1
|
Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 2003; 52:1335-45; discussion 1345-7. [PMID: 12762879 DOI: 10.1227/01.neu.0000064803.05077.40] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 02/12/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to analyze the usefulness of preoperative language functional magnetic resonance imaging (fMRI), by correlating fMRI data with intraoperative cortical stimulation results for patients with brain tumors. METHODS Naming and verb generation tasks were used, separately or in combination, for 14 right-handed patients with tumors in the left hemisphere. fMRI data obtained were analyzed with SPM software, with two standard analysis thresholds (P < 0.005 and then P < 0.05). The fMRI data were then registered in a frameless stereotactic neuronavigational device and correlated with direct brain mapping results. We used a statistical model with the fMRI information as a predictor, spatially correlating each intraoperatively mapped cortical site with fMRI data integrated in the neuronavigational system (site-by-site correlation). Eight patients were also studied with language fMRI postoperatively, with the same acquisition protocol. RESULTS We observed high variability in signal extents and locations among patients with both tasks. The activated areas were located mainly in the left hemisphere in the middle and inferior frontal gyri (F2 and F3), the superior and middle temporal gyri (T1 and T2), and the supramarginal and angular gyri. A total of 426 cortical sites were tested for each task among the 14 patients. In frontal and temporoparietal areas, poor sensitivity of the fMRI technique was observed for the naming and verb generation tasks (22 and 36%, respectively) with P < 0.005 as the analysis threshold. Although not perfect, the specificity of the fMRI technique was good in all conditions (97% for the naming task and 98% for the verb generation task). Better correlation (sensitivity, 59%; specificity, 97%) was achieved by combining the two fMRI tasks. Variation of the analysis threshold to P < 0.05 increased the sensitivity to 66% while decreasing the specificity to 91%. Postoperative fMRI data (for the cortical brain areas studied intraoperatively) were in accordance with brain mapping results for six of eight patients. Complete agreement between pre- and postoperative fMRI studies and direct brain mapping results was observed for only three of eight patients. CONCLUSION With the paradigms and analysis thresholds used in this study, language fMRI data obtained with naming or verb generation tasks, before and after surgery, were imperfectly correlated with intraoperative brain mapping results. A better correlation could be obtained by combining the fMRI tasks. The overall results of this study demonstrated that language fMRI could not be used to make critical surgical decisions in the absence of direct brain mapping. Other acquisition protocols are required for evaluation of the potential role of language fMRI in the accurate detection of essential cortical language areas.
Collapse
|
Evaluation Study |
22 |
267 |
2
|
DiGioia AM, Plakseychuk AY, Levison TJ, Jaramaz B. Mini-incision technique for total hip arthroplasty with navigation. J Arthroplasty 2003; 18:123-8. [PMID: 12629599 DOI: 10.1054/arth.2003.50025] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This prospective study compares a mini-incision technique and traditional posterior approach for total hip arthroplasty (THA). Thirty-three patients who had undergone a mini-incision THA were matched by diagnosis, gender, average age, and preoperative Harris Hip Score (HHS) to 33 patients who had undergone THA using the traditional posterior approach. The average length of the incision for group 1 was 11.7 cm (range, 7.3-13.0) and for group 2 was 20.2 cm (range, 14.8-26.0). At the 3-month follow-up, patients in the mini-incision group had significant improvement in limp (P<.05) and ability to climb stairs (P <.01) compared with the traditional group. At the 6 month follow-up, the mini-incision group was significantly better in terms of limp (P <.05), distance walked (P<.001), and stairs (P < 0.001). There was no significant difference between groups for pain, function, or range of motion at the 1-year follow-up examination.
Collapse
|
Comparative Study |
22 |
240 |
3
|
Abstract
Respiratory motion is difficult to compensate for with conventional radiotherapy systems. An accurate tracking method for following the motion of the tumor is of considerable clinical relevance. We investigate methods to compensate for respiratory motion using robotic radiosurgery. In this system the therapeutic beam is moved by a robotic arm, and follows the moving target through a combination of infrared tracking and synchronized x-ray imaging. Infrared emitters are used to record the motion of the patient's skin surface. The position of internal gold fiducials is computed repeatedly during treatment, via x-ray image processing. We correlate the motion between external and internal markers. From this correlation model we infer the placement of the internal target during time intervals where no x-ray images are taken. Fifteen patients with lung tumors have recently been treated with a fully integrated system implementing this new method. The clinical trials confirm our hypothesis that internal motion and external motion are indeed correlated. In a preliminar study we have extended our work to tracking without implanted fiducials, based on algorithms for computing deformation motions and digitally reconstructed radiographs.
