1
|
Cheung KL, Zhao L, Sharma R, Ghosh AA, Appiah M, Sun Y, Jaganathan A, Hu Y, LeJeune A, Xu F, Han X, Wang X, Zhang F, Ren C, Walsh MJ, Xiong H, Tsankov A, Zhou MM. Class IIa HDAC4 and HDAC7 cooperatively regulate gene transcription in Th17 cell differentiation. Proc Natl Acad Sci U S A 2024; 121:e2312111121. [PMID: 38657041 PMCID: PMC11067014 DOI: 10.1073/pnas.2312111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.
Collapse
|
2
|
Lei Y, Zhao X, Zhao H, Cheng Y, Wang S, Li J, Zhu Y. [Study of a patient with Myelodysplastic/myeloproliferative neoplasm with co-morbid neutrophilia and a novel NCOR1::GLYR1 fusion gene]. ZHONGHUA YI XUE YI CHUAN XUE ZA ZHI = ZHONGHUA YIXUE YICHUANXUE ZAZHI = CHINESE JOURNAL OF MEDICAL GENETICS 2024; 41:404-410. [PMID: 38565504 DOI: 10.3760/cma.j.cn511374-20230202-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To explore the genetic background for a patient with refractory myelodysplastic/myeloproliferative neoplasm (MDS/MPN) with co-morbid neutrophilia patient. METHODS A MDS/MPN patient who was admitted to the First Affiliated Hospital of Nanjing Medical University in May 2021 was selected as the study subject. RNA sequencing was carried out to identify fusion genes in his peripheral blood mononuclear cells. Fusion gene sequence was searched through transcriptome-wide analysis with a STAR-fusion procedure. The novel fusion genes were verified by quantitative real-time PCR and Sanger sequencing. RESULTS The patient, a 67-year-old male, had progressive thrombocytopenia. Based on the morphological and molecular examinations, he was diagnosed as MDS/MPN with co-morbid neutropenia, and was treated with demethylating agents and Bcl-2 inhibitors. Seventeen months after the diagnosis, he had progressed to AML. A novel fusion gene NCOR1::GLYR1 was identified by RNA-sequencing in his peripheral blood sample, which was verified by quantitative real-time PCR and Sanger sequencing. The patient had attained morphological remission after a DCAG regimen (a combinatory chemotherapy of decitabine, cytarabine, aclarubicin and granulocyte colony-stimulating factors) plus Chidamide treatment. A significant decrease in the NCOR1::GLYR1 expression was revealed by quantitative real-time PCR at post-chemotherapy evaluation. CONCLUSION NCOR1::GLYR1 gene is considered as the pathogenic factor for the MDS/MPN patient with neutropenia.
Collapse
|
3
|
Hong SH, Castro G, Wang D, Nofsinger R, Kane M, Folias A, Atkins AR, Yu RT, Napoli JL, Sassone-Corsi P, de Rooij DG, Liddle C, Downes M, Evans RM. Targeting nuclear receptor corepressors for reversible male contraception. Proc Natl Acad Sci U S A 2024; 121:e2320129121. [PMID: 38377195 PMCID: PMC10907271 DOI: 10.1073/pnas.2320129121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 02/22/2024] Open
Abstract
Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.
Collapse
|
4
|
Wysocka M, Romanowska A, Gruba N, Michalska M, Giełdoń A, Lesner A. A Peptidomimetic Fluorescent Probe to Detect the Trypsin β2 Subunit of the Human 20S Proteasome. Int J Mol Sci 2020; 21:ijms21072396. [PMID: 32244300 PMCID: PMC7177456 DOI: 10.3390/ijms21072396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 01/20/2023] Open
Abstract
This work describes the chemical synthesis, combinatorial selection, and enzymatic evaluation of peptidomimetic fluorescent substrates specific for the trypsin-like (β2) subunit of the 20S human proteasome. After deconvolution of a library comprising nearly 6000 compounds composed of peg substituted diaminopropionic acid DAPEG building blocks, the sequence ABZ–Dap(O2(Cbz))–Dap(GO1)–Dap(O2(Cbz))–Arg–ANB–NH2, where ABZ is 2-aminobenzoic acid, and ANB- 5 amino 2- nitro benzoic acid was selected. Its cleavage followed sigmoidal kinetics, characteristic for allosteric enzymes, with Km = 3.22 ± 0.02 μM, kcat = 245 s−1, and kcat/Km = 7.61 × 107 M−1 s−1. This process was practically halted when a selective inhibitor of the β2 subunit of the 20S human proteasome was supplemented to the reaction system. Titration of the substrate resulting in decreased amounts of proteasome 20S produced a linear signal up to 10−11 M. Using this substrate, we detected human proteasome 20S in human urine samples taken from the bladders of cancer patients. This observation could be useful for the noninvasive diagnosis of this severe disease.
