1
|
Ploug H, Adam B, Musat N, Kalvelage T, Lavik G, Wolf-Gladrow D, Kuypers MMM. Carbon, nitrogen and O(2) fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. THE ISME JOURNAL 2011; 5:1549-58. [PMID: 21390075 PMCID: PMC3160678 DOI: 10.1038/ismej.2011.20] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/07/2011] [Accepted: 01/25/2011] [Indexed: 11/08/2022]
Abstract
Photosynthesis, respiration, N(2) fixation and ammonium release were studied directly in Nodularia spumigena during a bloom in the Baltic Sea using a combination of microsensors, stable isotope tracer experiments combined with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorometry. Cell-specific net C- and N(2)-fixation rates by N. spumigena were 81.6±6.7 and 11.4±0.9 fmol N per cell per h, respectively. During light, the net C:N fixation ratio was 8.0±0.8. During darkness, carbon fixation was not detectable, but N(2) fixation was 5.4±0.4 fmol N per cell per h. Net photosynthesis varied between 0.34 and 250 nmol O(2) h(-1) in colonies with diameters ranging between 0.13 and 5.0 mm, and it reached the theoretical upper limit set by diffusion of dissolved inorganic carbon to colonies (>1 mm). Dark respiration of the same colonies varied between 0.038 and 87 nmol O(2) h(-1), and it reached the limit set by O(2) diffusion from the surrounding water to colonies (>1 mm). N(2) fixation associated with N. spumigena colonies (>1 mm) comprised on average 18% of the total N(2) fixation in the bulk water. Net NH(4)(+) release in colonies equaled 8-33% of the estimated gross N(2) fixation during photosynthesis. NH(4)(+) concentrations within light-exposed colonies, modeled from measured net NH(4)(+) release rates, were 60-fold higher than that of the bulk. Hence, N. spumigena colonies comprise highly productive microenvironments and an attractive NH(4)(+) microenvironment to be utilized by other (micro)organisms in the Baltic Sea where dissolved inorganic nitrogen is limiting growth.
Collapse
|
research-article |
14 |
90 |
2
|
Degerholm J, Gundersen K, Bergman B, Söderbäck E. Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp. and Aphanizomenon sp. FEMS Microbiol Ecol 2006; 58:323-32. [PMID: 17117977 DOI: 10.1111/j.1574-6941.2006.00180.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rates of carbon (C) specific growth and nitrogen (N2) fixation were monitored in cultures of Baltic Sea Nodularia and Aphanizomenon exposed to gradual limitation by inorganic phosphorus (P). Both cyanobacteria responded by decreased cellular P content followed by lowered rates of growth and N2 fixation. C-specific growth and cellular N content changed faster in Aphanizomenon both when inorganic P was lowered as well as during reintroduction of P. Aphanizomenon also showed a more rapid increase in N-specific N2 fixation associated with increased C-specific growth. When ambient concentrations of inorganic P declined, both cyanobacteria displayed higher rates of alkaline phosphatase (APase) activity. Lower substrate half-saturation constants (KM) and higher Vmax : KM ratio of the APase enzyme associated with Nodularia suggest a higher affinity for dissolved organic P (DOP) substrate than Aphanizomenon. Aphanizomenon, which appears more sensitive to changes in ambient dissolved inorganic P, may be adapted to environments with elevated concentrations of P or repeated intrusions of nutrient-rich water. Nodularia on the other hand, with its higher tolerance to increased P starvation may have an ecological advantage in stratified surface waters of the Baltic Sea during periods of low P availability.