Collapse
|
|
21 |
234 |
4
|
Sparing R, Buelte D, Meister IG, Paus T, Fink GR. Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 2008; 29:82-96. [PMID: 17318831 PMCID: PMC6871049 DOI: 10.1002/hbm.20360] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/13/2006] [Accepted: 12/07/2006] [Indexed: 11/07/2022] Open
Abstract
The combination of transcranial magnetic stimulation (TMS) with functional neuroimaging has expanded the potential of TMS for human brain mapping. The precise and reliable positioning of the TMS coil is not a simple task, however. Modern frameless stereotaxic systems allow investigators to base navigation either on the subject's structural magnetic resonance imaging (MRI), functional MRI data, or the use of functional neuroimaging data from the literature, so-called "probabilistic approach." The latter assumes consistency across individuals in the location of task-related "activations" in standardized stereotaxic space. Conventional nonstereotaxic localization of brain areas is also a common method for defining the coil position. Our aim was to evaluate the accuracy of five different localization strategies in one single study. The left primary motor cortex (left M1-Hand) was used as target region. Three approaches were based on real-time frameless stereotaxy using information based on either anatomical or functional MRI. The remaining two strategies relied either on standard cranial landmarks (i.e., the International 10-20 EEG system) or a standardized function-guided procedure (i.e., the spatial relationship between the left and right M1-Hand). The results were compared to a TMS-based mapping of the primary motor cortex; center of gravity of motor-evoked potentials (MEP-CoG) was calculated for each subject (n = 10). Our findings suggest that highest precision can be achieved with fMRI-guided stimulation, which was accurate within the range of millimeters. Very consistent results were also obtained with the "probabilistic" approach. In view of these findings, we discuss the methods and special characteristics of each localization strategy.
Collapse
|
Comparative Study |
17 |
219 |
5
|
Matthews PM, Honey GD, Bullmore ET. Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 2006; 7:732-44. [PMID: 16924262 DOI: 10.1038/nrn1929] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Functional MRI (fMRI) has had a major impact in cognitive neuroscience. fMRI now has a small but growing role in clinical neuroimaging, with initial applications to neurosurgical planning. Current clinical research has emphasized novel concepts for clinicians, such as the role of plasticity in recovery and the maintenance of brain functions in a broad range of diseases. There is a wider potential for clinical fMRI in applications ranging from presymptomatic diagnosis, through drug development and individualization of therapies, to understanding functional brain disorders. Realization of this potential will require changes in the way clinical neuroimaging services are planned and delivered.
Collapse
|
Review |
19 |
193 |
6
|
Nimsky C, Ganslandt O, Von Keller B, Romstöck J, Fahlbusch R. Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 2004; 233:67-78. [PMID: 15317949 DOI: 10.1148/radiol.2331031352] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE To review the initial clinical experience with intraoperative high-field-strength magnetic resonance (MR) imaging of brain lesions in 200 patients. MATERIALS AND METHODS Two hundred patients (mean age, 46.1 years; range, 7-84 years), most of whom had glioma or pituitary adenoma, were examined with a 1.5-T MR imager equipped with a rotating operating table and located in a radiofrequency-shielded operating theater. A navigation microscope placed inside the 0.5-mT zone and used in combination with a ceiling-mounted navigation system enabled integrated microscope-based neuronavigation. The extent of resection depicted at intraoperative imaging, the surgical consequences of intraoperative imaging, and the clinical practicability of the operating room setup were analyzed. RESULTS Seventy-seven resections with a transsphenoidal approach, 100 craniotomies, and 23 burr-hole procedures were performed. In 55 (27.5%) of 200 patients, intraoperative MR imaging had immediate surgical consequences (eg, extension of resection in 39% of patients with pituitary adenoma or glioma). In 108 patients the navigation system was used, and for 37 of those patients, functional imaging data were integrated into the navigation system. There was nearly no difference in quality between pre- and intraoperative images. Intraoperative workflow with intraoperative patient transport for imaging was straightforward, and imaging in most cases began less than 2 minutes after sterile covering of the surgical site. No complications resulted from high-field-strength MR imaging. CONCLUSION The high-field-strength MR imager was successfully adapted for intraoperative use with the integrated neuronavigation system. Intraoperative MR imaging provided valuable information that allowed intraoperative modification of the surgical strategy.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
182 |
7
|
Dammers R, Haitsma IK, Schouten JW, Kros JM, Avezaat CJJ, Vincent AJPE. Safety and efficacy of frameless and frame-based intracranial biopsy techniques. Acta Neurochir (Wien) 2008; 150:23-9. [PMID: 18172567 DOI: 10.1007/s00701-007-1473-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 11/15/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Frameless stereotaxy or neuronavigation has evolved into a feasible technology to acquire intracranial biopsies with good accuracy and little mortality. However, few studies have evaluated the diagnostic yield, morbidity, and mortality of this technique as compared to the established standard of frame-based stereotactic brain biopsy. We report our experience of a large number of procedures performed with one or other technique. PATIENTS AND METHODS We retrospectively assessed 465 consecutive biopsies done over a ten-year time span; Data from 391 biopsies (227 frame-based and 164 frameless) were available for analysis. Patient demographics, peri-operative characteristics, and histological diagnosis were reviewed and then information was analysed to identify factors associated with the biopsy not yielding a diagnosis and of it being followed by death. RESULTS On average, nine tissue samples were taken with either stereotaxy technique. Overall, the biopsy led to a diagnosis on 89.4% of occasions. No differences were found between the two biopsy procedures. In a multiple regression analysis, it was found that left-sided lesions were less likely to result in a non-diagnostic tissue sample (p = 0.023), and cerebellar lesions showed a high risk of negative histology (p = 0.006). Postoperative complications were seen after 12.1% of biopsies, including 15 symptomatic haemorrhages (3.8%). There was not a difference between the rates of complication after either a frame-based or a frameless biopsy. Overall, peri-operative complications (p = 0.030) and deep-seated lesions (p = 0.060) increased the risk of biopsy-related death. Symptomatic haemorrhages resulting in death (1.5% of all biopsies) were more frequently seen after biopsy of a fronto-temporally located lesion (p = 0.007) and in patients with a histologically confirmed lymphoma (p = 0.039). CONCLUSIONS The diagnostic yield, complication rates, and biopsy-related mortality did not differ between a frameless biopsy technique and the established frame-based technique. The site of the lesion and the occurrence of a peri-operative complication were associated with the likelihood of failure to achieve a diagnosis and with death after biopsy. We believe that using intraoperative frozen section or cytologic smear histology is essential during a stereotactic biopsy in order to increase the diagnostic yield and to limit the number of biopsy specimens that need to be taken.