Collapse
|
5
|
Vienonen A, Miettinen S, Bläuer M, Martikainen PM, Tomás E, Heinonen PK, Ylikomi T. Expression of Nuclear Receptors and Cofacotrs in Human Endometrium and Myometrium. ACTA ACUST UNITED AC 2016; 11:104-12. [PMID: 14980312 DOI: 10.1016/j.jsgi.2003.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the expression of nuclear receptors and cofactors in human endometrium and myometrium in proliferative and secretory phases of the menstrual cycle. METHODS Multiprobe ribonuclease protection assay and real-time reverse transcriptase polymerase chain reaction were used to quantitate mRNA levels of steroid receptors, vitamin D receptor (VDR), retinoic acid receptors (RAR), and cofactors AIB1 (amplified in breast cancer-1), CBP (cyclic adenosine monophosphate response element binding protein), pCAF (p300/CBP-associated factor), TIF2 (transcription intermediary factor-2), N-CoR (nuclear receptor corepressor), and SMRT (silencing mediator of repressed transcription). Cyclin A expression was analyzed to determine the proliferation status of the tissues. RESULTS The expression of androgen receptor, estrogen receptors alpha and beta, progesterone receptor, and RARalpha followed cyclin A expression. There was more abundant expression in the proliferative phase endometrium than in the secretory phase endometrium. Glucocorticoid receptor, VDR, RARbeta, and RARgamma were stably expressed during the menstrual cycle in both endometrium and myometrium. Cofactors N-CoR, SMRT, pCAF, CBP, TIF2, AIB1, and p300 mRNAs were expressed in all samples in both endometrium and myometrium. N-CoR, pCAF, AIB1, and p300 appeared not to be regulated when comparing proliferative and secretory phases of the cycle. Individual differences were found in the expression levels of both nuclear receptors and cofactors. CONCLUSION The menstrual cycle-dependent regulation of nuclear receptor expression was more apparent in the endometrium than in the myometrium, whereas cofactor expression was not cycle dependent. There were individual differences in the expression levels of different receptors and cofactors. In hormonal therapy these differences might result in different responses, depending on the patient as well as the ligand used.
Collapse
|
6
|
Park DM, Li J, Okamoto H, Akeju O, Kim SH, Lubensky I, Vortmeyer A, Dambrosia J, Weil RJ, Oldfield EH, Park JK, Zhuang Z. N-CoR Pathway Targeting Induces Glioblastoma Derived Cancer Stem Cell Differentiation. Cell Cycle 2014; 6:467-70. [PMID: 17312396 DOI: 10.4161/cc.6.4.3856] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptor corepressor (N-CoR) is a critical regulator of neural stem cell differentiation. Nuclear localization of N-CoR is a feature of undifferentiated neural stem cells and cytoplasmic translocation of N-CoR leads to astrocytic differentiation. Comparative proteomic analysis of microdissected glioblastoma multiforme (GBM) specimens and matched normal glial tissue reveals increased expression of N-CoR in GBM. In GBM primary cell cultures, tumor cells with nuclear localization of N-CoR demonstrate an undifferentiated phenotype, but are subject to astroglial differentiation upon exposure to agents promoting phosphorylation of N-CoR and its subsequent translocation to the cytoplasm. Treatment of glioma cell lines with a combination of retinoic acid and low-dose okadaic acid decreases the corepressor effect of N-CoR and has a striking synergistic effect on growth inhibition. The identification of N-CoR in GBM provides insights into the tumorigenesis process and supports the development of differentiation-based therapeutic strategies.