Collapse
|
|
19 |
58 |
3
|
Teikari JE, Fewer DP, Shrestha R, Hou S, Leikoski N, Mäkelä M, Simojoki A, Hess WR, Sivonen K. Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane. THE ISME JOURNAL 2018; 12:1619-1630. [PMID: 29445131 PMCID: PMC5955973 DOI: 10.1038/s41396-018-0056-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 11/10/2022]
Abstract
Nodularia spumigena is a nitrogen-fixing cyanobacterium that forms toxic blooms in the Baltic Sea each summer and the availability of phosphorous is an important factor limiting the formation of these blooms. Bioinformatic analysis identified a phosphonate degrading (phn) gene cluster in the genome of N. spumigena suggesting that this bacterium may use phosphonates as a phosphorus source. Our results show that strains of N. spumigena could grow in medium containing methylphosphonic acid (MPn) as the sole source of phosphorous and released methane when growing in medium containing MPn. We analyzed the total transcriptomes of N. spumigena UHCC 0039 grown using MPn and compared them with cultures growing in Pi-replete medium. The phnJ, phosphonate lyase gene, was upregulated when MPn was the sole source of phosphorus, suggesting that the expression of this gene could be used to indicate the presence of bioavailable phosphonates. Otherwise, growth on MPn resulted in only a minor reconstruction of the transcriptome and enabled good growth. However, N. spumigena strains were not able to utilize any of the anthropogenic phosphonates tested. The phosphonate utilizing pathway may offer N. spumigena a competitive advantage in the Pi-limited cyanobacterial blooms of the Baltic Sea.
Collapse
|
research-article |
7 |
42 |
4
|
Mazur-Marzec H, Kaczkowska MJ, Blaszczyk A, Akcaalan R, Spoof L, Meriluoto J. Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar Drugs 2012; 11:1-19. [PMID: 23344154 PMCID: PMC3564153 DOI: 10.3390/md11010001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/13/2012] [Accepted: 12/11/2012] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria produce a great variety of non-ribosomal peptides. Among these compounds, both acute toxins and potential drug candidates have been reported. The profile of the peptides, as a stable and specific feature of an individual strain, can be used to discriminate cyanobacteria at sub-population levels. In our work, liquid chromatography-tandem mass spectrometry was used to elucidate the structures of non-ribosomal peptides produced by Nodularia spumigena from the Baltic Sea, the coastal waters of southern Australia and Lake Iznik in Turkey. In addition to known structures, 9 new congeners of spumigins, 4 aeruginosins and 12 anabaenopeptins (nodulapeptins) were identified. The production of aeruginosins by N. spumigena was revealed in this work for the first time. The isolates from the Baltic Sea appeared to be the richest source of the peptides; they also showed a higher diversity in peptide profiles. The Australian strains were characterized by similar peptide patterns, but distinct from those represented by the Baltic and Lake Iznik isolates. The results obtained with the application of the peptidomic approach were consistent with the published data on the genetic diversity of the Baltic and Australian populations.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
39 |
5
|
Karjalainen M, Engström-Ost J, Korpinen S, Peltonen H, Pääkkönen JP, Rönkkönen S, Suikkanen S, Viitasalo M. Ecosystem consequences of cyanobacteria in the northern Baltic Sea. AMBIO 2007; 36:195-202. [PMID: 17520934 DOI: 10.1579/0044-7447(2007)36[195:ecocit]2.0.co;2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.
Collapse
|
|
18 |
34 |
6
|
Kemp A, John J. Microcystins associated with Microcystis dominated blooms in the Southwest wetlands, Western Australia. ENVIRONMENTAL TOXICOLOGY 2006; 21:125-30. [PMID: 16528687 DOI: 10.1002/tox.20164] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Potentially toxic cyanobacterial blooms are becoming common in the freshwater wetlands on the Swan Coastal Plain, Western Australia. During summer the dominant bloom-causing species belong to the genera Microcystis and Anabaena and to a lesser extent Aphanizomenon and Nodularia. Although toxic cyanobacteria have been recorded in the Swan-Canning and Peel-Harvey estuaries in Western Australia, very little is known about the blooms in the surrounding freshwater lakes. In this study, a total of 32 natural bloom samples representing 13 lakes were analyzed by HPLC for microcystin (MC)-LR, -RR, and -YR. Twenty-eight samples proved to be toxic. The highest total microcystin concentration ranged from 1645 to 8428.6 microg L(-1), and the lowest concentrations were less than 10 microg L(-1) with some below the detection limit (< 0.05 microg L(-1)). MC-LR (100%) was the predominant microcystin, followed by MC-YR (71.4%) and MC-RR (60.7%). The presence of a Nodularia spumigena bloom in the freshwater Lake Yangebup was associated with the detection of nodularins (1664 microg L(-1)). This is the first study to demonstrate the presence of microcystins and nodularins in urban lakes on the Swan Coastal Plain, Western Australia.