Collapse
|
Comparative Study |
17 |
182 |
8
|
Woodworth GF, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD. Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg 2006; 104:233-7. [PMID: 16509497 DOI: 10.3171/jns.2006.104.2.233] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The gold standard for stereotactic brain biopsy target localization has been frame-based stereotaxy. Recently, frameless stereotactic techniques have become increasingly utilized. Few authors have evaluated this procedure, analyzed preoperative predictors of diagnostic yield, or explored the differences in diagnostic yield and morbidity rate between the frameless and frame-based techniques.
Methods
A consecutive series of 110 frameless and 160 frame-based image-guided stereotactic biopsy procedures was reviewed. Associated variables for both techniques were reviewed and compared. All stereotactic biopsy procedures were included in a risk factor analysis of nondiagnostic biopsy sampling.
Frameless stereotaxy led to a diagnostic yield of 89%, with a total permanent morbidity rate of 6% and a mortality rate of 1%. Larger lesions were fivefold more likely to yield diagnostic tissues. Deep-seated lesions were 2.7-fold less likely to yield diagnostic tissues compared with cortical lesions. Frameless compared with frame-based stereotactic biopsy procedures showed no significant differences in diagnostic yield or transient or permanent morbidity. For cortical lesions, more than one needle trajectory was required more frequently to obtain diagnostic tissues with frame-based as opposed to frameless stereotaxy, although this factor was not associated with morbidity.
Conclusions
With regard to diagnostic yield and complication rate, the frameless stereotactic biopsy procedure was found to be comparable to or better than the frame-based method. Smaller and deep-seated lesions together were risk factors for a nondiagnostic tissue yield. Frameless stereotaxy may represent a more efficient means of obtaining biopsy specimens of cortical lesions but is otherwise similar to the frame-based technique.
Collapse
|
|
19 |
174 |
9
|
Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M, Ostrem JL, Marks WJ. Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. J Neurosurg 2006; 104:488-501. [PMID: 16619651 DOI: 10.3171/jns.2006.104.4.488] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Deep brain stimulation (DBS) of the globus pallidus internus (GPI) is a promising new procedure for the treatment of dystonia. The authors describe their technical approach for placing electrodes into the GPI in awake patients with dystonia, including methodology for electrophysiological mapping of the GPI in the dystonic state, clinical outcomes and complications, and the location of electrodes associated with optimal benefit. METHODS Twenty-three adult and pediatric patients with various forms of dystonia were included in this study. Baseline neurological status and DBS-related improvement in motor function were measured using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). The implantation of DBS leads was performed using magnetic resonance (MR) imaging-based stereotaxy, single-cell microelectrode recording, and intraoperative test stimulation to determine thresholds for stimulation-induced adverse effects. Electrode locations were measured on computationally reformatted postoperative MR images according to a prospective protocol. CONCLUSIONS Physiologically guided implantation of DBS electrodes in patients with dystonia was technically feasible in the awake state in most patients, and the morbidity rate was low. Spontaneous discharge rates of GPI neurons in dystonia were similar to those of globus pallidus externus neurons, such that the two nuclei must be distinguished by neuronal discharge patterns rather than rates. Active electrode locations associated with robust improvement (> 70% decrease in BFMDRS score) were located near the intercommissural plane, at a mean distance from the pallidocapsular border of 3.6 mm.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
174 |
10
|
Hirayama A, Saitoh Y, Kishima H, Shimokawa T, Oshino S, Hirata M, Kato A, Yoshimine T. Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex. Pain 2006; 122:22-7. [PMID: 16495011 DOI: 10.1016/j.pain.2005.12.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 11/17/2005] [Accepted: 12/05/2005] [Indexed: 01/25/2023]
Abstract
The precentral gyrus (M1) is a representative target for electrical stimulation therapy of pain. To date, few researchers have investigated whether pain relief is possible by stimulation of cortical areas other than M1. According to recent reports, repetitive transcranial magnetic stimulation (rTMS) can provide an effect similar to that of electrical stimulation. With this in mind, we therefore examined several cortical areas as stimulation targets using a navigation-guided rTMS and compared the effects of the different targets on pain. Twenty patients with intractable deafferentation pain received rTMS of M1, the postcentral gyrus (S1), premotor area (preM), and supplementary motor area (SMA). Each target was stimulated with ten trains of 10-s 5-Hz TMS pulses, with 50-s intervals in between trains. Intensities were adjusted to 90% of resting motor thresholds. Thus, a total of 500 stimuli were applied. Sham stimulations were undertaken at random. The effect of rTMS on pain was rated by patients using a visual analogue scale (VAS) and the short form of the McGill Pain Questionnaire (SF-MPQ). Ten of the 20 patients (50%) indicated that stimulation of M1, but not other areas, provided significant and beneficial pain relief (p<0.01). Results indicated a statistically significant effect lasting for 3 hours after the stimulation of M1 (p<0.05). Stimulation of other targets was not effective. The M1 was the sole target for treating intractable pain with rTMS, in spite of the fact that M1, S1, preM, and SMA are located adjacently.
