1
|
Abstract
Toxoplasma gondii, an intracellular protozoan parasite, can infect humans in 3 different ways: ingestion of tissue cysts, ingestion of oocysts, or congenital infection with tachyzoites. After proliferation of tachyzoites in various organs during the acute stage, the parasite forms cysts preferentially in the brain and establishes a chronic infection, which is a balance between host immunity and the parasite's evasion of the immune response. A variety of brain cells, including astrocytes and neurons, can be infected. In vitro studies using non-brain cells have demonstrated profound effects of the infection on gene expression of host cells, including molecules that promote the immune response and those involved in signal transduction pathways, suggesting that similar effects could occur in infected brain cells. Interferon-gamma is the essential mediator of the immune response to control T. gondii in the brain and to maintain the latency of chronic infection. Infection also induces the production of a variety of cytokines by microglia, astrocytes, and neurons, which promote or suppress inflammatory responses. The strain (genotype) of T. gondii, genetic factors of the host, and probably the route of infection and the stage (tachyzoite, cyst, or oocyst) of the parasite initiating infection all contribute to the establishment of a balance between the host and the parasite and affect the outcome of the infection.
Collapse
|
research-article |
18 |
193 |
2
|
Yap GS, Sher A. Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-gamma- and tumor necrosis factor (TNF)-alpha-dependent host resistance to the intracellular pathogen, Toxoplasma gondii. J Exp Med 1999; 189:1083-92. [PMID: 10190899 PMCID: PMC2192999 DOI: 10.1084/jem.189.7.1083] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1998] [Revised: 12/29/1998] [Indexed: 01/12/2023] Open
Abstract
Although interferon (IFN)-gamma-activated, mononuclear phagocytes are considered to be the major effectors of resistance to intracellular pathogens, it is unclear how they control the growth of microorganisms that reside in nonhemopoietic cells. Pathogens within such cells may be killed by metabolites secreted by activated macrophages or, alternatively, directly controlled by cytokine-induced microbicidal mechanisms triggered within infected nonphagocytic cells. To distinguish between these two basic mechanisms of cell-mediated immunity, reciprocal bone marrow chimeras were constructed between wild-type and IFN-gamma receptor-deficient mice and their survival assessed following infection with Toxoplasma gondii, a protozoan parasite that invades both hemopoietic and nonhemopoietic cell lineages. Resistance to acute and persistent infection was displayed only by animals in which IFN-gamma receptors were expressed in both cellular compartments. Parallel chimera experiments performed with tumor necrosis factor (TNF) receptor-deficient mice also indicated a codependence on hemopoietic and nonhemopoietic lineages for optimal control of the parasite. In contrast, in mice chimeric for inducible nitric oxide synthase (iNOS), an enzyme associated with IFN-gamma-induced macrophage microbicidal activity, expression by cells of hemopoietic origin was sufficient for host resistance. Together, these findings suggest that, in concert with bone marrow-derived effectors, nonhemopoietic cells can directly mediate, in the absence of endogenous iNOS, IFN-gamma- and TNF-alpha-dependent host resistance to intracellular infection.
Collapse
MESH Headings
- Acute Disease
- Animals
- Astrocytes/parasitology
- Bone Marrow Transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Lineage
- Cells/parasitology
- Chronic Disease
- Epithelial Cells/parasitology
- Female
- Immunity, Cellular
- Immunity, Innate
- Interferon-gamma/physiology
- Listeria monocytogenes/immunology
- Listeriosis/immunology
- Listeriosis/pathology
- Macrophages/parasitology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/parasitology
- Male
- Mice
- Mice, Knockout
- Models, Immunological
- Neurons/parasitology
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type II
- Radiation Chimera
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- Toxoplasma/immunology
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/pathology
- Tumor Necrosis Factor-alpha/physiology
- Interferon gamma Receptor
Collapse
|
research-article |
26 |
184 |
3
|
Henriquez SA, Brett R, Alexander J, Pratt J, Roberts CW. Neuropsychiatric disease and Toxoplasma gondii infection. Neuroimmunomodulation 2009; 16:122-33. [PMID: 19212132 DOI: 10.1159/000180267] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii infects approximately 30% of the world's population, but causes overt clinical symptoms in only a small proportion of people. In recent years, the ability of the parasite to manipulate the behaviour of infected mice and rats and alter personality attributes of humans has been reported. Furthermore, a number of studies have now suggested T. gondii infection as a risk factor for the development of schizophrenia and depression in humans. As T. gondii forms cysts that are located in various anatomical sites including the brain during a chronic infection, it is well placed anatomically to mediate these effects directly. The T. gondii genome is known to contain 2 aromatic amino acid hydroxylases that potentially could directly affect dopamine and/or serotonin biosynthesis. However, stimulation of the immune response has also recently been associated with mood and behavioural alterations in humans, and compounds designed to alter mood, such as fluoxetine, have been demonstrated to alter aspects of immune function. Herein, the evidence for T.-gondii-induced behavioural changes relevant to schizophrenia and depression is reviewed. Potential mechanisms responsible for these changes in behaviour including the role of tryptophan metabolism and the hypothalamic-pituitary-adrenal axis are discussed.