Collapse
|
|
19 |
33 |
7
|
Mohlin M, Wulff A. Interaction effects of ambient UV radiation and nutrient limitation on the toxic cyanobacterium Nodularia spumigena. MICROBIAL ECOLOGY 2009; 57:675-86. [PMID: 18709402 DOI: 10.1007/s00248-008-9427-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/18/2008] [Accepted: 07/09/2008] [Indexed: 05/16/2023]
Abstract
Nodularia spumigena is one of the dominating species during the extensive cyanobacterial blooms in the Baltic Sea. The blooms coincide with strong light, stable stratification, low ratios of dissolved inorganic nitrogen, and dissolved inorganic phosphorus. The ability of nitrogen fixation, a high tolerance to phosphorus starvation, and different photo-protective strategies (production of mycosporine-like amino acids, MAAs) may give N. spumigena a competitive advantage over other phytoplankton during the blooms. To elucidate the interactive effects of ambient UV radiation and nutrient limitation on the performance of N. spumigena, an outdoor experiment was designed. Two radiation treatments photosynthetic active radiation (PAR) and PAR +UV-A + UV-B (PAB) and three nutrient treatments were established: nutrient replete (NP), nitrogen limited (-N), and phosphorus limited (-P). Variables measured were specific growth rate, heterocyst frequency, cell volume, cell concentrations of MAAs, photosynthetic pigments, particulate carbon (POC), particulate nitrogen (PON), and particulate phosphorus (POP). Ratios of particulate organic matter were calculated: POC/PON, POC/POP, and PON/POP. There was no interactive effect between radiation and nutrient limitation on the specific growth rate of N. spumigena, but there was an overall effect of phosphorus limitation on the variables measured. Interaction effects were observed for some variables; cell size (larger cells in -P PAB compared to other treatments) and the carotenoid canthaxanthin (highest concentration in -N PAR). In addition, significantly less POC and PON (mol cell(-1)) were found in -P PAR compared to -P PAB, and the opposite radiation effect was observed in -N. Our study shows that despite interactive effects on some of the variables studied, N. spumigena tolerate high ambient UVR also under nutrient limiting conditions and maintain positive growth rate even under severe phosphorus limitation.
Collapse
|
|
16 |
23 |
8
|
Sivonen K, Halinen K, Sihvonen LM, Koskenniemi K, Sinkko H, Rantasärkkä K, Moisander PH, Lyra C. Bacterial diversity and function in the Baltic Sea with an emphasis on cyanobacteria. AMBIO 2007; 36:180-5. [PMID: 17520932 DOI: 10.1579/0044-7447(2007)36[180:bdafit]2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this article we summarize the current knowledge of Baltic Sea cyanobacteria, focusing on diversity, toxicity, and nitrogen fixation in the filamentous heterocystous taxa. We also review the recent results of our microbial diversity studies in planktonic and benthic habitats in the Baltic Sea. Based on molecular analyses, we have improved the understanding of cyanobacterial population structure by assessing genetic diversity within species that are morphologically inseparable. Moreover, we have studied microbial functions such as toxin production and nitrogen fixation in situ under different environmental conditions. Phosphorus limitation of bloom-forming, nitrogen-fixing cyanobacteria was clearly verified, emphasizing the importance of continuous efforts to reduce this element in the Baltic Sea. We have designed a rapid and reliable detection method for the toxic cyanobacterium Nodularia spumigena, which can be used to study bloom formation of this important toxin producer.