Collapse
|
7
|
Lévy-Bimbot M, Major G, Courilleau D, Blondeau JP, Lévi Y. Tetrabromobisphenol-A disrupts thyroid hormone receptor alpha function in vitro: use of fluorescence polarization to assay corepressor and coactivator peptide binding. CHEMOSPHERE 2012; 87:782-788. [PMID: 22277881 DOI: 10.1016/j.chemosphere.2011.12.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/16/2011] [Accepted: 12/30/2011] [Indexed: 05/27/2023]
Abstract
Thyroid hormone receptors (TRs) recruit corepressor or coactivator factors to the promoters of target genes to regulate their transcription. Corepressors such as nuclear hormone receptor corepressor (NCoR) are recruited by unliganded TRs, whereas coactivators such as steroid receptor coactivator-2 (SRC2) are recruited when triiodothyronine (T3) is bound to TRs. These coregulator proteins interact with the ligand binding domain (LBD) of TRs via short, conserved peptide sequences that can be used to probe the conformational changes induced in TR LBD by TR ligands. Recombinant LBD of the human TRα1 isoform (hTRα1 LBD) was produced as a fusion with glutathione S-transferase, and used to develop assays based on fluorescence polarization to quantify the binding of either NCoR- or SRC2-derived fluorescent peptides to the hTRα1 LBD. The optimum concentrations of recombinant hTRα1 LBD, and of peptide probes were adjusted in order to produce the greatest possible T3-dependent signal variations in fluorescence polarization. Under these conditions, T3 induced a dose-dependent decrease in NCoR peptide binding, and a reciprocal dose-dependent increase in SRC2 peptide binding, in both cases at similar 50%-effective doses. The TR agonists triiodothyroacetic acid and thyroxine were also effective in preventing NCoR peptide binding and increasing SRC2 peptide binding, whereas reverse-triiodothyronine was less efficient and the biologically inactive thyronine had no effect on either process. These experiments validate cell-free assays based on the use of binding of corepressor or coactivator peptide probes, as measured by fluorescence polarization, for investigating the conformational changes of TRα1 LBD induced by potentially TR-interfering compounds. Both these methods were used to elucidate the mechanism of the disrupting effects of tetrabromobisphenol-A (TBBPA) on the hTRα1 LBD conformation related to the transcriptional activity of the receptor. TBBPA is a flame retardant that is released into the environment, and is a suspected disrupter of thyroid homeostasis. The present results indicate that TBBPA did indeed interfere with the ability of the hTRα1 LBD to bind both NCoR and SRC2. TBBPA behaved similarly to T3 in promoting the release of NCoR from LBD, whereas it failed to promote LBD interactions with SRC2. However, it did reduce the T3-induced interactions between LBD and the coactivator peptide. This study therefore suggests that TBBPA in the micromolar range can affect the regulation of transcription by both the apo- and the holo-TRα1, with potential disruption of the expression of genes that are either up- or down-regulated by T3.
Collapse
|
8
|
Makkonen KM, Malinen M, Ropponen A, Väisänen S, Carlberg C. Cell cycle regulatory effects of retinoic Acid and forskolin are mediated by the cyclin C gene. J Mol Biol 2009; 393:261-71. [PMID: 19683536 DOI: 10.1016/j.jmb.2009.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 11/22/2022]
Abstract
As a partner of cyclin-dependent kinase (CDK) 3, Cyclin C controls cellular proliferation and, together with CDK8, represses gene transcription. In this study, we showed that the highly expressed Cyclin C gene is a direct target of the nuclear hormone all-trans retinoic acid (RA) in HEK293 human embryonal kidney cells. The RA receptor (RAR) gamma associates with a Cyclin C promoter region containing two RAR binding sites. The Cyclin C gene also directly responds to the cAMP activator Forskolin via the transcription factor CREB1 (cAMP response element-binding protein 1), for which we identified four binding sites within the first 2250 bp of its promoter. RARgamma and CREB1 show functional convergence via the corepressor NCoR1, which controls in particular the Forskolin response of Cyclin C. The histone deacetylases 1, 5, 6, 7 and 11 are involved in the basal expression of Cyclin C, but in HEK293 and MCF-7 human breast carcinoma cells the antiproliferative effects of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) are not mediated by Cyclin C. However, cell cycle progressing effects of all-trans RA and Forskolin are dependent on Cyclin C expression levels. This suggests that the primary regulation of Cyclin C by all-trans RA and Forskolin mediates some of the cell cycle control actions of these compounds.
