and treatment.
Collapse
|
Review |
4 |
53 |
18
|
Toledo ARL, Monroy GR, Salazar FE, Lee JY, Jain S, Yadav H, Borlongan CV. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:1184. [PMID: 35163103 PMCID: PMC8834995 DOI: 10.3390/ijms23031184] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.
Collapse
|
Review |
3 |
45 |
19
|
Holtcamp W. The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A110-6. [PMID: 22382274 PMCID: PMC3295368 DOI: 10.1289/ehp.120-a110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
News |
13 |
44 |
20
|
Pisa D, Alonso R, Carrasco L. Parkinson's Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue. Int J Biol Sci 2020; 16:1135-1152. [PMID: 32174790 PMCID: PMC7053320 DOI: 10.7150/ijbs.42257] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by motor disorders and the destruction of dopaminergic neurons in the substantia nigra pars compacta. In addition to motor disability, many patients with PD present a spectrum of clinical symptoms, including cognitive decline, psychiatric alterations, loss of smell and bladder dysfunction, among others. Neuroinflammation is one of the most salient features of PD, but the nature of the trigger remains unknown. A plausible mechanism to explain inflammation and the range of clinical symptoms in these patients is the presence of systemic microbial infection. Accordingly, the present study provides extensive evidence for the existence of mixed microbial infections in the central nervous system (CNS) of patients with PD. Assessment of CNS sections by immunohistochemistry using specific antibodies revealed the presence of both fungi and bacteria. Moreover, different regions of the CNS were positive for a variety of microbial morphologies, suggesting infection by a number of microorganisms. Identification of specific fungal and bacterial species in different CNS regions from six PD patients was accomplished using nested PCR analysis and next-generation sequencing, providing compelling evidence of polymicrobial infections in the CNS of PD. Most of the fungal species identified belong to the genera Botrytis, Candida, Fusarium and Malassezia. Some relevant bacterial genera were Streptococcus and Pseudomonas, with most bacterial species belonging to the phyla Actinobacteria and Proteobacteria. Interestingly, we noted similarities and differences between the microbiota present in the CNS of patients with PD and that in other neurodegenerative diseases. Overall, our observations lend strong support to the concept that mixed microbial infections contribute to or are a risk factor for the neuropathology of PD. Importantly, these results provide the basis for effective treatments of this disease using already approved and safe antimicrobial therapeutics.
Collapse
|
research-article |
5 |
44 |
21
|
Lei W, Cheng Y, Gao J, Liu X, Shao L, Kong Q, Zheng N, Ling Z, Hu W. Akkermansia muciniphila in neuropsychiatric disorders: friend or foe? Front Cell Infect Microbiol 2023; 13:1224155. [PMID: 37492530 PMCID: PMC10363720 DOI: 10.3389/fcimb.2023.1224155] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
An accumulating body of evidence suggests that the bacterium Akkermansia muciniphila exhibits positive systemic effects on host health, mainly by improving immunological and metabolic functions, and it is therefore regarded as a promising potential probiotic. Recent clinical and preclinical studies have shown that A. muciniphila plays a vital role in a variety of neuropsychiatric disorders by influencing the host brain through the microbiota-gut-brain axis (MGBA). Numerous studies observed that A. muciniphila and its metabolic substances can effectively improve the symptoms of neuropsychiatric disorders by restoring the gut microbiota, reestablishing the integrity of the gut mucosal barrier, regulating host immunity, and modulating gut and neuroinflammation. However, A. muciniphila was also reported to participate in the development of neuropsychiatric disorders by aggravating inflammation and influencing mucus production. Therefore, the exact mechanism of action of A. muciniphila remains much controversial. This review summarizes the proposed roles and mechanisms of A. muciniphila in various neurological and psychiatric disorders such as depression, anxiety, Parkinson's disease, Alzheimer's disease, multiple sclerosis, strokes, and autism spectrum disorders, and provides insights into the potential therapeutic application of A. muciniphila for the treatment of these conditions.
Collapse
|
Review |
2 |
39 |
22
|
Zyoud SH, Smale S, Waring WS, Sweileh WM, Al-Jabi SW. Global research trends in microbiome-gut-brain axis during 2009-2018: a bibliometric and visualized study. BMC Gastroenterol 2019; 19:158. [PMID: 31470803 PMCID: PMC6716890 DOI: 10.1186/s12876-019-1076-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pathways and mechanism by which associations between the gut microbiome and the brain, termed the microbiome-gut-brain axis (MGBA), are manifest but remain to be fully elucidated. This study aims to use bibliometric analysis to estimate the global activity within this rapidly developing field and to identify particular areas of focus that are of current relevance to the MGBA during the last decade (2009-2018). METHODS The current study uses the Scopus for data collection. We used the key terms "microbiome-gut-brain axis" and its synonyms because we are concerned with MGBA per se as a new concept in research rather than related topics. A VOSviewer version 1.6.11 was used to visualize collaboration pattern between countries and authors, and evolving research topics by analysis of the term co-occurrence in the title and abstract of publications. RESULTS Between 2009 and 2018, there were 51,504 published documents related to the microbiome, including 1713 articles related to the MGBA: 829 (48.4%) original articles, 658(38.4%) reviews, and 226 (13.2%) other articles such as notes, editorials or letters. The USA took the first place with 385 appearances, followed by Ireland (n = 161), China (n = 155), and Canada (n = 144).The overall citation h-index was 106, and the countries with the highest h-index values were the USA (69), Ireland (58), and Canada (43). The cluster analysis demonstrated that the dominant fields of the MGBA include four clusters with four research directions: "modeling MGBA in animal systems", "interplay between the gut microbiota and the immune system", "irritable bowel syndrome related to gut microbiota", and "neurodegenerative diseases related to gut microbiota". CONCLUSIONS This study demonstrates that the research on the MGBA has been becoming progressively more extensive at global level over the past 10 years. Overall, our study found that a large amount of work on MGBA focused on immunomodulation, irritable bowel syndrome, and neurodevelopmental disorders. Despite considerable progress illustrating the communication between the gut microbiome and the brain over the past 10 years, many issues remain about their relevance for therapeutic intervention of many diseases.