Collapse
|
Randomized Controlled Trial |
19 |
167 |
11
|
Unsgaard G, Rygh OM, Selbekk T, Müller TB, Kolstad F, Lindseth F, Hernes TAN. Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien) 2006; 148:235-53; discussion 253. [PMID: 16362178 DOI: 10.1007/s00701-005-0688-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 10/06/2005] [Indexed: 11/29/2022]
Abstract
In recent years there has been a considerable improvement in the quality of ultrasound (US) imaging. The integration of 3D US with neuronavigation technology has created an efficient and inexpensive tool for intra-operative imaging in neurosurgery. In this review we present the technological background and an overview of the wide range of different applications. The technology has so far mostly been applied to improve surgery of tumours in brain tissue, but it has also been found to be useful in other procedures such as operations for cavernous haemangiomas, skull base tumours, syringomyelia, medulla tumours, aneurysms, AVMs and endoscopy guidance.
Collapse
|
Review |
19 |
163 |
12
|
Coenen VA, Allert N, Mädler B. A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir (Wien) 2011; 153:1579-85; discussion 1585. [PMID: 21553318 DOI: 10.1007/s00701-011-1036-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/18/2011] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) can alleviate tremor of various origins. A number of regions are targeted. In recent work our group was able to show the involvement of the dentato-rubro-thalamic tract (drt) in tremor control with fiber tracking techniques. Here we report for the first time the successful use of magnetic resonance tractography in combination with traditional landmark-based targeting techniques to perform the implantation of a bilateral DBS system in a patient with dystonic head tremor. METHODS We report on a 37-year-old female with long-standing pure head tremor from myoclonus dystonia. She was identified as a candidate for thalamic DBS. The use of head fixation in a stereotactic frame would blur target symptoms (head tremor) during surgery and was therefore avoided. Her dentate-rubro-thalamic tracts were visualized with preoperative diffusion tensor imaging (DTI) and tractography, and then directly targeted stereotactically with DBS electrodes. RESULTS Three months after implantation, tremor control was excellent (>90%). A close evaluation of the active electrode contact positions revealed clear involvement of the drt. CONCLUSION This is the first time that direct visualization of fiber tracts has been employed for direct targeting and successful movement disorder tremor surgery. In the reported case, additional knowledge about the position of the drt, which previously has been shown to be a structure for modulation to achieve tremor control, led to a successful implantation of a DBS system, although there was a lack of intra-operatively testable tremor symptoms. In concordance with studies in optogenetic neuromodulation, fiber tracts are the emerging target structures for DBS. The routine integration of DTI tractography into surgical planning might be a leading path into the future of DBS surgery and will add to our understanding of the pathophysiology of movement disorders. Larger study populations will have to prove these concepts in future research.
Collapse
|
Case Reports |
14 |
156 |
13
|
Krieg SM, Lioumis P, Mäkelä JP, Wilenius J, Karhu J, Hannula H, Savolainen P, Lucas CW, Seidel K, Laakso A, Islam M, Vaalto S, Lehtinen H, Vitikainen AM, Tarapore PE, Picht T. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir (Wien) 2017; 159:1187-1195. [PMID: 28456870 DOI: 10.1007/s00701-017-3187-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Navigated transcranial magnetic stimulation (nTMS) is increasingly used for preoperative mapping of motor function, and clinical evidence for its benefit for brain tumor patients is accumulating. In respect to language mapping with repetitive nTMS, literature reports have yielded variable results, and it is currently not routinely performed for presurgical language localization. The aim of this project is to define a common protocol for nTMS motor and language mapping to standardize its neurosurgical application and increase its clinical value. METHODS The nTMS workshop group, consisting of highly experienced nTMS users with experience of more than 1500 preoperative nTMS examinations, met in Helsinki in January 2016 for thorough discussions of current evidence and personal experiences with the goal to recommend a standardized protocol for neurosurgical applications. RESULTS nTMS motor mapping is a reliable and clinically validated tool to identify functional areas belonging to both normal and lesioned primary motor cortex. In contrast, this is less clear for language-eloquent cortical areas identified by nTMS. The user group agreed on a core protocol, which enables comparison of results between centers and has an excellent safety profile. Recommendations for nTMS motor and language mapping protocols and their optimal clinical integration are presented here. CONCLUSION At present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.