Collapse
|
Review |
16 |
118 |
4
|
Halonen SK, Lyman WD, Chiu FC. Growth and development of Toxoplasma gondii in human neurons and astrocytes. J Neuropathol Exp Neurol 1996; 55:1150-6. [PMID: 8939198 DOI: 10.1097/00005072-199611000-00006] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most common opportunistic infections affecting the central nervous system (CNS) in AIDS patients. Disease results from a reactivation of a latent infection in the brain resulting in a severe and necrotizing encephalitis. In this study we infected a primary culture from human fetal brain with T. gondii and studied the behavior of both the active and latent stages in this culture system. We found that the active (tachyzoite) stage of T. gondii can infect both astrocytes and neurons. However, a higher percentage of astrocytes were infected than neurons. Additionally, astrocytes were found to support more replication of T. gondii than did neurons. Both astrocytes and neurons also supported the cyst stage, found in the latent infections. These data indicate that astrocytes are the host cells supporting most of the replication of T. gondii in the brain in reactivated infections, but both host cell types may be able to support the cyst stage in latent infections. However, evidence indicates that cysts formed in astrocytes may be distinct from neuronal cysts. These findings may have relevance to reactivation of latent T. gondii infections in AIDS patients.
Collapse
|
Comparative Study |
29 |
103 |
5
|
Ferguson DJ, Hutchison WM. The host-parasite relationship of Toxoplasma gondii in the brains of chronically infected mice. VIRCHOWS ARCHIV. A, PATHOLOGICAL ANATOMY AND HISTOPATHOLOGY 1987; 411:39-43. [PMID: 3107207 DOI: 10.1007/bf00734512] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The host parasite relationship in the brains of asymptomatic mice chronically infected with Toxoplasma gondii was examined at 3, 6 and 12 months post-infection (PI) using electron microscopy. The parasites were located in large numbers within tissue cysts which ranged in size from 10-50 microns in diameter. The cysts were predominantly found in the grey matter. The toxoplasms were enclosed by a cyst wall consisting of a membrane, with irregular invaginations, and an underlying layer of homogeneous osmiophilic material. A detailed examination of 50 cysts revealed that all the cysts were present within intact host cells irrespective of their size or the period PI. The majority of host cells could be positively identified as neurons by the presence of synapses. No extracellular cysts were observed. It is probable that the intracellular location of the cysts protects them from recognition and attack by the host immune system.
Collapse
|
|
38 |
99 |
6
|
Lüder CG, Giraldo-Velásquez M, Sendtner M, Gross U. Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp Parasitol 1999; 93:23-32. [PMID: 10464035 DOI: 10.1006/expr.1999.4421] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nervous system (CNS) of the intermediate host plays a central role in the lifelong persistence of Toxoplasma gondii as well as in the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised patients. In order to analyze the parasite-host interaction within the CNS, the host cell invasion, the intracellular replication, and the stage conversion from tachyzoites to bradyzoites was investigated in mixed cultures of dissociated CNS cells from cortices of Wistar rat embryos. Two days post infection (p.i.) with T. gondii tachyzoites, intracellular parasites were detected within neurons, astrocytes, and microglial cells as assessed by double immunofluorescence and confocal microscopy. Quantitative analyses revealed that approximately 10% of neurons and astrocytes were infected with T. gondii, while 30% of the microglial cells harbored intracellular parasites. However, the replication of T. gondii within microglial cells was considerably diminished, since 93% of the parasitophorous vacuoles (PV) contained only one to two parasites which often appeared degenerated. This toxoplasmacidal activity was not abrogated after treatment with NO synthase inhibitors or neutralization of IFN-gamma production. In contrast, 30% of the PV in neurons and astrocytes harbored clearly proliferating parasites with at least four to eight parasites per vacuole. Four days p.i. with tachyzoites of T. gondii, bradyzoites were detected within neurons, astrocytes, and microglial cells of untreated cell cultures. However, the majority of bradyzoite-containing vacuoles were located in neurons. Spontaneous differentiation to the bradyzoite stage was not inhibited after addition of NO synthase inhibitors or neutralization of IFN-gamma. In conclusion, our results indicate that intracerebral replication of T. gondii as well as spontaneous conversion from the tachyzoite to the bradyzoite stage is sustained predominantly by neurons and astrocytes, whereas microglial cells may effectively inhibit parasitic growth within the CNS.