Collapse
|
9
|
Wang P, Wang Q, Sun J, Wu J, Li H, Zhang N, Huang Y, Su B, Li RK, Liu L, Zhang Y, Elsholtz HP, Hu J, Gaisano HY, Jin T. POU homeodomain protein Oct-1 functions as a sensor for cyclic AMP. J Biol Chem 2009; 284:26456-65. [PMID: 19617623 PMCID: PMC2785334 DOI: 10.1074/jbc.m109.030668] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/15/2009] [Indexed: 01/30/2023] Open
Abstract
Cyclic AMP is a fundamentally important second messenger for numerous peptide hormones and neurotransmitters that control gene expression, cell proliferation, and metabolic homeostasis. Here we show that cAMP works with the POU homeodomain protein Oct-1 to regulate gene expression in pancreatic and intestinal endocrine cells. This ubiquitously expressed transcription factor is known as a stress sensor. We found that it also functions as a repressor of Cdx-2, a proglucagon gene activator. Through a mechanism that involves the activation of exchange protein activated by cyclic AMP, elevation of cAMP leads to enhanced phosphorylation and nuclear exclusion of Oct-1 and reduced interactions between Oct-1 or nuclear co-repressors and the Cdx-2 gene promoter, detected by chromatin immunoprecipitation. In rat primary pancreatic islet cells, cAMP elevation also reduces nuclear Oct-1 content, which causes increased proglucagon and proinsulin mRNA expression. Our study therefore identifies a novel mechanism by which cAMP regulates hormone-gene expression and suggests that ubiquitously expressed Oct-1 may play a role in metabolic homeostasis by functioning as a sensor for cAMP.
Collapse
|
10
|
Astapova I, Dordek MF, Hollenberg AN. The thyroid hormone receptor recruits NCoR via widely spaced receptor-interacting domains. Mol Cell Endocrinol 2009; 307:83-8. [PMID: 19524130 DOI: 10.1016/j.mce.2009.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/16/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022]
Abstract
The nuclear receptor corepressor (NCoR) interacts with the DNA-bound thyroid receptor (TR) homodimer through two of its three receptor-interacting domains (RIDs). One of these RIDs must be the most N-terminal, termed N3, which preferentially works with the next closest RID, N2. Interestingly, the spacing between the RIDs is conserved between species such that N3 and N2 are separated by approximately 120 aa, while the spacing between N2 and N1 is around 205 aa, suggesting that distance plays a role in the specificity of N3 and N2. Herein, we demonstrate that even when spaced by 122 aa N2 and N1 cannot mediate recruitment to the TR homodimer. Furthermore, N3 is able to function with either N2 or N1 at distances as small as 45 aa and as large as 240 aa. Thus, specificity of NCoR recruitment to the TR is dictated by the amino acid sequence of N3, and not by the distance separating it from other RIDs. Furthermore, the wide spacing of the NCoR RIDs likely allows for potential flexibility in the DNA-bound TR complex in its ability to recruit NCoR.
Collapse
|
11
|
Makkonen KM, Pasonen-Seppänen S, Törrönen K, Tammi MI, Carlberg C. Regulation of the hyaluronan synthase 2 gene by convergence in cyclic AMP response element-binding protein and retinoid acid receptor signaling. J Biol Chem 2009; 284:18270-81. [PMID: 19416972 PMCID: PMC2709342 DOI: 10.1074/jbc.m109.012492] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/23/2009] [Indexed: 01/22/2023] Open
Abstract
The human hyaluronan synthase 2 (HAS2) gene encodes for an enzyme making hyaluronan, altered concentrations of which are associated with many pathological situations including wounding, several inflammatory conditions, and malignant tumors. In this study we showed that HAS2 is a primary target of the cAMP activator forskolin and the nuclear hormone all-trans-retinoic acid (RA). The first 2250 bp of the promoter contain three response elements (REs) for the transcription factor CREB1 as well as two REs for the nuclear receptor RAR. Chromatin immunoprecipitation and re-chromatin immunoprecipitation assays using selected fragments of the promoter containing the putative REs showed that forskolin and all-trans-RA modulate the formation of complexes between CREB1 and RAR with various co-regulators at the predicted sites. Interestingly, CREB1 complexes are regulated by all-trans-RA as are RAR complexes by forskolin. Reporter gene assays using nested promoter fragments supported these findings. Forskolin and all-trans-RA co-stimulation reduced the binding of CREB1, RAR, and the co-repressor nuclear receptor co-repressor 1 (NCoR1), but enhanced the association of co-activators MED1 and CREB-binding protein (CBP). RNA interference experiments suggested that MED1 and NCoR1 are central for the all-trans-RA induction of the HAS2 gene and CBP dominates its forskolin response. In general, our findings suggest a convergence of CREB1 and RAR signaling, and demonstrate the individual character of each RE in terms of co-regulator use.