Collapse
|
Review |
8 |
150 |
14
|
Reinges MHT, Nguyen HH, Krings T, Hütter BO, Rohde V, Gilsbach JM. Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien) 2004; 146:369-77; discussion 377. [PMID: 15057531 DOI: 10.1007/s00701-003-0204-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The authors have conducted a prospective study to evaluate the amount and course of brain shift during microsurgical removal of supratentorial cerebral lesions, and to assess factors which potentially influence these shifts. METHOD In 61 patients the displacement of 2-3 cortical landmarks on the cerebral surface was dynamically quantified during surgery, i.e. during dissection of the tumour at the estimated half-time of surgery, and at the end of microsurgical removal of the cerebral lesion using the neuronavigation system EasyGuide Neuro. In 14 of these patients the displacement of a subcortical landmark was additionally analysed. Age of the patients, preoperative midline shift, location of the lesion, lesion volume, depth of the lesion below the cortical surface, presence or absence of oedema, and size of the craniotomy were analysed for potential influence on the amount of brain shift. Correlations were analysed for all patients together and for the subgroups of vault meningiomas (n=10), gliomas (n=30), and nonglial intra-axial lesions (n=21). FINDINGS The mean displacement of the cortical landmarks ranged between 0.8 and 14.3 mm (mean: 6.1 mm, standard deviation: 3.4 mm) during surgery (10-210 minutes [mean: 50.7 minutes, standard deviation: 34.5 minutes] after dura opening) and between 2.4 and 15.2 mm (mean: 6.6 mm, standard deviation: 3.2 mm) at the end of microsurgical removal of the tumourous cerebral lesions (20-375 minutes [mean: 107.2 minutes, standard deviation: 65.6 minutes] after dura opening). Significant correlations (p<0.01) for the entire patient group were found between brain shift and tumour volume, midline shift, and size of the craniotomy, respectively. For the subgroup of vault meningiomas a significant correlation (p<0.01) between brain shift and patient age was found. For the subgroup of gliomas a significant correlation (p<0.01) between brain shift and tumour volume, midline shift and size of the craniotomy, respectively, was found. For the subgroup of nonglial intra-axial lesions a significant correlation (p<0.01) between brain shift and midline shift and between brain shift and size of the craniotomy was found. The quantity of shared common variance ranged between 10-50%. Performing a discriminant analysis, lesion volume was the only certain factor influencing brain shift intra-operatively as well as at the end of lesion removal. 58.5% of the extent of brain shift could be correctly classified by the tumour volume as the only discriminating variable during dissection of the tumour and at the end of surgery. Comparing superficial with subcortical brain shift over the same time period, a mean superficial shift of 4.6 mm (1.6-10.8 mm, standard deviation: 2.8 mm) and a mean subcortical shift of 3.5 mm (1.0-7.7 mm, standard deviation: 2.3 mm) was found. A highly significant Spearman correlation (Rho:.97, p<0.001) between superficial and subcortical brain shift emerged. Shifting of superficial landmarks exceeded shifting of subcortical structures in all patients. CONCLUSIONS The data demonstrate the dynamics of brain shift and the limits of conventional neuronavigation and add additional support for the unavoidable inaccuracy of contemporary neuronavigational systems once the cranium is opened. Brain shift leads to a significant loss of reliability of neuronavigation systems during microsurgical removal of intracranial lesions and there are differences of the course and the amount of brain shift in relation to special subgroups of supratentorial cerebral lesions. However, because of the heterogeneous nature of lesions neurosurgeons have to remove, the modest quantity of shared common variance, and the differences between superficial and subcortical brain shift, it seems unlikely that the amount and course of brain shift become exactly predictable pre-operatively. Only an intra-operative update of image data should have the capacity to overcome this fundamental problem of modern neuronavigation.
Collapse
|
Clinical Trial |
21 |
144 |
15
|
Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, Kirino T, Kawahara N, Morita A. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg 2005; 102:664-72. [PMID: 15871509 DOI: 10.3171/jns.2005.102.4.0664] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The aim of this study was better preoperative planning and direct application to intraoperative procedures through accurate coregistration of diffusion-tensor (DT) imaging-based tractography results and anatomical three-dimensional magnetic resonance images and subsequent importation of the combined images to a neuronavigation system (functional neuronavigation). METHODS Six patients with brain lesions adjacent to the corticospinal tract (CST) were studied. During surgery, direct fiber stimulation was used to evoke motor responses to confirm the accuracy of CST depicted on functional neuronavigation. In three patients, stimulation of the supposed CST elicited the expected motor evoked potentials. In the other three, stimulation at the resection borders more than 1 cm away from the supposed CST showed no motor response. All patients underwent appropriate tumor resection with preservation of the CST. CONCLUSIONS Integration of the DT imaging-based tractography information into a traditional neuronavigation system demonstrated spatial relationships between lesions and the CST, allowing for the avoidance of tract injury during lesion resection. Direct fiber stimulation was used for real-time reliable white matter mapping, which served to adjust for any discrepancy between the neuronavigation system data and potentially shifted positions of the brain structures. The combination of these techniques enabled the authors to identify accurate positions of the CST during surgery and to accomplish optimal tumor resections.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
134 |
16
|
