1
|
Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, Mushumba H, Fitzek A, Allweiss L, Dandri M, Dottermusch M, Heinemann A, Pfefferle S, Schwabenland M, Sumner Magruder D, Bonn S, Prinz M, Gerloff C, Püschel K, Krasemann S, Aepfelbacher M, Glatzel M. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020; 19:919-929. [PMID: 33031735 PMCID: PMC7535629 DOI: 10.1016/s1474-4422(20)30308-2] [Citation(s) in RCA: 942] [Impact Index Per Article: 188.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prominent clinical symptoms of COVID-19 include CNS manifestations. However, it is unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, gains access to the CNS and whether it causes neuropathological changes. We investigated the brain tissue of patients who died from COVID-19 for glial responses, inflammatory changes, and the presence of SARS-CoV-2 in the CNS. METHODS In this post-mortem case series, we investigated the neuropathological features in the brains of patients who died between March 13 and April 24, 2020, in Hamburg, Germany. Inclusion criteria comprised a positive test for SARS-CoV-2 by quantitative RT-PCR (qRT-PCR) and availability of adequate samples. We did a neuropathological workup including histological staining and immunohistochemical staining for activated astrocytes, activated microglia, and cytotoxic T lymphocytes in the olfactory bulb, basal ganglia, brainstem, and cerebellum. Additionally, we investigated the presence and localisation of SARS-CoV-2 by qRT-PCR and by immunohistochemistry in selected patients and brain regions. FINDINGS 43 patients were included in our study. Patients died in hospitals, nursing homes, or at home, and were aged between 51 years and 94 years (median 76 years [IQR 70-86]). We detected fresh territorial ischaemic lesions in six (14%) patients. 37 (86%) patients had astrogliosis in all assessed regions. Activation of microglia and infiltration by cytotoxic T lymphocytes was most pronounced in the brainstem and cerebellum, and meningeal cytotoxic T lymphocyte infiltration was seen in 34 (79%) patients. SARS-CoV-2 could be detected in the brains of 21 (53%) of 40 examined patients, with SARS-CoV-2 viral proteins found in cranial nerves originating from the lower brainstem and in isolated cells of the brainstem. The presence of SARS-CoV-2 in the CNS was not associated with the severity of neuropathological changes. INTERPRETATION In general, neuropathological changes in patients with COVID-19 seem to be mild, with pronounced neuroinflammatory changes in the brainstem being the most common finding. There was no evidence for CNS damage directly caused by SARS-CoV-2. The generalisability of these findings needs to be validated in future studies as the number of cases and availability of clinical data were low and no age-matched and sex-matched controls were included. FUNDING German Research Foundation, Federal State of Hamburg, EU (eRARE), German Center for Infection Research (DZIF).
Collapse
|
research-article |
5 |
942 |
2
|
McKee AC, Stein TD, Kiernan PT, Alvarez VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol 2015; 25:350-64. [PMID: 25904048 PMCID: PMC4526170 DOI: 10.1111/bpa.12248] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022] Open
Abstract
Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE). Most instances of CTE occur in association with the play of sports, but CTE has also been reported in association with blast injuries and other neurotrauma. Symptoms of CTE include behavioral and mood changes, memory loss, cognitive impairment and dementia. Like many other neurodegenerative diseases, CTE is diagnosed with certainty only by neuropathological examination of brain tissue. CTE is a tauopathy characterized by the deposition of hyperphosphorylated tau (p-tau) protein as neurofibrillary tangles, astrocytic tangles and neurites in striking clusters around small blood vessels of the cortex, typically at the sulcal depths. Severely affected cases show p-tau pathology throughout the brain. Abnormalities in phosphorylated 43 kDa TAR DNA-binding protein are found in most cases of CTE; beta-amyloid is identified in 43%, associated with age. Given the importance of sports participation and physical exercise to physical and psychological health as well as disease resilience, it is critical to identify the genetic risk factors for CTE as well as to understand how other variables, such as stress, age at exposure, gender, substance abuse and other exposures, contribute to the development of CTE.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
386 |
3
|
Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord 2017; 46 Suppl 1:S30-S33. [PMID: 28780180 DOI: 10.1016/j.parkreldis.2017.07.033] [Citation(s) in RCA: 377] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by bradykinesia, rigidity, postural instability and tremor. Several pathologic processes can produce this syndrome, but neurodegeneration accompanied by neuronal inclusions composed of α-synuclein (Lewy bodies) is considered the typical pathologic correlate of PD. METHODS The neuropathologic features of PD are reviewed based upon personal experience and review of the literature. Molecular pathology of PD is summarized from cell biological and animal studies. RESULTS The pathologic feature that correlates with signs and symptoms of PD is neuronal loss in the substantia nigra with dopaminergic denervation of the striatum. Neuronal degeneration in the substantia nigra preferentially affects the ventrolateral cell group that projects to posterolateral putamen and is accompanied by formation of Lewy bodies composed of aggregated α-synuclein. Some patients with PD are found at autopsy to have other pathologic processes, such as multiple system atrophy, progressive supranuclear palsy and cerebrovascular disease (vascular Parkinsonism). The peripheral autonomic nervous system is also affected. The triggering event in PD is unknown, but recent studies suggest a role for loss of nuclear membrane integrity. Once α-synuclein aggregates forms, evidence supports cell-to-cell propagation. CONCLUSION PD is a multisystem synucleinopathy caused by poorly characterized genetic and environmental factors that produces degeneration in selectively vulnerable neuronal populations.