Collapse
|
Review |
18 |
16 |
9
|
Löfstrand K, Malmvärn A, Haglund P, Bignert A, Bergman A, Asplund L. Brominated phenols, anisoles, and dioxins present in blue mussels from the Swedish coastline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:1460-8. [PMID: 20396970 DOI: 10.1007/s11356-010-0331-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/23/2010] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Naturally occurring hydroxylated polybrominated diphenyl ethers (OH-PBDEs), their methoxylated counterparts (MeO-PBDEs), and polybrominated dibenzo-p-dioxins (PBDDs), together with their potential precursors polybrominated phenols (PBPs) and polybrominated anisoles (PBAs), were analyzed in blue mussels (Mytilus edulis) gathered along the east coast (bordering the Baltic Sea) and west coast of Sweden (bordering the North Sea). Brown algae (Dictyosiphon foenicolaceus) and cyanobacteria (Nodularia spumigena) from the Baltic Sea, considered to be among the primary producers of these compounds, were also analyzed for comparison. MATERIALS AND METHODS The samples were liquid-liquid extracted, separated into a phenolic and a neutral fraction, and subsequently analyzed by gas chromatography-mass spectrometry (GS-MS). RESULTS AND DISCUSSION The levels of OH-PBDEs, MeO-PBDEs and PBDDs were significantly higher in Baltic Sea mussels than in those from the west coast, whereas the levels of PBPs and PBAs displayed the opposite pattern. The blue mussels from the Baltic Sea contained high levels of all analyzed substances, much higher than the levels of, e.g., polybrominated diphenyl ethers. In addition, the GC-MS chromatogram of the phenolic fraction of the west coast samples was dominated by four unknown peak clusters, three of which were tentatively identified as dihydroxy-PBDEs and the other as a hydroxylated-methyl-tetraBDE. CONCLUSIONS Clearly, all of the compounds analyzed are natural products, both in the Baltic and the North Sea. However, the geographical differences in composition may indicate different origin, e.g., due to differences in the occurrence and/or abundance of various algae species along these two coasts or possibly a more extensive dilution on the west coast.
Collapse
|
|
15 |
16 |
10
|
Kankaanpää HT, Sjövall O, Huttunen M, Olin M, Karlsson K, Hyvärinen K, Sneitz L, Härkönen J, Sipiä VO, Meriluoto JAO. Production and sedimentation of peptide toxins nodularin-R and microcystin-LR in the northern Baltic Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1301-9. [PMID: 19117649 DOI: 10.1016/j.envpol.2008.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/19/2008] [Accepted: 11/26/2008] [Indexed: 05/08/2023]
Abstract
This seven-year survey was primarily targeted to quantification of production of nodularin-R (NOD-R), a cyclic pentapeptide hepatotoxin, in Baltic Sea cyanobacteria waterblooms. Additionally, NOD-R and microcystin-LR (MC-LR; a cyclic heptapeptide toxin) sedimentation rates and NOD-R sediment storage were estimated. NOD-R production (70-2450 microg m(-3); approximately 1 kg km(-2) per season) and sedimentation rates (particles; 0.03-5.7 microg m(-2)d(-1); approximately 0.3kg km(-2) per season) were highly variable over space and time. Cell numbers of Nodularia spumigena did not correlate with NOD-R quantities. Dissolved NOD-R comprised 57-100% of total NOD-R in the predominantly senescent, low-intensity phytoplankton blooms and seston. Unprecedentedly intensive MC-LR sedimentation (0.56 microg m(-2)d(-1)) occurred in 2004. Hepatotoxin sedimentation rates highly exceeded those of anthropogenic xenobiotics. NOD-R storage in surficial sediments was 0.4-20 microg kg(-1) ( approximately 0.1 kg km(-2)). Loss of NOD-R within the chain consisting of phytoplankton, seston and soft sediments seemed very effective.