Sammartino F, Krishna V, King NKK, Lozano AM, Schwartz ML, Huang Y, Hodaie M. Tractography-Based Ventral Intermediate Nucleus Targeting: Novel Methodology and Intraoperative Validation. Mov Disord 2016; 31:1217-25. [PMID: 27214406 PMCID: PMC5089633 DOI: 10.1002/mds.26633] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The ventral intermediate nucleus of the thalamus is not readily visible on structural magnetic resonance imaging. Therefore, a method for its visualization for stereotactic targeting is desirable. OBJECTIVE The objective of this study was to define a tractography-based methodology for the stereotactic targeting of the ventral intermediate nucleus. METHODS The lateral and posterior borders of the ventral intermediate nucleus were defined by tracking the pyramidal tract and medial lemniscus, respectively. A thalamic seed was then created 3 mm medial and anterior to these borders, and its structural connections were analyzed. The application of this method was assessed in an imaging cohort of 14 tremor patients and 15 healthy controls, in which we compared the tractography-based targeting to conventional targeting. In a separate surgical cohort (3 tremor and 3 tremor-dominant Parkinson's disease patients), we analyzed the accuracy of this method by correlating it with intraoperative neurophysiology. RESULTS Tractography of the thalamic seed revealed the tracts corresponding to cerebellar input and motor cortical output fibers. The tractography-based target was more lateral (12.5 [1.2] mm vs 11.5 mm for conventional targeting) and anterior (8.5 [1.1] mm vs 6.7 [0.3] mm, anterior to the posterior commissure). In the surgical cohort, the Euclidian distance between the ventral intermediate nucleus identified by tractography and the surgical target was 1.6 [1.1] mm. The locations of the sensory thalamus, lemniscus, and pyramidal tracts were concordant within <1 mm between tractography and neurophysiology. INTERPRETATION The tractography-based methodology for identification of the ventral intermediate nucleus is accurate and useful. This method may be used to improve stereotactic targeting in functional neurosurgery procedures. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
|
research-article |
9 |
130 |
17
|
Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R. Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 2013; 28:482-7. [PMID: 16808876 DOI: 10.1179/016164106x115125] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To investigate how functional neuronavigation and intraoperative high-field magnetic resonance imaging (MRI) influence glioma resection. METHODS One hundred and thirty-seven patients [World Health Organization (WHO) grade I: 20; II: 19; III: 41; IV: 57] underwent resection for supratentorial gliomas in an operative suite equipped with intraoperative high-field MRI and microscope-based neuronavigation. Besides standard anatomical image data including T1- and T2-weighted sequences, various functional data from magnetoencephalography (n=37), functional MRI (n=65), positron emission tomography (n=8), MR spectroscopy (n=28) and diffusion tensor imaging (n=55) were integrated in the navigational setup. RESULTS Intraoperative MRI showed primary complete resection in 27% of all patients (I: 50%; II: 53%; III: 2%; IV: 28%). In 41% of all patients (I: 40%; II: 26%; III: 66%; IV: 28%) the resection was extended owing to intraoperative MRI increasing the percentage of complete resections to 40% (I: 70%; II: 58%; III: 17%; IV: 40%). Integrated application of functional navigation resulted in low post-operative morbidity with a transient new neurological deficit in 10.2% (paresis: 8.8% and speech disturbance: 1.4%) decreasing to a permanent deficit in 2.9% (four of 137 patients with a new or increased paresis). CONCLUSIONS The combination of intraoperative MRI and functional navigation allows safe extended resections in glioma surgery. However, despite extended resections, still in the majority of the grade III and IV gliomas no gross total resection could be achieved owing to the extension of the tumor into eloquent brain areas. Intraoperative MRI data can be used to localize the tumor remnants reliably and compensate for the effects of brain shift.
Collapse
|
|
12 |
130 |
18
|
Bjartmarz H, Rehncrona S. Comparison of Accuracy and Precision between Frame-Based and Frameless Stereotactic Navigation for Deep Brain Stimulation Electrode Implantation. Stereotact Funct Neurosurg 2007; 85:235-42. [PMID: 17534136 DOI: 10.1159/000103262] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The accuracy and precision of frameless neuronavigation as compared to conventional frame-based stereotaxy for implantation of deep brain stimulation (DBS) electrodes were studied in 14 patients with essential tremor. DBS electrodes were implanted bilaterally in the ventrolateral thalamus [ventrointermediate nucleus (VIM)] in one procedure. Frameless neuronavigation was used on one side and the conventional frame-based technique on the other. Targeting was guided by MRI and CT imaging. Intraoperative stereotactic plain X-ray verified final electrode positions and electrode deviations from the planned target were measured. Clinical outcome was evaluated with the Essential Tremor Rating Scale. Thirteen of the patients were eligible for measuring electrode deviations and 10 of them were available for a clinical follow-up. Electrode deviations from target were larger using the frameless technique in the medial-lateral (x: 1.9 +/- 1.3 mm) and anterior-posterior (y:0.9 +/- 0.8 mm) directions as compared to the frame-based technique (x: 0.5 +/- 0.5 and y: 0.4 +/- 0.4 mm) but similar in the superior-inferior direction (z). The vector of deviation was 2.5 +/- 1.4 mm with the frameless technique and 1.2 +/- 0.6 with the frame-based technique. The differences were statistically significant (p < 0.05-0.001). The dispersion was larger with the frameless technique as represented by the larger standard deviations in all three planes. At clinical follow-ups, tremor reduction was similar irrespective of the implantation technique. It is concluded that conventional frame-based stereotaxy has higher accuracy/precision for hitting a small brain target than the frameless technique. However, the difference is relatively small and does not influence the clinical result of DBS electrode implantations in the VIM when treating tremor.