Collapse
|
Review |
8 |
377 |
4
|
Reiman EM, Arboleda-Velasquez JF, Quiroz YT, Huentelman MJ, Beach TG, Caselli RJ, Chen Y, Su Y, Myers AJ, Hardy J, Paul Vonsattel J, Younkin SG, Bennett DA, De Jager PL, Larson EB, Crane PK, Keene CD, Kamboh MI, Kofler JK, Duque L, Gilbert JR, Gwirtsman HE, Buxbaum JD, Dickson DW, Frosch MP, Ghetti BF, Lunetta KL, Wang LS, Hyman BT, Kukull WA, Foroud T, Haines JL, Mayeux RP, Pericak-Vance MA, Schneider JA, Trojanowski JQ, Farrer LA, Schellenberg GD, Beecham GW, Montine TJ, Jun GR. Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun 2020; 11:667. [PMID: 32015339 PMCID: PMC6997393 DOI: 10.1038/s41467-019-14279-8] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Each additional copy of the apolipoprotein E4 (APOE4) allele is associated with a higher risk of Alzheimer's dementia, while the APOE2 allele is associated with a lower risk of Alzheimer's dementia, it is not yet known whether APOE2 homozygotes have a particularly low risk. We generated Alzheimer's dementia odds ratios and other findings in more than 5,000 clinically characterized and neuropathologically characterized Alzheimer's dementia cases and controls. APOE2/2 was associated with a low Alzheimer's dementia odds ratios compared to APOE2/3 and 3/3, and an exceptionally low odds ratio compared to APOE4/4, and the impact of APOE2 and APOE4 gene dose was significantly greater in the neuropathologically confirmed group than in more than 24,000 neuropathologically unconfirmed cases and controls. Finding and targeting the factors by which APOE and its variants influence Alzheimer's disease could have a major impact on the understanding, treatment and prevention of the disease.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
282 |
5
|
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol 2017; 151:101-138. [PMID: 27084356 PMCID: PMC5061605 DOI: 10.1016/j.pneurobio.2016.04.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/02/2023]
Abstract
None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
Collapse
|
Review |
8 |
214 |
6
|
La Joie R, Ayakta N, Seeley WW, Borys E, Boxer AL, DeCarli C, Doré V, Grinberg LT, Huang E, Hwang JH, Ikonomovic MD, Jack C, Jagust WJ, Jin LW, Klunk WE, Kofler J, Lesman-Segev OH, Lockhart SN, Lowe VJ, Masters CL, Mathis CA, McLean CL, Miller BL, Mungas D, O'Neil JP, Olichney JM, Parisi JE, Petersen RC, Rosen HJ, Rowe CC, Spina S, Vemuri P, Villemagne VL, Murray ME, Rabinovici GD. Multisite study of the relationships between antemortem [ 11C]PIB-PET Centiloid values and postmortem measures of Alzheimer's disease neuropathology. Alzheimers Dement 2019; 15:205-216. [PMID: 30347188 PMCID: PMC6368897 DOI: 10.1016/j.jalz.2018.09.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/08/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION We sought to establish the relationships between standard postmortem measures of AD neuropathology and antemortem [11C]PIB-positron emission tomography ([11C]PIB-PET) analyzed with the Centiloid (CL) method, a standardized scale for Aβ-PET quantification. METHODS Four centers contributed 179 participants encompassing a broad range of clinical diagnoses, PET data, and autopsy findings. RESULTS CL values increased with each CERAD neuritic plaque score increment (median -3 CL for no plaques and 92 CL for frequent plaques) and nonlinearly with Thal Aβ phases (increases were detected starting at phase 2) with overlap between scores/phases. PET-pathology associations were comparable across sites and unchanged when restricting the analyses to the 56 patients who died within 2 years of PET. A threshold of 12.2 CL detected CERAD moderate-to-frequent neuritic plaques (area under the curve = 0.910, sensitivity = 89.2%, specificity = 86.4%), whereas 24.4 CL identified intermediate-to-high AD neuropathological changes (area under the curve = 0.894, sensitivity = 84.1%, specificity = 87.9%). DISCUSSION Our study demonstrated the robustness of a multisite Centiloid [11C]PIB-PET study and established a range of pathology-based CL thresholds.