Collapse
|
|
16 |
14 |
11
|
Śliwińska-Wilczewska S, Barreiro Felpeto A, Możdżeń K, Vasconcelos V, Latała A. Physiological Effects on Coexisting Microalgae of the Allelochemicals Produced by the Bloom-Forming Cyanobacteria Synechococcus sp. and Nodularia Spumigena. Toxins (Basel) 2019; 11:toxins11120712. [PMID: 31817796 PMCID: PMC6950133 DOI: 10.3390/toxins11120712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 11/21/2022] Open
Abstract
Only a few studies have documented the physiological effects of allelopathy from cyanobacteria against coexisting microalgae. We investigated the allelopathic ability of the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena filtrates on several aspects related to the physiology of the target species: population growth, cell morphology, and several indexes of photosynthesis rate and respiration. The target species were the following: two species of green algae (Oocystis submarina, Chlorella vulgaris) and two species of diatoms (Bacillaria paxillifer, Skeletonema marinoi). These four species coexist in the natural environment with the employed strains of Synechococcus sp. and N. spumigena employed. The tests were performed with single and repeated addition of cyanobacterial cell-free filtrate. We also tested the importance of the growth phase in the strength of the allelopathic effect. The negative effects of both cyanobacteria were the strongest with repeated exudates addition, and generally, Synechococcus sp. and N. spumigena were allelopathic only in the exponential growth phase. O. submarina was not negatively affected by Synechococcus filtrates in any of the parameters studied, while C. vulgaris, B. paxillifer, and S. marinoi were affected in several ways. N. spumigena was characterized by a stronger allelopathic activity than Synechococcus sp., showing a negative effect on all target species. The highest decline in growth, as well as the most apparent cell physical damage, was observed for the diatom S. marinoi. Our findings suggest that cyanobacterial allelochemicals are associated with the cell physical damage, as well as a reduced performance in respiration and photosynthesis system in the studied microalgae which cause the inhibition of the population growth. Moreover, our study has shown that some biotic factors that increase the intensity of allelopathic effects may also alter the ratio between bloom-forming cyanobacteria and some phytoplankton species that occur in the same aquatic ecosystem.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
8 |
12
|
Mohlin M, Roleda MY, Pattanaik B, Tenne SJ, Wulff A. Interspecific resource competition-combined effects of radiation and nutrient limitation on two diazotrophic filamentous cyanobacteria. MICROBIAL ECOLOGY 2012; 63:736-50. [PMID: 22057471 DOI: 10.1007/s00248-011-9964-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 10/05/2011] [Indexed: 05/08/2023]
Abstract
The cyanobacterial blooms in the Baltic Sea are dominated by diazotrophic cyanobacteria, the potentially toxic species Aphanizomenon sp. and the toxic species Nodularia spumigena. The seasonal succession with peaks of Aphanizomenon sp., followed by peaks of N. spumigena, has been explained by the species-specific niches of the two species. In a three-factorial outdoor experiment, we tested if nutrient and radiation conditions may impact physiological and biochemical responses of N. spumigena and Aphanizomenon sp. in the presence or absence of the other species. The two nutrient treatments were f/2 medium without NO (3) (-) (-N) and f/2 medium without PO (4) (3-) (-P), and the two ambient radiation treatments were photosynthetic active radiation >395 nm (PAR) and PAR + UV-A + UV-B >295 nm. The study showed that Aphanizomenon sp. was not negatively affected by the presence of N. spumigena and that N. spumigena was better adapted to both N and P limitation in interaction with ultraviolet radiation (UVR, 280-400 nm). In the Baltic Sea, these physical conditions are likely to prevail in the surface water during summer. Interestingly, the specific growth rate of N. spumigena was stimulated by the presence of Aphanizomenon sp. We suggest that the seasonal succession, with peaks of Aphanizomenon sp. followed by peaks of N. spumigena, is a result from species-specific preferences of environmental conditions and/or stimulation by Aphanizomenon sp. rather than an allelopathic effect of N. spumigena. The results from our study, together with a predicted stronger stratification due to effects of climate change in the Baltic Sea with increased temperature and increased precipitation and increased UV-B due to ozone losses, reflect a scenario with a continuing future dominance of the toxic N. spumigena.