Collapse
|
|
26 |
92 |
7
|
Fornai F, di Poggio AB, Pellegrini A, Ruggieri S, Paparelli A. Noradrenaline in Parkinsons Disease: From Disease Progression to Current Therapeutics. Curr Med Chem 2007; 14:2330-4. [PMID: 17896981 DOI: 10.2174/092986707781745550] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loss of the neurotransmitter noradrenaline occurs constantly in Parkinson's disease. This is supposed to worsen disease progression, either by increasing the vulnerability of dopamine-containing neurons or by reducing the recovery once they are damaged. Novel data also show that the loss of noradrenergic innervation facilitates the onset of dyskinesia occurring in Parkinsonian patients during dopamine replacement therapy. In the first part of the manuscript we review the evidence showing the loss of the noradrenergic system as an early event in the natural history of Parkinsonism. This evidence is discussed in light of novel reports showing the deleterious effects produced by the noradrenergic deficit on the survival of nigral dopamine neurons. In particular, we analyze the biochemical and morphological changes produced in the nigrostriatal system by the loss of endogenous noradrenaline. In a dedicated paragraph we specifically evaluate the cross affinity between dopamine and noradrenaline systems. In fact, this is critical during dopamine/noradrenaline replacement therapy in Parkinson's disease. In the last part, we overview novel therapeutic approaches aimed at restoring the activation of noradrenaline receptors to reduce the dyskinesia occurring in the treatment of Parkinson's disease.
Collapse
|
|
18 |
77 |
8
|
Haroon F, Händel U, Angenstein F, Goldschmidt J, Kreutzmann P, Lison H, Fischer KD, Scheich H, Wetzel W, Schlüter D, Budinger E. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One 2012; 7:e35516. [PMID: 22530040 PMCID: PMC3329480 DOI: 10.1371/journal.pone.0035516] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 03/18/2012] [Indexed: 12/11/2022] Open
Abstract
Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+)) imaging studies revealed that tachyzoites actively manipulated Ca(2+) signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+) uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+) stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
70 |
9
|
Marsh AE, Barr BC, Lakritz J, Nordhausen R, Madigan JE, Conrad PA. Experimental infection of nude mice as a model for Sarcocystis neurona-associated encephalitis. Parasitol Res 1997; 83:706-11. [PMID: 9272562 DOI: 10.1007/s004360050323] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of a rodent model for the study of Sarcocystis neurona encephalitis is described. Animal models have been developed for a number of protozoal parasites; however, no such model exists for S. neurona. The approach used in this study is similar to that employed for other closely related protozoal parasites such as Neospora caninum and Toxoplasma gondii. A time course of infection was examined, and histopathology, immunohistochemistry, and parasite isolation were used to examine the pathogenesis and follow the infection from 1 to 6 weeks postinoculation. S. neurona was associated with the development of encephalitis in these mice, and the immune status determined the susceptibility of these mice to S. neurona-associated encephalitis.