Collapse
|
Multicenter Study |
6 |
197 |
7
|
Head E, Lott IT, Wilcock DM, Lemere CA. Aging in Down Syndrome and the Development of Alzheimer's Disease Neuropathology. Curr Alzheimer Res 2016; 13:18-29. [PMID: 26651341 PMCID: PMC4948181 DOI: 10.2174/1567205012666151020114607] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/18/2015] [Accepted: 09/01/2015] [Indexed: 02/04/2023]
Abstract
Chromosome 21, triplicated in Down Syndrome, contains several genes that are thought to play a critical role in the development of AD neuropathology. The overexpression of the gene for the amyloid precursor protein (APP), on chromosome 21, leads to early onset beta-amyloid (Aβ) plaques in DS. In addition to Aβ accumulation, middle-aged people with DS develop neurofibrillary tangles, cerebrovascular pathology, white matter pathology, oxidative damage, neuroinflammation and neuron loss. There is also evidence of potential compensatory responses in DS that benefit the brain and delay the onset of dementia after there is sufficient neuropathology for a diagnosis of AD. This review describes some of the existing literature and also highlights gaps in our knowledge regarding AD neuropathology in DS. It will be critical in the future to develop networked brain banks with standardized collection procedures to fully characterize the regional and temporal pathological events associated with aging in DS. As more information is acquired regarding AD evolution in DS, there will be opportunities to develop interventions that are age-appropriate to delay AD in DS.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
179 |
8
|
Jacobs HI, Becker JA, Kwong K, Engels-Domínguez N, Prokopiou PC, Papp KV, Properzi M, Hampton OL, Uquillas FD, Sanchez JS, Rentz DM, Fakhri GE, Normandin MD, Price JC, Bennett DA, Sperling RA, Johnson KA. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer's disease pathology and cognitive decline. Sci Transl Med 2021; 13:eabj2511. [PMID: 34550726 PMCID: PMC8641759 DOI: 10.1126/scitranslmed.abj2511] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several autopsy studies recognize the locus coeruleus (LC) as the initial site of hyperphosphorylated TAU aggregation, and as the number of LC neurons harboring TAU increases, TAU pathology emerges throughout the cortex. By conjointly using dedicated MRI measures of LC integrity and TAU and amyloid PET imaging, we aimed to address the question whether in vivo LC measures relate to initial cortical patterns of Alzheimer’s disease (AD) fibrillar proteinopathies or cognitive dysfunction in 174 cognitively unimpaired and impaired older individuals with longitudinal cognitive measures. To guide our interpretations, we verified these associations in autopsy data from 1524 Religious Orders Study and Rush Memory and Aging Project and 2145 National Alzheimer’s Coordinating Center cases providing three different LC measures (pigmentation, tangle density, and neuronal density), Braak staging, β-amyloid, and longitudinal cognitive measures. Lower LC integrity was associated with elevated TAU deposition in the entorhinal cortex among unimpaired individuals consistent with postmortem correlations between LC tangle density and successive Braak staging. LC pigmentation ratings correlated with LC neuronal density but not with LC tangle density and were particularly worse at advanced Braak stages. In the context of elevated β-amyloid, lower LC integrity and greater cortical tangle density were associated with greater TAU burden beyond the medial temporal lobe and retrospective memory decline. These findings support neuropathologic data in which early LC TAU accumulation relates to disease progression and identify LC integrity as a promising indicator of initial AD-related processes and subtle changes in cognitive trajectories of preclinical AD.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
134 |
9
|
Felsky D, Roostaei T, Nho K, Risacher SL, Bradshaw EM, Petyuk V, Schneider JA, Saykin A, Bennett DA, De Jager PL. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nat Commun 2019; 10:409. [PMID: 30679421 PMCID: PMC6345810 DOI: 10.1038/s41467-018-08279-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Microglia, the resident immune cells of the brain, have important roles in brain health. However, little is known about the regulation and consequences of microglial activation in the aging human brain. Here we report that the proportion of morphologically activated microglia (PAM) in postmortem cortical tissue is strongly associated with β-amyloid, tau-related neuropathology, and the rate of cognitive decline. Effect sizes for PAM measures are substantial, comparable to that of APOE ε4, the strongest genetic risk factor for Alzheimer's disease, and mediation models support an upstream role for microglial activation in Alzheimer's disease via accumulation of tau. Further, we identify a common variant (rs2997325) influencing PAM that also affects in vivo microglial activation measured by [11C]-PBR28 PET in an independent cohort. Thus, our analyses begin to uncover pathways regulating resident neuroinflammation and identify overlaps of PAM's genetic architecture with those of Alzheimer's disease and several other traits.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