Collapse
|
|
18 |
129 |
19
|
Clatz O, Delingette H, Talos IF, Golby AJ, Kikinis R, Jolesz FA, Ayache N, Warfield SK. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2005; 24:1417-27. [PMID: 16279079 PMCID: PMC2042023 DOI: 10.1109/tmi.2005.856734] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a new algorithm to register 3-D preoperative magnetic resonance (MR) images to intraoperative MR images of the brain which have undergone brain shift. This algorithm relies on a robust estimation of the deformation from a sparse noisy set of measured displacements. We propose a new framework to compute the displacement field in an iterative process, allowing the solution to gradually move from an approximation formulation (minimizing the sum of a regularization term and a data error term) to an interpolation formulation (least square minimization of the data error term). An outlier rejection step is introduced in this gradual registration process using a weighted least trimmed squares approach, aiming at improving the robustness of the algorithm. We use a patient-specific model discretized with the finite element method in order to ensure a realistic mechanical behavior of the brain tissue. To meet the clinical time constraint, we parallelized the slowest step of the algorithm so that we can perform a full 3-D image registration in 35 s (including the image update time) on a heterogeneous cluster of 15 personal computers. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift of up to 14 mm. The results show a good ability to recover large displacements, and a limited decrease of accuracy near the tumor resection cavity.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
127 |
20
|
Smith JS, Quiñones-Hinojosa A, Barbaro NM, McDermott MW. Frame-based stereotactic biopsy remains an important diagnostic tool with distinct advantages over frameless stereotactic biopsy. J Neurooncol 2005; 73:173-9. [PMID: 15981109 DOI: 10.1007/s11060-004-4208-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECT As the availability of image-guided surgical navigation systems has increased, the application of frame-based biopsy has declined at our institution, despite equivalent accuracy and safety. There are several cost issues separating the use of surgical navigation systems and stereotactic frames for simple biopsy which may have implications in this era of health care cost control. We retrospectively reviewed the UCSF experience with stereotactic brain biopsy from a 9 year period. METHODS Data were collected for 213 consecutive stereotactic brain biopsies performed at UCSF (139 frame-based and 74 frameless). There were no significant differences between the frame-based and frameless biopsy groups with regard to patient demographics, overall histopathology, proportion of nondiagnostic biopsies, or incidence of complications. General anesthesia was used for 9 (6%) and 70 (95%) of the frame-based and frameless biopsy cases, respectively. Frame-based biopsies required a mean of 114+/-3 min of operating room time, while frameless biopsies required 185+/-6 min (P<0.0001). For patients admitted to our neurosurgery service who underwent frame-based (n=110) or frameless (n=52) biopsy within 24 h of admission, the mean lengths of hospital stay were 1.8+/-0.2 and 3.2+/-0.6 days, respectively (P=0.007). CONCLUSION Frame-based and frameless stereotactic biopsy approaches were equally effective at providing a tissue diagnosis with minimum morbidity and mortality. The frame-based approach, however, required significantly less anesthesia resources, less operating room time and shorter hospital stays, and thus should still be considered a first-line approach for stereotactic brain biopsy.
Collapse
|
|
20 |
115 |
21
|
Varma TRK, Eldridge P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot 2006; 2:107-13. [PMID: 17520621 DOI: 10.1002/rcs.88] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The aim of this paper is to describe the use of the NeuroMate stereotactic robot for functional neurosurgery with a novel frameless ultrasound registration system. METHODS A retrospective review of the evaluation and clinical use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. RESULTS Prior to its clinical use a phantom study was undertaken to demonstrate an application accuracy of 1.29 mm. Subsequently the robot has been used in 153 functional neurosurgical procedures including 113 deep brain stimulator implantations. CONCLUSIONS The NeuroMate stereotactic robot in a frameless mode has sufficient accuracy for a range of functional neurosurgical procedures, including movement disorder surgery.
Collapse
|
|
19 |
112 |
22
|
Willems PWA, Taphoorn MJB, Burger H, Berkelbach van der Sprenkel JW, Tulleken CAF. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 2006; 104:360-8. [PMID: 16572647 DOI: 10.3171/jns.2006.104.3.360] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Object
The goal of this study was to assess the impact of neuronavigation on the cytoreductive treatment of solitary contrast-enhancing intracerebral tumors and outcomes of this treatment in cases in which neuronavigation was preoperatively judged to be redundant.
Methods
The authors conducted a prospective randomized study in which 45 patients, each harboring a solitary contrast-enhancing intracerebral tumor, were randomized for surgery with or without neuronavigation. Peri- and postoperative parameters under investigation included the following: duration of the procedure; surgeon’s estimate of the usefulness of neuronavigation; quantification of the extent of resection, determined using magnetic resonance imaging; and the postoperative course, as evaluated by neurological examinations, the patient’s quality-of-life self-assessment, application of the Barthel index and the Karnofsky Performance Scale score, and the patient’s time of death.
The mean amount of residual tumor tissue was 28.9% for standard surgery (SS) and 13.8% for surgery involving neuronavigation (SN). The corresponding mean amounts of residual contrast-enhancing tumor tissue were 29.2 and 24.4%, respectively. These differences were not significant. Gross-total removal (GTR) was achieved in five patients who underwent SS and in three who underwent SN. Median survival was significantly shorter in the SN group (5.6 months compared with 9 months, unadjusted hazard ratio = 1.6); however, this difference may be attributable to the coincidental early death of three patients in the SN group. No discernible important effect on the patients’ 3-month postoperative course was identified.
Conclusions
There is no rationale for the routine use of neuronavigation to improve the extent of tumor resection and prognosis in patients harboring a solitary enhancing intracerebral lesion when neuronavigation is not already deemed advantageous because of the size or location of the lesion.