Collapse
|
|
28 |
68 |
10
|
Fischer HG, Nitzgen B, Reichmann G, Gross U, Hadding U. Host cells of Toxoplasma gondii encystation in infected primary culture from mouse brain. Parasitol Res 1997; 83:637-41. [PMID: 9272550 DOI: 10.1007/s004360050311] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to identify brain cell types that serve as host cells of Toxoplasma gondii encystation primary cultures from murine brain were infected and stained for neural and parasite stage-specific markers. In mixed culture inoculated with T. gondii tachyzoites, MAP2+ neurons, GFAP+ astrocytes, F4/80+ microglia, and O1+ oligodendrocytes proved to be infected as detected by parallel labeling of SAG1. At 4 days following infection with bradyzoites, cysts developed in neuronal, astroglial, and microglial host cells as clarified using bradyzoite-specific antibody 4F8. Additional staining of SAG1 revealed that astrocytes in bradyzoite-infected brain cell culture can also harbor tachyzoite-containing vacuoles. Stage conversion was observed shortly after inoculation and was accompanied by an increase in] parasite proliferation. However, tachyzoites became rare in prolonged culture. By contrast, the numbers of cysts and of the bradyzoites isolated multiplied during long-term culture. These findings demonstrate that both glial and neuronal host cells allow T. gondii encystation in the absence of T cell-derived cytokines and imply that a brain-internal spreading of bradyzoites may sustain chronic infection.
Collapse
|
|
28 |
63 |
11
|
Schlüter D, Deckert M, Hof H, Frei K. Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon- and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect Immun 2001; 69:7889-93. [PMID: 11705972 PMCID: PMC98886 DOI: 10.1128/iai.69.12.7889-7893.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii has the capacity to persist in the brain within neurons. In this study we demonstrated that T. gondii infected murine cerebellar neurons in vitro and replicated within these cells. Stimulation with gamma interferon (IFN-gamma) and/or tumor necrosis factor (TNF) did not enable neurons to inhibit parasite invasion and replication. Cultured neurons constitutively produced interleukin 1 (IL-1), IL-6, macrophage inflammatory protein 1alpha (MIP-1alpha), and MIP-1beta but not transforming growth factor beta1 (TGF-beta1), IL-10, and granulocyte-macrophage colony-stimulating factor. Neuronal expression of some cytokines (IL-6, TGF-beta1) and chemokines (MIP-1beta) was regulated by infection and/or by IFN-gamma and TNF.
Collapse
|
research-article |
24 |
57 |
12
|
Zheng H, Patterson LM, Morrison C, Banfield BW, Randall JA, Browning KN, Travagli RA, Berthoud HR. Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance. Neuroscience 2006; 135:611-25. [PMID: 16111819 DOI: 10.1016/j.neuroscience.2005.06.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 05/22/2005] [Accepted: 06/09/2005] [Indexed: 12/30/2022]
Abstract
Neural signaling by melanin-concentrating hormone and its receptor (SLC-1) has been implicated in the control of energy balance, but due to the wide distribution of melanin-concentrating hormone-containing fibers throughout the neuraxis, its critical sites of action for a particular effect have not been identified. The present study aimed to anatomically and functionally characterize melanin-concentrating hormone innervation of the rat caudal brainstem, as this brain area plays an important role in the neural control of ingestive behavior and autonomic outflow. Using retrograde tracing we demonstrate that a significant proportion (5-15%) of primarily perifornical and far-lateral hypothalamic melanin-concentrating hormone neurons projects to the dorsal vagal complex. In the caudal brainstem, melanin-concentrating hormone-ir axon profiles are distributed densely in most areas including the nucleus of the solitary tract, dorsal motor nucleus of the vagus, and sympathetic premotor areas in the ventral medulla. Close anatomical appositions can be demonstrated between melanin-concentrating hormone-ir axon profiles and tyrosine hydroxylase, GABA, GLP-1, NOS-expressing, and nucleus of the solitary tract neurons activated by gastric nutrient infusion. In medulla slice preparations, bath application of melanin-concentrating hormone inhibited in a concentration-dependent manner