121 |
10
|
Deigendesch N, Sironi L, Kutza M, Wischnewski S, Fuchs V, Hench J, Frank A, Nienhold R, Mertz KD, Cathomas G, Matter MS, Siegemund M, Tolnay M, Schirmer L, Pröbstel AK, Tzankov A, Frank S. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol 2020; 140:583-586. [PMID: 32851506 PMCID: PMC7449525 DOI: 10.1007/s00401-020-02213-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
brief-report |
5 |
105 |
11
|
Gonzalez-Ortiz F, Kac PR, Brum WS, Zetterberg H, Blennow K, Karikari TK. Plasma phospho-tau in Alzheimer's disease: towards diagnostic and therapeutic trial applications. Mol Neurodegener 2023; 18:18. [PMID: 36927491 PMCID: PMC10022272 DOI: 10.1186/s13024-023-00605-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
As the leading cause of dementia, Alzheimer's disease (AD) is a major burden on affected individuals, their families and caregivers, and healthcare systems. Although AD can be identified and diagnosed by cerebrospinal fluid or neuroimaging biomarkers that concord with neuropathological evidence and clinical symptoms, challenges regarding practicality and accessibility hinder their widespread availability and implementation. Consequently, many people with suspected cognitive impairment due to AD do not receive a biomarker-supported diagnosis. Blood biomarkers have the capacity to help expand access to AD diagnostics worldwide. One such promising biomarker is plasma phosphorylated tau (p-tau), which has demonstrated specificity to AD versus non-AD neurodegenerative diseases, and will be extremely important to inform on clinical diagnosis and eligibility for therapies that have recently been approved. This review provides an update on the diagnostic and prognostic performances of plasma p-tau181, p-tau217 and p-tau231, and their associations with in vivo and autopsy-verified diagnosis and pathological hallmarks. Additionally, we discuss potential applications and unanswered questions of plasma p-tau for therapeutic trials, given their recent addition to the biomarker toolbox for participant screening, recruitment and during-trial monitoring. Outstanding questions include assay standardization, threshold generation and biomarker verification in diverse cohorts reflective of the wider community attending memory clinics and included in clinical trials.
Collapse
|
Review |
2 |
90 |
12
|
Uddin MS, Lim LW. Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78:101622. [PMID: 35427810 DOI: 10.1016/j.arr.2022.101622] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that usually develops slowly and progressively worsens over time. Although there has been increasing research interest in AD, its pathogenesis is still not well understood. Although most studies primarily focus on neurons, recent research findings suggest that glial cells (especially microglia and astrocytes) are associated with AD pathogenesis and might provide various possible therapeutic targets. Growing evidence suggests that microglia can provide protection against AD pathogenesis, as microglia with weakened functions and impaired responses to Aβ proteins are linked with elevated AD risk. Interestingly, numerous findings also suggest that microglial activation can be detrimental to neurons. Indeed, microglia can induce synapse loss via the engulfment of synapses, possibly through a complement-dependent process. Furthermore, they can worsen tau pathology and release inflammatory factors that cause neuronal damage directly or through the activation of neurotoxic astrocytes. Astrocytes play a significant role in various cerebral activities. Their impairment can mediate neurodegeneration and ultimately the retraction of synapses, resulting in AD-related cognitive deficits. Deposition of Aβ can result in astrocyte reactivity, which can further lead to neurotoxic effects and elevated secretion of inflammatory mediators and cytokines. Moreover, glial-induced inflammation in AD can exert both beneficial and harmful effects. Understanding the activities of astrocytes and microglia in the regulation of AD pathogenesis would facilitate the development of novel therapies. In this article, we address the implications of microglia and astrocytes in AD pathogenesis. We also discuss the mechanisms of therapeutic agents that exhibit anti-inflammatory effects against AD.