Collapse
|
|
13 |
6 |
13
|
Popin RV, Delbaje E, de Abreu VAC, Rigonato J, Dörr FA, Pinto E, Sivonen K, Fiore MF. Genomic and Metabolomic Analyses of Natural Products in Nodularia spumigena Isolated from a Shrimp Culture Pond. Toxins (Basel) 2020; 12:toxins12030141. [PMID: 32106513 PMCID: PMC7150779 DOI: 10.3390/toxins12030141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
The bloom-forming cyanobacterium Nodularia spumigena CENA596 encodes the biosynthetic gene clusters (BGCs) of the known natural products nodularins, spumigins, anabaenopeptins/namalides, aeruginosins, mycosporin-like amino acids, and scytonemin, along with the terpenoid geosmin. Targeted metabolomics confirmed the production of these metabolic compounds, except for the alkaloid scytonemin. Genome mining of N. spumigena CENA596 and its three closely related Nodularia strains—two planktonic strains from the Baltic Sea and one benthic strain from Japanese marine sediment—revealed that the number of BGCs in planktonic strains was higher than in benthic one. Geosmin—a volatile compound with unpleasant taste and odor—was unique to the Brazilian strain CENA596. Automatic annotation of the genomes using subsystems technology revealed a related number of coding sequences and functional roles. Orthologs from the Nodularia genomes are involved in the primary and secondary metabolisms. Phylogenomic analysis of N. spumigena CENA596 based on 120 conserved protein sequences positioned this strain close to the Baltic Nodularia. Phylogeny of the 16S rRNA genes separated the Brazilian CENA596 strain from those of the Baltic Sea, despite their high sequence identities (99% identity, 100% coverage). The comparative analysis among planktic Nodularia strains showed that their genomes were considerably similar despite their geographically distant origin.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
6 |
14
|
Konkel R, Toruńska-Sitarz A, Cegłowska M, Ežerinskis Ž, Šapolaitė J, Mažeika J, Mazur-Marzec H. Blooms of Toxic Cyanobacterium Nodularia spumigena in Norwegian Fjords During Holocene Warm Periods. Toxins (Basel) 2020; 12:toxins12040257. [PMID: 32326551 PMCID: PMC7232221 DOI: 10.3390/toxins12040257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
In paleoecological studies, molecular markers are being used increasingly often to reconstruct community structures, environmental conditions and ecosystem changes. In this work, nodularin, anabaenopeptins and selected DNA sequences were applied as Nodularia spumigena markers to reconstruct the history of the cyanobacterium in the Norwegian fjords. For the purpose of this study, three sediment cores collected in Oslofjorden, Trondheimsfjorden and Balsfjorden were analyzed. The lack of nodularin in most recent sediments is consistent with the fact that only one report on the sporadic occurrence and low amounts of the cyanobacterium in Norwegian Fjords in 1976 has been published. However, analyses of species-specific chemical markers in deep sediments showed that thousands of years ago, N. spumigena constituted an important component of the phytoplankton community. The content of the markers in the cores indicated that the biomass of the cyanobacterium increased during the warmer Holocene periods. The analyses of genetic markers were less conclusive; they showed the occurrence of microcystin/nodularin producing cyanobacteria of Nostocales order, but they did not allow for the identification of the organisms at a species level.