the amplitude of excitatory postsynaptic currents evoked by solitary tract stimulation via a pre-synaptic mechanism. Fourth ventricular administration of melanin-concentrating hormone (10 microg) in freely moving rats decreased core body temperature but did not change locomotor activity and food and water intake. We conclude that the rich hypothalamo-medullary melanin-concentrating hormone projections in the rat are mainly inhibitory to nucleus of the solitary tract neurons, but are not involved in the control of food intake. Projections to ventral medullary sites may play a role in the inhibitory effect of melanin-concentrating hormone on energy expenditure.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
44 |
13
|
Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson's disease. Neurotox Res 2013; 23:145-53. [PMID: 22573480 PMCID: PMC3597389 DOI: 10.1007/s12640-012-9328-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Microglial activation and subsequent release of toxic pro-inflammatory factors are believed to play an important role in neuronal cell death associated with Parkinson's disease (PD). Compounds that inhibit microglia activation and suppress pro-inflammatory factor release have been reported to have neuroprotective effects in animal models of PD. In this study, we tested whether diadzein, a natural isoflavone found in soybean, attenuated lipopolysaccharide (LPS)-induced release of inflammatory mediators in BV-2, a murine microglial cell line. Diadzein pretreatment was found to significantly suppress the production of the pro-inflammatory factors nitric oxide and IL-6 as well as their mRNA expression in conjunction with reductions in ROS production, p38 MAPK phosphorylation, and NF-κB activation. Furthermore, transfer of conditioned media (CM) from BV-2 cells pretreated with diadzein resulted in a significantly reduction in dopaminergic neurotoxicity compared with CM from microglia stimulated with LPS alone. Together, our results suggest that diadzein's neuroprotective properties may be due to its ability to dampen induction of microglial activation and the subsequent release of soluble pro-inflammatory factors. This appears to be via inhibition of oxidative induction of the p38 MAP kinase-NFκB pathway, resulting in reduced expression of pro-inflammatory genes and release of their corresponding gene products.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
42 |
14
|
Cuddon P, Lin DS, Bowman DD, Lindsay DS, Miller TK, Duncan ID, deLahunta A, Cummings J, Suter M, Cooper B. Neospora caninum infection in English Springer Spaniel littermates. Diagnostic evaluation and organism isolation. J Vet Intern Med 1992; 6:325-32. [PMID: 1484374 DOI: 10.1111/j.1939-1676.1992.tb00364.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Progressive paraparesis developed in four male English Springer Spaniel pups from a litter of five during the first 10 weeks of life. Two of the pups, which had the earliest onset of neurologic signs, were euthanatized without further workup. However, a detailed investigation was completed on the remaining two littermates at 12 weeks of age. Both pups had progressive paraparesis for 3 to 4 weeks before presentation, with one dog developing subsequent asymmetric pelvic limb extensor rigidity. Based on results from neurologic examination, cerebrospinal fluid (CSF) analysis, electrophysiology, and muscle/nerve biopsy, a presumptive diagnosis of protozoal polyradiculitis and polymyositis was made. Necropsy of the most severely affected pup confirmed the clinical diagnosis of inflammatory nerve root and muscle disease but no organisms were found. To increase the potential yield of organisms, the second pup was placed on immunosuppressive doses of corticosteroids and euthanatized 2 weeks later. Numerous organisms were found in lesions in muscle and the central nervous system. Organisms grew in tissue culture and were isolated from the peritoneal fluid of gerbils inoculated with infected tissue. Organisms were not isolated from inoculated mice, guinea pigs, rabbits, and hamsters. No parasites were seen in feces or tissues of three cats fed infected dog tissues. Serologic testing demonstrated a strong positive titer to Neospora caninum in both pups, and electron microscopy showed the characteristic morphology of this parasite.