Collapse
|
Review |
3 |
82 |
13
|
Chen X, Kordich JK, Williams ET, Levine N, Cole-Strauss A, Marshall L, Labrie V, Ma J, Lipton JW, Moore DJ. Parkinson's disease-linked D620N VPS35 knockin mice manifest tau neuropathology and dopaminergic neurodegeneration. Proc Natl Acad Sci U S A 2019; 116:5765-5774. [PMID: 30842285 PMCID: PMC6431187 DOI: 10.1073/pnas.1814909116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene represent a cause of late-onset, autosomal dominant familial Parkinson's disease (PD). A single missense mutation, D620N, is considered pathogenic based upon its segregation with disease in multiple families with PD. At present, the mechanism(s) by which familial VPS35 mutations precipitate neurodegeneration in PD are poorly understood. Here, we employ a germline D620N VPS35 knockin (KI) mouse model of PD to formally establish the age-related pathogenic effects of the D620N mutation at physiological expression levels. Our data demonstrate that a heterozygous or homozygous D620N mutation is sufficient to reproduce key neuropathological hallmarks of PD as indicated by the progressive degeneration of nigrostriatal pathway dopaminergic neurons and widespread axonal pathology. Unexpectedly, endogenous D620N VPS35 expression induces robust tau-positive somatodendritic pathology throughout the brain as indicated by abnormal hyperphosphorylated and conformation-specific tau, which may represent an important and early feature of mutant VPS35-induced neurodegeneration in PD. In contrast, we find no evidence for α-synuclein-positive neuropathology in aged VPS35 KI mice, a hallmark of Lewy body pathology in PD. D620N VPS35 expression also fails to modify the lethal neurodegenerative phenotype of human A53T-α-synuclein transgenic mice. Finally, by crossing VPS35 KI and null mice, our data demonstrate that a single D620N VPS35 allele is sufficient for survival and early maintenance of dopaminergic neurons, indicating that the D620N VPS35 protein is fully functional. Our data raise the tantalizing possibility of a pathogenic interplay between mutant VPS35 and tau for inducing neurodegeneration in PD.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
80 |
14
|
VanItallie TB. Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism 2019; 100S:153943. [PMID: 31610856 DOI: 10.1016/j.metabol.2019.07.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/06/2019] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, contributing to ~30% of all injury-related deaths in the US. TBI occurs when a force transmitted to the head causes neuropathologic damage and impairment of brain function. TBI doubles risk of suicide and is the major determinant of acquired seizure disorders. TBI arising from closed head trauma (CHT) significantly increases the risk of developing Alzheimer's disease (AD), Parkinson's disease (PD) and chronic traumatic encephalopathy (CTE). Evidence for a possible role of TBI as a risk factor for sporadic amyotrophic lateral sclerosis (sALS) has been provided by studies of professional players of European football. Depending on age, genetic make-up (in particular, being a carrier of one or two ApoE4 alleles), the number of TBIs sustained, their severity, the time periods involved, and many other factors that affect vulnerability, decades may pass after occurrence of one or more TBIs before sequelae such as AD, PD, sALS or CTE become clinically evident. Among college and professional football players who experience repeated concussions and sub-concussive blows to the head, the risk of developing CTE increases with the number of years actively devoted to the sport, and the degree of exposure to physical impacts inherent in the position played. Following a moderate or severe concussion, or a series of mild blows to the head, the brain may undergo subtle pathophysiological changes that are unlikely to be detected with confidence using available diagnostic methods. Biomarkers are being sought that can help the attending physician infer the likely presence of an ongoing occult neurodegenerative process. One example of the adverse effect of collision on the brain is "heading" the soccer ball-a feat that, repeated over years of competition, has been found to produce severe brain damage in veteran players. CTE has attracted increasing national attention because of its devastating effects in a high proportion of retired professional players of American football. In a study of brains from deceased former football players, contributed mostly by family members, CTE was neuropathologically diagnosed in 110 of 111 of National Football League (NFL) veterans. In the CTE-positive subjects, the authors observed extensive brain atrophy, astrogliosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. CTE's neuropathology has been formally defined as a tauopathy characterized by a distinct perivascular accumulation of hyperphosphorylated tau in neurons and astrocytes within cerebral sulci. Although the mechanism that underlies the unforeseen emergence of CTE long after the occurrence of one or more closed head traumas is unknown, an explanation proposed by Albayram and associates is persuasive. They discovered TBI-induced neuronal production of the toxic compound cis P-tau, an abnormal and destructive isomer of the normal and benign trans P-tau, in mouse models of CTE. Cis P-tau produced a CTE-like syndrome via a process they termed cistauosis. Cistauosis can be blocked in laboratory animals by cis P-tau monoclonal antibody, which prevents later development of tau tangles, brain atrophy and virtual CTE. In a subsequent study, the same group found in human samples obtained post-TBI from a variety of causes, that cis P-tau is induced in cortical axons and cerebrospinal fluid and positively correlates with axonal injury and clinical outcome. Thus, cis P-tau appears to contribute to short-term and long-term sequelae after TBI, but may be subject to neutralization by cis-antibody treatment.