Collapse
|
12
|
Tagami T, Yamamoto H, Moriyama K, Sawai K, Usui T, Shimatsu A, Naruse M. The retinoid X receptor binding to the thyroid hormone receptor: relationship with cofactor binding and transcriptional activity. J Mol Endocrinol 2009; 42:415-28. [PMID: 19211732 DOI: 10.1677/jme-08-0153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transcriptional regulation is mediated by thyroid hormone (tri-iodothyronine, T(3)) receptors (TR), which bind to T(3) response elements as heterodimers with retinoid X receptors (RXR). TR binds to corepressor proteins (CoR) in the absence of T(3), which mediate transcriptional repression and to coactivator proteins (CoA) in the presence of T(3), which mediate transcriptional stimulation, by recruiting additional proteins to the promoter. To determine the relationship between TR functions and cofactor bindings, we selected 13 single-point mutants on the ligand binding domain of TR, of which T(3) bindings were well preserved and created VP16 chimeric receptors. Using mammalian two-hybrid assays, RXR binding in the absence of T(3) was almost abolished for Y406K (helix; H10) and L422R (H11), while it was preserved for most other TR mutants. RXR binding was increased for I280K, V284R (H3), and C309K (H6). Addition of T(3) enhanced RXR binding and T(3) restored the RXR binding to Y406K but not to L422R. CoR binding was reduced for P214R, W219K (H1), R316H (H6), D366R (H9), and M423A (H11) in addition to the mutants of which RXR binding was affected, and CoA binding was impaired for I280K, V284R (H3), C309K (H6), and E457K (H12), indicating that sites for CoR, CoA, and RXR binding partially overlap. CoR binding was well correlated with T(3)-independent transcriptional regulation and CoA binding was well correlated with T(3)-dependent regulation, while RXR binding was not correlated with any of these functions among TR mutants, suggesting that transcriptional regulation by TR is mainly mediated by an exchange of CoRs and CoAs.
Collapse
|
13
|
Kashima H, Horiuchi A, Uchikawa J, Miyamoto T, Suzuki A, Ashida T, Konishi I, Shiozawa T. Up-regulation of nuclear receptor corepressor (NCoR) in progestin-induced growth suppression of endometrial hyperplasia and carcinoma. Anticancer Res 2009; 29:1023-1029. [PMID: 19414341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Although progestins have been used for the treatment of endometrial neoplasias, the mechanisms of progestin-induced growth suppression remain undetermined. MATERIALS AND METHODS Immunostaining for steroid receptor coactivators (SRC-1, p300/CBP), corepressors (NCoR, SMRT) and Ki-67 in 15 neoplastic endometria before and after the treatment with medroxyprogesterone acetate (MPA) was performed. The effect of progestin on cell proliferation and cofactors expression were examined using T47D cells. RESULTS Of the 15 cases, 10 showed good histological responses to MPA (Responder) and 5 poor responses (Non-responder). In Responders, MPA treatment resulted in reduced expression of Ki-67 by 78% (p=0.0076) along with increased NCoR expression by 158 % (p=0.0077). Progestin treatment for T47D cells resulted in up-regulation of NCoR mRNA and protein with the suppression of cell proliferation. Immunoprecipitation revealed that NCoR was bound to estrogen receptor alpha, but not to progesterone receptor in T47D cells. CONCLUSION The up-regulation of NCoR by progestins is associated with the suppression of estrogen-induced growth of neoplastic cells.
Collapse
|
14
|
Koury EJ, Pawlyk AC, Berrodin TJ, Smolenski CL, Nagpal S, Deecher DC. Characterization of ligands for thyroid receptor subtypes and their interactions with co-regulators. Steroids 2009; 74:270-6. [PMID: 19073200 DOI: 10.1016/j.steroids.2008.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/10/2008] [Accepted: 11/17/2008] [Indexed: 11/30/2022]
Abstract
Thyroid hormone receptors (TRs) are nuclear receptors that are activated by thyroid hormone ligands and co-regulator proteins. Two receptor subtypes, TRalpha and TRbeta, have been suggested to play a role in numerous physiological functions. However, specificity of receptor subtype function and co-regulator interaction is unclear due to the lack of TR subtype-specific ligands. Five TR ligands were evaluated for their selectivity and interaction with the TR subtypes. A multiplex assay was used to identify co-regulator peptide interaction, and biochemical assays were used to characterize ligand-receptor specificity. In the biochemical assay, rank order ligand potencies were similar in the presence of co-activator peptides, SRC1-2 and SRC3-2, and the co-repressor peptide, NCoR1-2, with T3 and Triac potencies greater in the presence of the co-repressor. The potency of Tetrac was similar regardless of the co-regulator used while T4 and rT3 demonstrated selectivity for TRalpha subtype. The rank order among TR ligands at either receptor subtype in the biochemical assay correlated with the multiplex assay. These assays can be used to identify new ligands that can provide further insight into TR biology.