Collapse
|
Case Reports |
33 |
42 |
15
|
Chuenkova MV, PereiraPerrin M. Chagas' disease parasite promotes neuron survival and differentiation through TrkA nerve growth factor receptor. J Neurochem 2004; 91:385-94. [PMID: 15447671 DOI: 10.1111/j.1471-4159.2004.02724.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TrkA is a receptor tyrosine kinase activated primarily by nerve growth factor (NGF) to regulate differentiation, survival, and other important functions of neurons. Given the critical role TrkA plays in neural maintenance, it may be that microbial invaders of the nervous system utilize this receptor to reduce tissue damage for maximizing host-parasite equilibrium. Candidate pathogens could be those, like Trypanosoma cruzi, which may produce relatively little brain or nerve damage in long-lasting infections. We show here that T. cruzi, via its neuraminidase, binds TrkA in a NGF-inhibitable manner, induces TrkA autophosphorylation, and, through TrkA-dependent mechanisms, triggers phosphatidylinositol 3-kinase (PI3K)/Akt kinase signaling, cell survival, and neurite outgrowth. Unlike NGF, the neuraminidase does not react with the apoptosis-causing pan-neurotrophin receptor p75NTR. Therefore, these studies identify a novel and unique TrkA ligand in a microbial invader of the nervous system, raising the thus far unsuspected prospect of TrkA underlying clinical progression of an important human infectious disease.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
42 |
16
|
Desai P, Janova H, White JP, Reynoso GV, Hickman HD, Baldridge MT, Urban JF, Stappenbeck TS, Thackray LB, Diamond MS. Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell 2021; 184:1214-1231.e16. [PMID: 33636133 PMCID: PMC7962748 DOI: 10.1016/j.cell.2021.01.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
41 |
17
|
Da Mata JR, Camargos MR, Chiari E, Machado CR. Trypanosoma cruzi infection and the rat central nervous system: proliferation of parasites in astrocytes and the brain reaction to parasitism. Brain Res Bull 2000; 53:153-62. [PMID: 11044591 DOI: 10.1016/s0361-9230(00)00326-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chagas' disease, caused by the protozoan Trypanosoma cruzi, is characterized by an acute phase in which parasites circulate in the blood and proliferate in several cell types, especially muscle cells. A life-long chronic phase follows the acute phase. In young patients, the acute phase is more severe, and meningoencephalitis frequently occurs in children before 2 years of age. Parasites have been rarely observed in neurons but their presence inside glial cells has been reported without characterization of the glial cell type. The cells involved in the brain reaction to the parasites and the time course of this reaction remain to be studied. Therefore, using suckling and juvenile rats and different T. cruzi populations, we aimed at determining the brain target for parasite proliferation and the cells involved in the brain reaction. Around the middle of the acute phase, histological and ultrastructural findings indicated that T. cruzi proliferates in astrocytes, forming nests devoid of enclosing membrane as described for non-glial cells. The brain nodular reaction comprised astrocytes, microglia, macrophages and neutrophils. Resting microglia was devoid of parasites in contrast to macrophages and neutrophils that probably participate in parasite removal. Suckling animals were significantly more affected, the numbers of nests and nodules varying with inoculum size. Histoquantitative analysis showed higher number of nests at the parasitemic peak (day 13) and drastic fall at day 20 post-inoculation. The highest number of nodules occurred at day 20 with drastic reduction at day 30. Recovery from histopathological alterations occurred even in surviving younger animals.
Collapse
|
|
25 |
41 |
18
|
Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson MM, Gros P. Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog 2013; 9:e1003491. [PMID: 23853600 PMCID: PMC3708918 DOI: 10.1371/journal.ppat.1003491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/28/2013] [Indexed: 02/07/2023] Open
Abstract
Interferon Regulatory Factor 8 (IRF8) is required for development, maturation and expression of anti-microbial defenses of myeloid cells. BXH2 mice harbor a severely hypomorphic allele at Irf8 (Irf8R294C) that causes susceptibility to infection with intracellular pathogens including Mycobacterium tuberculosis. We report that BXH2 are completely resistant to the development of cerebral malaria (ECM) following Plasmodium berghei ANKA infection. Comparative transcriptional profiling of brain RNA as well as chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) was used to identify IRF8-regulated genes whose expression is associated with pathological acute neuroinflammation. Genes increased by infection were strongly enriched for IRF8 binding sites, suggesting that IRF8 acts as a transcriptional activator in inflammatory programs. These lists were enriched for myeloid-specific pathways, including interferon responses, antigen presentation and Th1 polarizing cytokines. We show that inactivation of several of these downstream target genes (including the Irf8 transcription partner Irf1) confers protection against ECM. ECM-resistance in Irf8 and Irf1 mutants is associated with impaired myeloid and lymphoid cells function, including production of IL12p40 and IFNγ. We note strong overlap between genes bound and regulated by IRF8 during ECM