Collapse
|
Review |
6 |
79 |
15
|
Zhang B, Jung M, Tu Y, Gollub R, Lang C, Ortiz A, Park J, Wilson G, Gerber J, Mawla I, Chan ST, Wasan A, Edwards R, Lee J, Napadow V, Kaptchuk T, Rosen B, Kong J. Identifying brain regions associated with the neuropathology of chronic low back pain: a resting-state amplitude of low-frequency fluctuation study. Br J Anaesth 2019; 123:e303-e311. [PMID: 30948036 PMCID: PMC6676015 DOI: 10.1016/j.bja.2019.02.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/03/2019] [Accepted: 02/24/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Previous studies have found widespread pain processing alterations in the brain in chronic low back pain (cLBP) patients. We aimed to (1) identify brain regions showing altered amplitude of low-frequency fluctuations (ALFF) using MRI and use these regions to discriminate cLBP patients from healthy controls (HCs) and (2) identify brain regions that are sensitive to cLBP pain intensity changes. METHODS We compared ALFF differences by MRI between cLBP subjects (90) and HCs (74), conducted a discriminative analysis to validate the results, and explored structural changes in key brain regions of cLBP. We also compared ALFF changes in cLBP patients after pain-exacerbating manoeuvres. RESULTS ALFF was increased in the post-/precentral gyrus (PoG/PrG), paracentral lobule (PCL)/supplementary motor area (SMA), and anterior cingulate cortex (ACC), and grey matter volume was increased in the left ACC in cLBP patients. PCL/SMA ALFF reliably discriminated cLBP patients from HCs in an independent cohort. cLBP patients showed increased ALFF in the insula, amygdala, hippocampal/parahippocampal gyrus, and thalamus and decreased ALFF in the default mode network (DMN) when their spontaneous low back pain intensity increased after the pain-exacerbating manoeuvre. CONCLUSIONS Brain low-frequency oscillations in the PCL, SMA, PoG, PrG, and ACC may be associated with the neuropathology of cLBP. Low-frequency oscillations in the insula, amygdala, hippocampal/parahippocampal gyrus, thalamus, and DMN are sensitive to manoeuvre-induced spontaneous back pain intensity changes.
Collapse
|
research-article |
6 |
79 |
16
|
Sturm D, Capper D, Andreiuolo F, Gessi M, Kölsche C, Reinhardt A, Sievers P, Wefers AK, Ebrahimi A, Suwala AK, Gielen GH, Sill M, Schrimpf D, Stichel D, Hovestadt V, Daenekas B, Rode A, Hamelmann S, Previti C, Jäger N, Buchhalter I, Blattner-Johnson M, Jones BC, Warmuth-Metz M, Bison B, Grund K, Sutter C, Hirsch S, Dikow N, Hasselblatt M, Schüller U, Koch A, Gerber NU, White CL, Buntine MK, Kinross K, Algar EM, Hansford JR, Gottardo NG, Schuhmann MU, Thomale UW, Hernáiz Driever P, Gnekow A, Witt O, Müller HL, Calaminus G, Fleischhack G, Kordes U, Mynarek M, Rutkowski S, Frühwald MC, Kramm CM, von Deimling A, Pietsch T, Sahm F, Pfister SM, Jones DTW. Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology. Nat Med 2023; 29:917-926. [PMID: 36928815 PMCID: PMC10115638 DOI: 10.1038/s41591-023-02255-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.
Collapse
|
research-article |
2 |
71 |
17
|
Jin L, Shi F, Chun Q, Chen H, Ma Y, Wu S, Hameed NUF, Mei C, Lu J, Zhang J, Aibaidula A, Shen D, Wu J. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro Oncol 2021; 23:44-52. [PMID: 32663285 PMCID: PMC7850049 DOI: 10.1093/neuonc/noaa163] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by neuropathologists. With advancing artificial intelligence (AI), the aim of this study was to determine whether deep learning can be applied to glioma classification. METHODS A neuropathological diagnostic platform is designed comprising a slide scanner and deep convolutional neural networks (CNNs) to classify 5 major histological subtypes of glioma to assist pathologists. The CNNs were trained and verified on over 79 990 histological patch images from 267 patients. A logical algorithm is used when molecular profiles are available. RESULTS A new model of the squeeze-and-excitation block DenseNet with weighted cross-entropy (named SD-Net_WCE) is developed for the glioma classification task, which learns the recognizable features of glioma histology CNN-based independent diagnostic testing on data from 56 patients with 17 262 histological patch images demonstrated patch level accuracy of 86.5% and patient level accuracy of 87.5%. Histopathological classifications could be further amplified to integrated neuropathological diagnosis by 2 molecular markers (isocitrate dehydrogenase and 1p/19q). CONCLUSION The model is capable of solving multiple classification tasks and can satisfactorily classify glioma subtypes. The system provides a novel aid for the integrated neuropathological diagnostic workflow of glioma.