Collapse
|
research-article |
6 |
36 |
23
|
Cox LM, Abou-El-Hassan H, Maghzi AH, Vincentini J, Weiner HL. The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Res 2019; 1724:146385. [PMID: 31419428 PMCID: PMC6886714 DOI: 10.1016/j.brainres.2019.146385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Several neurologic diseases exhibit different prevalence and severity in males and females, highlighting the importance of understanding the influence of biologic sex and gender. Beyond host-intrinsic differences in neurologic development and homeostasis, evidence is now emerging that the microbiota is an important environmental factor that may account for differences between men and women in neurologic disease. The gut microbiota is composed of trillions of bacteria, archaea, viruses, and fungi, that can confer benefits to the host or promote disease. There is bidirectional communication between the intestinal microbiota and the brain that is mediated via immunologic, endocrine, and neural signaling pathways. While there is substantial interindividual variation within the microbiota, differences between males and females can be detected. In animal models, sex-specific microbiota differences can affect susceptibility to chronic diseases. In this review, we discuss the ways in which neurologic diseases may be regulated by the microbiota in a sex-specific manner.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
31 |
24
|
Martinez BA, Kim H, Ray A, Caldwell GA, Caldwell KA. A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans. Cell Death Dis 2015; 6:e1908. [PMID: 26469957 PMCID: PMC4632299 DOI: 10.1038/cddis.2015.270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/14/2023]
Abstract
Gene-by-environment interactions are thought to underlie the majority of idiopathic cases of neurodegenerative disease. Recently, we reported that an environmental metabolite extracted from Streptomyces venezuelae increases ROS and damages mitochondria, leading to eventual neurodegeneration of C. elegans dopaminergic neurons. Here we link those data to idiopathic disease models that predict loss of protein handling as a component of disorder progression. We demonstrate that the bacterial metabolite leads to proteostatic disruption in multiple protein-misfolding models and has the potential to synergistically enhance the toxicity of aggregate-prone proteins. Genetically, this metabolite is epistatically regulated by loss-of-function to pink-1, the C. elegans PARK6 homolog responsible for mitochondrial maintenance and autophagy in other animal systems. In addition, the metabolite works through a genetic pathway analogous to loss-of-function in the ubiquitin proteasome system (UPS), which we find is also epistatically regulated by loss of PINK-1 homeostasis. To determine remitting counter agents, we investigated several established antioxidants and found that glutathione (GSH) can significantly protect against metabolite-induced proteostasis disruption. In addition, GSH protects against the toxicity of MG132 and can compensate for the combined loss of both pink-1 and the E3 ligase pdr-1, a Parkin homolog. In assessing the impact of this metabolite on mitochondrial maintenance, we observe that it causes fragmentation of mitochondria that is attenuated by GSH and an initial surge in PINK-1-dependent autophagy. These studies mechanistically advance our understanding of a putative environmental contributor to neurodegeneration and factors influencing in vivo neurotoxicity.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
30 |
25
|
Raval U, Harary J, Zeng E, Pasinetti GM. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Rev Neurother 2020; 20:673-686. [PMID: 32459513 PMCID: PMC7387222 DOI: 10.1080/14737175.2020.1775585] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Age related neurodegenerative disorders affect millions of people around the world. The role of the gut microbiome (GM) in neurodegenerative disorders has been elucidated over the past few years. Dysbiosis of the gut microbiome ultimately results in neurodegeneration. However, the gut microbiome can be modulated to promote neuro-resilience. AREAS COVERED This review is focused on demonstrating the role of the gut microbiome in host physiology in Parkinson's disease (PD) and other neurodegenerative disorders. We will discuss how the microbiome will impact neurodegeneration in PD, Alzheimer's Disease (AD), Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and finally discuss how the gut microbiome can be influenced through diet and lifestyle. EXPERT OPINION Currently, much of the focus has been to study the mechanisms by which the microbiome induces neuroinflammation and neurodegeneration in PD, AD, MS, ALS. In particular, the role of certain dietary flavonoids in regulation of gut microbiome to promote neuro-resilience. Polyphenol prebiotics delivered in combination with probiotics (synbiotics) present an exciting new avenue to harness the microbiome to attenuate immune inflammatory responses which ultimately may influence brain cascades associated with promotion of neurodegeneration across the lifespan.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
26 |