and genes regulated in the lungs of M. tuberculosis infected mice. This IRF8-dependent network contains several genes recently identified as risk factors in acute and chronic human inflammatory conditions. We report a common core of IRF8-bound genes forming a critical inflammatory host-response network. Cerebral malaria is a severe and often lethal complication from infection with Plasmodium falciparum which is driven in part by pathological host inflammatory response to parasitized red cells′ adherence in the brain microvasculature. However, the pathways that initiate and amplify this pathological neuroinflammation are not well understood. As susceptibility to cerebral malaria is variable and has been shown to be partially heritable, we have studied this from a genetic perspective using a mouse model of infection with P. berghei which induces experimental cerebral malaria (ECM). Here we show that mice bearing mutations in the myeloid transcription factor IRF8 and its heterodimerization partner IRF1 are completely resistant to ECM. We have identified the genes and associated networks that are activated by IRF8 during ECM. Loss-of-function mutations of several IRF8 targets are also shown to be protective. Parallel analysis of lungs infected with Mycobacterium tuberculosis show that IRF8-associated core pathways are also engaged during tuberculosis where they play a protective role. This contrast illustrates the balancing act required by the immune system to respond to pathogens and highlights a lynchpin role for IRF8 in both. Finally, several genes in these networks have been individually associated with chronic or acute inflammatory conditions in humans.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
40 |
19
|
Gavier-Widen D, Wells GA, Simmons MM, Wilesmith JW, Ryan J. Histological observations on the brains of symptomless 7-year-old cattle. J Comp Pathol 2001; 124:52-9. [PMID: 11428189 DOI: 10.1053/jcpa.2000.0428] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The histological changes in the brains of 506 clinically normal 7-year-old cattle, which were part of a cohort study on maternal transmission of bovine spongiform encephalopathy, are described. Vacuolation of the white matter, of unknown aetiology, located particularly in the substantia nigra, was a frequent finding. Vacuolated neurons were commonly observed in the red nucleus (64.3% of the animals) and in the habenular nucleus (50.1%). Spheroids were found in 10.8% of the brains, most frequently in the vestibular nuclei. Cellular inflammatory infiltrates in association with blood vessels occurred in 30% of the animals at various locations in the brain; their aetiology remains uncertain, but they may have reflected subclinical or latent infections. Mineralization of the wall of blood vessels, with proliferation of the intima, was observed frequently in vessels of the internal capsule and was probably associated with ageing. The description of histological findings in the brain of symptomless adult cattle in the present study provides a useful background for diagnostic bovine neuropathology.
Collapse
|
|
24 |
38 |
20
|
Fagard R, Van Tan H, Creuzet C, Pelloux H. Differential development of Toxoplasma gondii in neural cells. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:504-7. [PMID: 10557153 DOI: 10.1016/s0169-4758(99)01568-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this article, Remi Fagard and colleagues discuss the properties of neurons that lead to their low infection by Toxoplasma gondii, and the role that cytokines such as tumour necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) might play.
Collapse
|
Review |
26 |
38 |
21
|
Yeh J, Zheng S, Howard BD. Impaired differentiation of HPRT-deficient dopaminergic neurons: a possible mechanism underlying neuronal dysfunction in Lesch-Nyhan syndrome. J Neurosci Res 1998; 53:78-85. [PMID: 9670994 DOI: 10.1002/(sici)1097-4547(19980701)53:1<78::aid-jnr8>3.0.co;2-g] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lesch-Nyhan syndrome is a hereditary disorder of purine metabolism causing overproduction of uric acid and neurological problems including spasticity, choreoathetosis, mental retardation, and compulsive self-mutilation. The syndrome is caused by a defect in the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT), which converts guanine and hypoxanthine to the nucleotides GMP and IMP. There is evidence that the neurological problems are due to an adverse effect of the HPRT deficiency on the survival and/or development of dopaminergic neurons, specifically. Here we report that HPRT-deficient PC12 mutants that have a normal or near normal dopamine content (55-97% of that of wild-type cells) fail to undergo neuronal differentiation induced by nerve growth factor (NGF) when the de novo pathway of purine synthesis is partially inhibited. However, nerve growth factor-induced differentiation is near normal under these conditions in PC12 HPRT-deficient mutants containing much lower dopamine levels (<8% of that of wild type cells), indicating a neurotoxic effect of the endogenous dopamine in the mutants. The degree of inhibition of the de novo pathway of purine synthesis was the same in both classes of HPRT-deficient mutants. Expression of BCl-2 in a PC12 mutant that has a normal dopamine content allowed partial NGF-induced differentiation suggesting that the apoptotic pathway might be involved in the failure of differentiation when the de novo pathway of purine synthesis is partially inhibited.