Collapse
|
research-article |
4 |
69 |
18
|
Di Domenico F, Tramutola A, Foppoli C, Head E, Perluigi M, Butterfield DA. mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia. Free Radic Biol Med 2018; 114:94-101. [PMID: 28807816 PMCID: PMC5748251 DOI: 10.1016/j.freeradbiomed.2017.08.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase involved in the regulation of protein synthesis and degradation, longevity and cytoskeletal formation. The mTOR pathway represents a key growth and survival pathway involved in several diseases such as cancer, obesity, cardiovascular disease and neurodegenerative diseases. Numerous studies linked the alterations of mTOR pathway to age-dependent cognitive decline, pathogenesis of Alzheimer disease (AD) and AD-like dementia in Down syndrome (DS). DS is the most frequent chromosomal abnormality that causes intellectual disability. The neuropathology of AD in DS is complex and involves impaired mitochondrial function, defects in neurogenesis, increased oxidative stress, altered proteostasis and autophagy networks as a result of triplication of chromosome 21(chr 21). The chr21 gene products are considered a principal neuropathogenic moiety in DS. Several genes involved respectively in the formation of senile plaques and neurofibrillary tangles (NFT), two main pathological hallmarks of AD, are mapped on chr21. Further, in subjects with DS the activation of mTOR signaling contributes to Aβ generation and the formation of NFT. This review discusses recent research highlighting the complex role of mTOR associated with the presence of two hallmarks of AD pathology, senile plaques (composed mostly of fibrillar Aß peptides), and NFT (composed mostly of hyperphosphorylated tau protein). Oxidative stress, associated with chr21-related Aβ and mitochondrial alterations, may significantly contribute to this linkage of mTOR to AD-like neuropathology in DS.
Collapse
|
Review |
7 |
68 |
19
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
|
Review |
2 |
62 |
20
|
Xu Z, Asahchop EL, Branton WG, Gelman BB, Power C, Hobman TC. MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: Implications for virus biology, disease mechanisms and neuropathology. PLoS Pathog 2017; 13:e1006360. [PMID: 28594894 PMCID: PMC5464672 DOI: 10.1371/journal.ppat.1006360] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) represent a spectrum neurological syndrome that affects up to 25% of patients with HIV/AIDS. Multiple pathogenic mechanisms contribute to the development of HAND symptoms including chronic neuroinflammation and neurodegeneration. Among the factors linked to development of HAND is altered expression of host cell microRNAs (miRNAs) in brain. Here, we examined brain miRNA profiles among HIV/AIDS patients with and without HAND. Our analyses revealed differential expression of 17 miRNAs in brain tissue from HAND patients. A subset of the upregulated miRNAs (miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p), are predicted to target peroxisome biogenesis factors (PEX2, PEX7, PEX11B and PEX13). Expression of these miRNAs in transfected cells significantly decreased levels of peroxisomal proteins and concomitantly decreased peroxisome numbers or affected their morphology. The levels of miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p were not only elevated in the brains of HAND patients, but were also upregulated during HIV infection of primary macrophages. Moreover, concomitant loss of peroxisomal proteins was observed in HIV-infected macrophages as well as in brain tissue from HIV-infected patients. HIV-induced loss of peroxisomes was abrogated by blocking the functions of the upregulated miRNAs. Overall, these findings point to previously unrecognized miRNA expression patterns in the brains of HIV patients. Targeting peroxisomes by up-regulating miRNAs that repress peroxisome biogenesis factors may represent a novel mechanism by which HIV-1 subverts innate immune responses and/or causes neurocognitive dysfunction.
Collapse
|
research-article |
8 |
57 |
21
|
Sugarman MA, McKee AC, Stein TD, Tripodis Y, Besser LM, Martin B, Palmisano JN, Steinberg EG, O'Connor MK, Au R, McClean M, Killiany R, Mez J, Weiner MW, Kowall NW, Stern RA, Alosco ML. Failure to detect an association between self-reported traumatic brain injury and Alzheimer's disease neuropathology and dementia. Alzheimers Dement 2019; 15:686-698. [PMID: 30852157 PMCID: PMC6511462 DOI: 10.1016/j.jalz.2018.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Recent research with neuropathologic or biomarker evidence of Alzheimer's disease (AD) casts doubt on traumatic brain injury (TBI) as a risk factor for AD. We leveraged the National Alzheimer's Coordinating Center to examine the association between self-reported TBI with loss of consciousness and AD neuropathologic changes, and with baseline and longitudinal clinical status. METHODS The sample included 4761 autopsy participants (453 with remote TBI with loss of consciousness; 2822 with AD neuropathologic changes) from National Alzheimer's Coordinating Center. RESULTS Self-reported TBI did not predict AD neuropathologic changes (P > .10). Reported TBI was not associated with baseline or change in dementia severity or cognitive function in participants with or without autopsy-confirmed AD. DISCUSSION Self-reported TBI with loss of consciousness may not be an independent risk factor for clinical or pathological AD. Research that evaluates number and severity of TBIs is needed to clarify the neuropathological links between TBI and dementia documented in other large clinical databases.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
57 |
22
|