Collapse
|
15
|
Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A, Avila J, Bućan M, Ahima RS, Kaestner KH, Lazar MA. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 2008; 456:997-1000. [PMID: 19037247 PMCID: PMC2742159 DOI: 10.1038/nature07541] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 10/14/2008] [Indexed: 11/08/2022]
Abstract
Rhythmic changes in histone acetylation at circadian clock genes suggest that temporal modulation of gene expression is regulated by chromatin modifications. Furthermore, recent studies demonstrate a critical relationship between circadian and metabolic physiology. The nuclear receptor corepressor 1 (Ncor1) functions as an activating subunit for the chromatin modifying enzyme histone deacetylase 3 (Hdac3). Lack of Ncor1 is incompatible with life, and hence it is unknown whether Ncor1, and particularly its regulation of Hdac3, is critical for adult mammalian physiology. Here we show that specific, genetic disruption of the Ncor1-Hdac3 interaction in mice causes aberrant regulation of clock genes and results in abnormal circadian behaviour. These mice are also leaner and more insulin-sensitive owing to increased energy expenditure. Unexpectedly, loss of a functional Ncor1-Hdac3 complex in vivo does not lead to sustained increases in known catabolic genes, but instead significantly alters the oscillatory patterns of several metabolic genes, demonstrating that circadian regulation of metabolism is critical for normal energy balance. These findings indicate that activation of Hdac3 by Ncor1 is a nodal point in the epigenetic regulation of circadian and metabolic physiology.
Collapse
|
16
|
Shah V, Nguyen P, Nguyen NH, Togashi M, Scanlan TS, Baxter JD, Webb P. Complex actions of thyroid hormone receptor antagonist NH-3 on gene promoters in different cell lines. Mol Cell Endocrinol 2008; 296:69-77. [PMID: 18930112 PMCID: PMC4180716 DOI: 10.1016/j.mce.2008.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/11/2008] [Accepted: 09/11/2008] [Indexed: 12/20/2022]
Abstract
It is desirable to obtain new antagonists for thyroid hormone receptors (TRs) and other nuclear receptors (NRs). We previously used X-ray structural models of TR ligand binding domains (LBDs) to design compounds, such as NH-3, that impair coactivator binding to activation function 2 (AF-2) and block thyroid hormone (triiodothyronine, T(3)) actions. However, TRs bind DNA and are transcriptionally active without ligand. Thus, NH-3 could modulate TR activity via effects on other coregulator interaction surfaces, such as activation function (AF-1) and corepressor binding sites. Here, we find that NH-3 blocks TR-LBD interactions with coactivators and corepressors and also inhibits activities of AF-1 and AF-2 in transfections. While NH-3 lacks detectable agonist activity at T(3)-activated genes in GC pituitary cells it nevertheless activates spot 14 (S14) in HTC liver cells with the latter effect accompanied by enhanced histone H4 acetylation and coactivator recruitment at the S14 promoter. Surprisingly, T(3) promotes corepressor recruitment to target promoters. NH-3 effects vary; we observe transient recruitment of N-CoR to S14 in GC cells and dismissal and rebinding of N-CoR to the same promoter in HTC cells. We propose that NH-3 will generally behave as an antagonist by blocking AF-1 and AF-2 but that complex effects on coregulator recruitment may result in partial/mixed agonist effects that are independent of blockade of T(3) binding in some contexts. These properties could ultimately be utilized in drug design and development of new selective TR modulators.