Collapse
|
|
27 |
38 |
22
|
Dincel GC, Atmaca HT. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int J Immunopathol Pharmacol 2016; 29:226-40. [PMID: 26966143 PMCID: PMC5806720 DOI: 10.1177/0394632016638668] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress (OS) plays an essential role in the pathogenesis of common neurodegenerative diseases. We have previously shown that Toxoplasma gondii (T. gondii) induces high nitric oxide (NO) production, glial activation, and apoptosis that altogether cause severe neuropathology in toxoplasma encephalitis (TE). The objective of this study was to investigate the cytotoxic effect of OS and to identify a correlation between the causes of T. gondii induced neuropathology. Expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (SOD1), neuron specific enolase (NSE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were investigated. Results of the study revealed that the levels of GR (P <0.005) and NSE (P <0.001) expression in the brain tissue markedly increased while SOD1 activity decreased (P <0.001) in the infected group compared to the non-infected group. In addition, intense staining for 8-OHdG (P <0.05) was observed both in the nucleus and the cytoplasm of neurons and glial cells that underwent OS. These results were reasonable to suggest that T. gondii-mediated OS might play a pivotal role and a different type of role in the mechanism of neurodegeneration/neuropathology in the process of TE. The results also clearly indicated that increased levels of NO and apoptosis might contribute to OS-related pathogenesis of TE. As a result, OS and expression of NSE might give an idea of the disease progress and may have a critical diagnostic significance for patients with T. gondii infection.
Collapse
|
research-article |
9 |
37 |
23
|
Marciano-Cabral F, John DT. Cytopathogenicity of Naegleria fowleri for rat neuroblastoma cell cultures: scanning electron microscopy study. Infect Immun 1983; 40:1214-7. [PMID: 6852919 PMCID: PMC348179 DOI: 10.1128/iai.40.3.1214-1217.1983] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma cells were inoculated with Naegleria fowleri Lee and examined for cytopathology at various periods post-inoculation by scanning electron microscopy. By 18 h post-inoculation, approximately 50% of neuroblastoma cells were nonviable, as evidenced by trypan blue exclusion and light microscopic examination. This cytopathology resulted from piecemeal consumption of target cells mediated by a sucker apparatus extending from the surface of N. fowleri.
Collapse
|
research-article |
42 |
36 |
24
|
Carrillo GL, Ballard VA, Glausen T, Boone Z, Teamer J, Hinkson CL, Wohlfert EA, Blader IJ, Fox MA. Toxoplasma infection induces microglia-neuron contact and the loss of perisomatic inhibitory synapses. Glia 2020; 68:1968-1986. [PMID: 32157745 PMCID: PMC7423646 DOI: 10.1002/glia.23816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid-derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid-derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid-derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
35 |
25
|
Freeman MA, Yokoyama H, Ogawa K. A microsporidian parasite of the genus Spraguea in the nervous tissues of the Japanese anglerfish Lophius litulon. Folia Parasitol (Praha) 2004; 51:167-76. [PMID: 15357394 DOI: 10.14411/fp.2004.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, a high percentage of Japanese anglerfish, Lophius litulon (Jordan, 1902), contained a microsporidian infection of the nervous tissues. Xenomas were removed and prepared for standard wax histology and transmission electron microscopy (TEM). DNA extractions were performed on parasite spores and used in PCR and sequencing reactions. Fresh spores measured 3.4 x 1.8 microm and were uniform in size with no dimorphism observed. TEM confirmed that only a single developmental cycle and a single spore form were present. Small subunit (SSU) rDNA sequences were >99.5% similar to those of Spraguea lophii (Doflein, 1898) and Glugea americanus (Takvorian et Cali, 1986) from the European and American Lophius spp. respectively. The microsporidian from the nervous tissue of L. litulon undoubtedly belongs in the genus Spraguea Sprague et Vivra, 1976 and the authors suggest a revision to the generic description of Spraguea to include monomorphic forms and the transfer of Glugea americanus to Spraguea americana comb. n. Since no major differences in ultrastructure or SSU rDNA sequence data exist between Spraguea americana and the microsporidian from the Japanese anglerfish, they evidently belong to the same species. This report of Spraguea americana is the first report of a Spraguea species from L. litulon and indeed from the Pacific water mass.
Collapse
|
Journal Article |
21 |
32 |