Peavy GM, Edland SD, Toole BM, Hansen LA, Galasko DR, Mayo AM. Phenotypic differences based on staging of Alzheimer's neuropathology in autopsy-confirmed dementia with Lewy bodies. Parkinsonism Relat Disord 2016; 31:72-78. [PMID: 27475955 DOI: 10.1016/j.parkreldis.2016.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The goal was to compare subgroups of dementia with Lewy Bodies (DLB) using neuropathological measures to differentiate 'pure' Lewy body (LB) dementia from 'mixed' DLB [co-occurring LB and Alzheimer's disease (AD) pathology] to facilitate diagnostic decision-making and future development of interventions based on predicted type(s) of neuropathology. Studies comparing these groups are rare relative to those differentiating 'pure' AD and all-cause DLB, and are limited by insufficient sample size, brief cognitive batteries, and/or absence of autopsy confirmation. To address these limitations, we assessed cognition and other features in a large, autopsy-confirmed DLB sample using an extensive neuropsychological battery. METHODS Subjects from an AD research center autopsy series satisfying DLB pathology criteria were divided by an AD neuropathology index into DLB-LB (Braak stage 0-3) (n = 38) and DLB-AD (Braak stage 4-6) (n = 41) and compared on baseline variables from chart reviews and standardized measures. RESULTS DLB-LB subjects were more impaired on visuospatial constructions, visual conceptual reasoning, and speed of processing, but less impaired on verbal memory and confrontation naming. All-type hallucinations occurred more frequently in DLB-LB, while delusions were common in both groups. Groups were similar in education and age at onset, and in baseline age, dementia severity, and functional capacity. CONCLUSION Salient findings included greater impairment on visual tasks and speed of processing and more frequent reports of all-type hallucinations in DLB-LB compared to DLB-AD. Relatively intact confrontation naming in DLB-LB and no differences in reported delusions were of note. Identifying differences in phenotypic features can improve prediction of underlying neuropathology.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
52 |
23
|
Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT, Calissano P. The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer's Disease Neuropathology. Int J Mol Sci 2017. [PMID: 28632177 PMCID: PMC5486140 DOI: 10.3390/ijms18061319] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and β-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the “routing” proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, β-amyloid peptide (Aβ) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.
Collapse
|
Review |
8 |
49 |
24
|
Abstract
This chapter summarizes the neuropathologic features of nonneoplastic disorders of the adult cerebellum. Gait ataxia and extremity dysmetria are clinical manifestations of diseases that interrupt the complex cerebellar circuitry between the neurons of the cerebellar cortex, the cerebellar nuclei (especially the dentate nuclei), and the inferior olivary nuclei. The cerebellum is a prominent target of several sporadic and hereditary neurodegenerative diseases, including multiple system atrophy, spinocerebellar ataxia, and Friedreich ataxia. Purkinje cells display selective vulnerability to hypoxia but a surprising resistance to hypoglycemia. A classic toxin that damages the cerebellar cortex is methylmercury, but the most common injurious agent to Purkinje cells is ethanol. Many drugs cause ataxia, but doubts continue about phenytoin. Ischemic lesions of the cerebellum due to arterial thrombosis or embolism cause a spectrum of symptoms and signs, depending on the territory involved. Large hemorrhages have an unfavorable prognosis because they displace critical brainstem structures or penetrate into the fourth ventricle. Fungal infections and toxoplasmosis of the cerebellum, and cerebellar progressive multifocal leukoencephalopathy, have become rarer because of improved control of the acquired immunodeficiency syndrome. Ataxia is a prominent feature of prion disease. Adult-onset Niemann-Pick type C1 disease and Kufs disease may have a predominantly ataxic clinical phenotype. The adult cerebellum is also vulnerable to several leukodystrophies. A rare but widely recognized complication of cancer is paraneoplastic cerebellar degeneration.
Collapse
|
Review |
7 |
48 |
25
|
Dawe RJ, Yu L, Arfanakis K, Schneider JA, Bennett DA, Boyle PA. Late-life cognitive decline is associated with hippocampal volume, above and beyond its associations with traditional neuropathologic indices. Alzheimers Dement 2020; 16:209-218. [PMID: 31914231 PMCID: PMC6953608 DOI: 10.1002/alz.12009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/12/2019] [Accepted: 11/01/2019] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Reduced hippocampal volume is associated with late-life cognitive decline, but prior studies have not determined whether this association persists after accounting for Alzheimer's disease (AD) and other neuropathologies. METHODS Participants were 531 deceased older adults from community-based cohort studies of aging who had undergone annual cognitive evaluations. At death, brain tissue underwent neuropathologic examination and magnetic resonance imaging (MRI). Linear mixed models examined whether hippocampal volume measured via MRI accounted for variation in decline rate of global cognition and five cognitive domains, above and beyond neuropathologic indices. RESULTS Demographics and indices of AD, cerebrovascular disease, Lewy body disease, hippocampal sclerosis, TDP-43, and atherosclerosis accounted for 42.6% of the variation in global cognitive decline. Hippocampal volume accounted for an additional 5.4% of this variation and made similar contributions in four of the five cognitive domains. DISCUSSION Hippocampal volume is associated with late-life cognitive decline, above and beyond contributions from common neuropathologic indices.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
47 |