Collapse
|
17
|
Wong HY, Hoogerbrugge JW, Pang KL, van Leeuwen M, van Royen ME, Molier M, Berrevoets CA, Dooijes D, Dubbink HJ, van de Wijngaart DJ, Wolffenbuttel KP, Trapman J, Kleijer WJ, Drop SLS, Grootegoed JA, Brinkmann AO. A novel mutation F826L in the human androgen receptor in partial androgen insensitivity syndrome; increased NH2-/COOH-terminal domain interaction and TIF2 co-activation. Mol Cell Endocrinol 2008; 292:69-78. [PMID: 18656523 DOI: 10.1016/j.mce.2008.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 10/21/2022]
Abstract
A novel mutation F826L located within the ligand binding domain (LBD) of the human androgen receptor (AR) was investigated. This mutation was found in a boy with severe penoscrotal hypospadias (classified as 46,XY DSD). The AR mutant F826L appeared to be indistinguishable from the wild-type AR, with respect to ligand binding affinity, transcriptional activation of MMTV-luciferase and ARE2-TATA-luciferase reporter genes, protein level in genital skin fibroblasts (GSFs), and sub-cellular distribution in transfected cells. However, an at least two-fold higher NH2-/COOH-terminal domain interaction was found in luciferase and GST pull-down assays. A two-fold increase was also observed for TIF2 (transcription intermediary factor 2) co-activation of the AR F826L COOH-terminal domain. This increase could not be explained by a higher stability of the mutant protein, which was within wild-type range. Repression of transactivation by the nuclear receptor co-repressor (N-CoR) was not affected by the AR F826L mutation. The observed properties of AR F826L would be in agreement with an increased activity rather than with a partial defective AR transcriptional activation. It is concluded that the penoscrotal hypospadias in the present case is caused by an as yet unknown mechanism, which still may involve the mutant AR.
Collapse
|
18
|
Zhang D, Cho E, Wong J. A critical role for the co-repressor N-CoR in erythroid differentiation and heme synthesis. Cell Res 2008; 17:804-14. [PMID: 17768398 DOI: 10.1038/cr.2007.72] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Co-repressor N-CoR (nuclear receptor co-repressor) has important roles in different biological processes, including proliferation, differentiation and development. Mutant mice lacking N-CoR are embryonically lethal and appear to die from anemia owing to defects in definitive erythropoiesis. However, the underlying molecular mechanisms of N-CoR-mediated erythroid differentiation are largely unknown. Using the human erythroleukemic K562 cell line, which can be chemically induced to differentiate into either erythroid or megakaryocytic lineages depending on the inducers used, we have investigated the role of N-CoR in erythroid differentiation. We show that knockdown of N-CoR either transiently (siRNA) or permanently (shRNA) impairs the cytosine arabinoside (Ara-C)- but not hemin-induced erythroid differentiation of K562 cells. RT-PCR analysis reveals that N-CoR is required for induction by Ara-C of 5-aminolevulinate synthase (ALA-S2), a key enzyme involved in heme biosynthesis. Furthermore, the amount of N-CoR proteins increases significantly during Ara-C-induced K562 differentiation, apparently through a post-transcriptional mechanism. Consistent with the data from N-CoR-null mice, N-CoR is not required for the differentiation of K562 cells into megakaryocytic lineages, induced by phorbol 12-myristate 13-acetate. Thus, our in vitro study confirms a role for N-CoR in erythroid differentiation and reveals for the first time that N-CoR is required for the induction of a key enzyme involved in heme synthesis.
Collapse
|
19
|
Giannini AL, Gao Y, Bijlmakers MJ. T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain. Biochem J 2008; 410:101-11. [PMID: 17990982 PMCID: PMC2733222 DOI: 10.1042/bj20070995] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recently identified RNF125 [RING (really interesting new gene) finger protein 125], or TRAC-1 (T-cell RING protein in activation 1), is unique among ubiquitin ligases in being a positive regulator of T-cell activation. In addition, TRAC-1 has been shown to down-modulate HIV replication and to inhibit pathogen-induced cytokine production. However, apart from the presence of an N-terminal C3HC4 (Cys(3)-His-Cys(4)) RING domain, the TRAC-1 protein remains uncharacterized. In the present paper, we report novel interactions and modifications for TRAC-1, and elucidate its domain organization. Specifically, we determine that TRAC-1 associates with membranes and is excluded from the nucleus through myristoylation. Our data are further consistent with a crucial role for the C-terminus in TRAC-1 function. In this region, novel domains were recognized through the identification of three closely related proteins: RNF114, RNF138 and RNF166. TRAC-1 and its relatives were found to contain, apart from the RING domain, a C2HC (Cys(2)-His-Cys)- and two C2H2 (Cys(2)-His(2))-type zinc fingers, as well as a UIM (ubiquitin-interacting motif). The UIM of TRAC-1 binds Lys(48)-linked polyubiquitin chains and is, together with the RING domain, required for auto-ubiquitination. As a consequence of auto-ubiquitination, the half-life of TRAC-1 is shorter than 30 min. The identification of these novel modifications, interactions, domains and relatives significantly widens the contexts for investigating TRAC-1 activity and regulation.