Collapse
|
|
19 |
107 |
23
|
Rusjan PM, Barr MS, Farzan F, Arenovich T, Maller JJ, Fitzgerald PB, Daskalakis ZJ. Optimal transcranial magnetic stimulation coil placement for targeting the dorsolateral prefrontal cortex using novel magnetic resonance image-guided neuronavigation. Hum Brain Mapp 2010; 31:1643-52. [PMID: 20162598 PMCID: PMC6871247 DOI: 10.1002/hbm.20964] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 11/07/2022] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) has been implicated in the pathophysiology of several psychiatric illnesses including major depressive disorder and schizophrenia. In this regard, the DLPFC has been targeted in repetitive transcranial magnetic stimulation (rTMS) studies as a form of treatment to those patients who are resistant to medications. The '5-cm method' and the '10-20 method' for positioning the transcranial magnetic stimulation (TMS) coil over DLPFC have been scrutinised due to poor targeting accuracies attributed to inter-subject variability. We evaluated the accuracy of such methods to localise the DLPFC on the scalp in 15 healthy subjects and compared them with our novel neuronavigational method, which first estimates the DLPFC position in the cortex based on a standard template and then determines the most appropriate position on the scalp in which to place the TMS coil. Our neuronavigational method yielded a scalp position for the left DLPFC between electrodes F3 and F5 in standard space and was closest to electrode F5 in individual space. Further, we found that there was significantly less inter-subject variability using our neuronavigational method for localising the DLPFC on the scalp compared with the '5-cm method' and the '10-20 method'. Our findings also suggest that the '10-20 method' is superior to the '5-cm method' in reducing inter-subject variability and that electrode F5 should be the stimulation location of choice when MRI co-registration is not available.
Collapse
|
other |
15 |
104 |
24
|
Chen KT, Chai WY, Lin YJ, Lin CJ, Chen PY, Tsai HC, Huang CY, Kuo JS, Liu HL, Wei KC. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. SCIENCE ADVANCES 2021; 7:7/6/eabd0772. [PMID: 33547073 PMCID: PMC7864566 DOI: 10.1126/sciadv.abd0772] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/18/2020] [Indexed: 05/06/2023]
Abstract
Focused ultrasound (FUS) in the presence of microbubbles can transiently open the blood-brain barrier (BBB) to increase therapeutic agent penetration at the targeted brain site to benefit recurrent glioblastoma (rGBM) treatment. This study is a dose-escalating pilot trial using a device combining neuronavigation and a manually operated frameless FUS system to treat rGBM patients. The safety and feasibility were established, while a dose-dependent BBB-opening effect was observed, which reverted to baseline within 24 hours after treatment. No immunological response was observed clinically under the applied FUS level in humans; however, selecting a higher level in animals resulted in prolonged immunostimulation, as confirmed preclinically by the recruitment of lymphocytes into the tumor microenvironment (TME) in a rat glioma model. Our findings provide preliminary evidence of FUS-induced immune modulation as an additional therapeutic benefit by converting the immunosuppressive TME into an immunostimulatory TME via a higher but safe FUS dosage.
Collapse
|
Clinical Trial |
4 |
101 |
25
|
Rasmussen IA, Lindseth F, Rygh OM, Berntsen EM, Selbekk T, Xu J, Nagelhus Hernes TA, Harg E, Håberg A, Unsgaard G. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 2007; 149:365-78. [PMID: 17308976 DOI: 10.1007/s00701-006-1110-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 12/13/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aims of this study were: 1) To develop protocols for, integration and assessment of the usefulness of high quality fMRI (functional magnetic resonance imaging) and DTI (diffusion tensor imaging) data in an ultrasound-based neuronavigation system. 2) To develop and demonstrate a co-registration method for automatic brain-shift correction of pre-operative MR data using intra-operative 3D ultrasound. METHODS Twelve patients undergoing brain surgery were scanned to obtain structural and fMRI data before the operation. In six of these patients, DTI data was also obtained. The preoperative data was imported into a commercial ultrasound-based navigation system and used for surgical planning and guidance. Intra-operative ultrasound volumes were acquired when needed during surgery and the multimodal data was used for guidance and resection control. The use of the available image information during planning and surgery was recorded. An automatic voxel-based registration method between preoperative MRA and intra-operative 3D ultrasound angiography (Power Doppler) was developed and tested postoperatively. RESULTS The study showed that it is possible to implement robust, high-quality protocols for fMRI and DTI and that the acquired data could be seamlessly integrated in an ultrasound-based neuronavigation system. Navigation based on fMRI data was found to be important for pre-operative planning in all twelve procedures. In five out of eleven cases the data was also found useful during the resection. DTI data was found to be useful for planning in all five cases where these data were imported into the navigation system. In two out of four cases DTI data was also considered important during the resection (in one case DTI data were acquired but not imported and in another case fMRI and DTI data could only be used for planning). Information regarding the location of important functional areas (fMRI) was more beneficial during the planning phase while DTI data was more helpful during the resection. Furthermore, the surgeon found it more user-friendly and efficient to interpret fMRI and DTI information when shown in a navigation system as compared to the traditional display on a light board or monitor. Updating MRI data for brain-shift using automatic co-registration of preoperative MRI with intra-operative ultrasound was feasible. CONCLUSION In the present study we have demonstrated how both fMRI and DTI data can be acquired and integrated into a neuronavigation system for improved surgical planning and guidance. The surgeons reported that the integration of fMRI and DTI data in the navigation system represented valuable additional information presented in a user-friendly way and functional neuronavigation is now in routine use at our hospital. Furthermore, the present study showed that automatic ultrasound-based updates of important pre-operative MRI data are feasible and hence can be used to compensate for brain shift.
Collapse
|
|
18 |
101 |