Collapse
|
|
5 |
5 |
15
|
Rantamäki S, Meriluoto J, Spoof L, Puputti EM, Tyystjärvi T, Tyystjärvi E. Oxygen produced by cyanobacteria in simulated Archaean conditions partly oxidizes ferrous iron but mostly escapes-conclusions about early evolution. PHOTOSYNTHESIS RESEARCH 2016; 130:103-111. [PMID: 26895438 DOI: 10.1007/s11120-016-0231-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
The Earth has had a permanently oxic atmosphere only since the great oxygenation event (GOE) 2.3-2.4 billion years ago but recent geochemical research has revealed short periods of oxygen in the atmosphere up to a billion years earlier before the permanent oxygenation. If these "whiffs" of oxygen truly occurred, then oxygen-evolving (proto)cyanobacteria must have existed throughout the Archaean aeon. Trapping of oxygen by ferrous iron and other reduced substances present in Archaean oceans has often been suggested to explain why the oxygen content of the atmosphere remained negligible before the GOE although cyanobacteria produced oxygen. We tested this hypothesis by growing cyanobacteria in anaerobic high-CO2 atmosphere in a medium with a high concentration of ferrous iron. Microcystins are known to chelate iron, which prompted us also to test the effects of microcystins and nodularins on iron tolerance. The results show that all tested cyanobacteria, especially nitrogen-fixing species grown in the absence of nitrate, and irrespective of the ability to produce cyanotoxins, were iron sensitive in aerobic conditions but tolerated high concentrations of iron in anaerobicity. This result suggests that current cyanobacteria would have tolerated the high-iron content of Archaean oceans. However, only 1 % of the oxygen produced by the cyanobacterial culture was trapped by iron, suggesting that large-scale cyanobacterial photosynthesis would have oxygenated the atmosphere even if cyanobacteria grew in a reducing ocean. Recent genomic analysis suggesting that ability to colonize seawater is a secondary trait in cyanobacteria may offer a partial explanation for the sustained inefficiency of cyanobacterial photosynthesis during the Archaean aeon, as fresh water has always covered a very small fraction of the Earth's surface. If oxygenic photosynthesis originated in fresh water, then the GOE marks the adaptation of cyanobacteria to seawater, and the late-Proterozoic increase in oxygen concentration of the atmosphere is caused by full oxidation of the oceans.
Collapse
|
|
9 |
3 |
16
|
Šulčius S, Alzbutas G, Lukashevich V. Cyanophage Lysis of the Cyanobacterium Nodularia spumigena Affects the Variability and Fitness of the Host-Associated Microbiome. Environ Microbiol 2025; 27:e70042. [PMID: 40151948 DOI: 10.1111/1462-2920.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 01/09/2025] [Indexed: 03/29/2025]
Abstract
Cyanobacteria are intricately linked with its microbiome through multiple metabolic interactions. We assessed how these interactions might be affected by cyanophage infection and lysis in cyanobacterium Nodularia spumigena. The genome-scale metabolic models and analysis of putative metabolic interactions revealed a bidirectional cross-feeding potential within the N. spumigena microbiome, with heterotrophic bacteria exhibiting a greater level of trophic dependency on the cyanobacterium. Our results indicate that microbes associated with N. spumigena rely on the supply of various amino acids, reduced carbon compounds and protein synthesis cofactors released by the cyanobacterial host. We observed that compositional changes in the N. spumigena microbiome were associated with the multiplicity of infection and increased with increasing initial viral load. Higher mortality of N. spumigena led to decreased variability in the relative abundances of bacteria, suggesting an indirect restriction of their niche space. Lysis of N. spumigena resulted in a substantial decline in the estimated absolute abundances of heterotrophic bacteria, indicating reduced fitness of co-occurring bacteria in the absence of N. spumigena. Altogether, we demonstrate how a gradual increase in viral pressure on the photosynthetic host propagates through the co-occurring microbial community, disrupting cooperative nature and microbial connectivity within the N. spumigena microbiome.
Collapse
|
|
1 |
|