Collapse
|
20
|
van der Laan S, Lachize SB, Vreugdenhil E, de Kloet ER, Meijer OC. Nuclear receptor coregulators differentially modulate induction and glucocorticoid receptor-mediated repression of the corticotropin-releasing hormone gene. Endocrinology 2008; 149:725-32. [PMID: 18006628 DOI: 10.1210/en.2007-1234] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nuclear receptor coregulators are proteins that modulate the transcriptional activity of steroid receptors and may explain cell-specific effects of glucocorticoid receptor action. Based on the uneven distribution of a number of coregulators in CRH-expressing cells in the hypothalamus of the rat brain, we tested the hypothesis that these proteins are involved as mediators in the glucocorticoid-induced repression of the CRH promoter. Therefore, we assessed the role of coregulator proteins on both induction and repression of CRH in the AtT-20 cell line, a model system for CRH repression by glucocorticoids. The steroid receptor coactivator 1a (SRC1a), SRC-1e, nuclear corepressor (N-CoR), and silencing mediator of the retinoid and thyroid hormone receptor (SMRT) were studied in this system. We show that the concentration of glucocorticoid receptor and the type of ligand, i.e. corticosterone or dexamethasone, determines the repression. Furthermore, overexpression of SRC1a, but not SRC1e, increased both efficacy and potency of the glucocorticoid receptor-mediated repression of the forskolin-induced CRH promoter. Unexpectedly, cotransfection of the corepressors N-CoR and SMRT did not affect the corticosterone-dependent repression but resulted in a marked decrease of the forskolin stimulation of the CRH gene. Altogether, our data demonstrate that 1) the concentration of the receptor, 2) the type of ligand, and 3) the coregulator recruited all determine the expression and the repression of the CRH gene. We conclude that modulation of coregulator activity may play a role in the control of the hypothalamus-pituitary-adrenal axis.
Collapse
|
21
|
Hamon B, Hamon P, Bovier-Lapierre M, Pugeat M, Savagner F, Rodien P, Orgiazzi J. A child with resistance to thyroid hormone without thyroid hormone receptor gene mutation: a 20-year follow-up. Thyroid 2008; 18:35-44. [PMID: 18302516 DOI: 10.1089/thy.2007.0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report here the 20-year follow-up study of a male subject diagnosed at 15 months of age as a sporadic case of pituitary resistance to thyroid hormone on the combination of clinical hyperthyroidism, elevated serum thyroid hormone (TH) levels and inappropriate thyrotropin (TSH). On D-thyroxine (D-T(4)) therapy from 30 months of age to 12.5 years, hyperactivity and hyperthyroid signs and symptoms as well as growth abnormalities improved, serum L-thyroxine (L-T(4)) enantiomer normalized, and basal and stimulated TSH decreased significantly without complete suppression. After 8 years off D-T(4), at 20 years of age, clinical status was normal despite persisting high TH levels and inappropriate TSH. Evolution of serum markers of TH action and echocardiography measurements followed up from 15 months to 20 years of age either in basal condition or on triiodothyronine (T(3)), as well as the sequential determination of bone mineral density suggest differences in the tissue responses to T(3): normal in bone with a high remodelling rate, heterogeneity for various hepatic markers, and decreased at heart level. No mutations were found in the coding sequence of TRbeta1, TRbeta2, TRalpha1, RXRgamma, SMRT, NCoR1, and NCoA1. In this patient the putative long-term effects of the persisting high bone resorption are unknown.
Collapse
|
22
|
Hodgson MC, Astapova I, Hollenberg AN, Balk SP. Activity of androgen receptor antagonist bicalutamide in prostate cancer cells is independent of NCoR and SMRT corepressors. Cancer Res 2007; 67:8388-95. [PMID: 17804755 DOI: 10.1158/0008-5472.can-07-0617] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms by which androgen receptor (AR) antagonists inhibit AR activity, and how their antagonist activity may be abrogated in prostate cancer that progresses after androgen deprivation therapy, are not clear. Recent studies show that AR antagonists (including the clinically used drug bicalutamide) can enhance AR recruitment of corepressor proteins [nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid receptors (SMRT)] and that loss of corepressors may enhance agonist activity and be a mechanism of antagonist failure. We first show that the agonist activities of weak androgens and an AR antagonist (cyproterone acetate) are still dependent on the AR NH(2)/COOH-terminal interaction and are enhanced by steroid receptor coactivator (SRC)-1, whereas the bicalutamide-liganded AR did not undergo a detectable NH(2)/COOH-terminal interaction and was not coactivated by SRC-1. However, both the isolated AR NH(2) terminus and the bicalutamide-liganded AR could interact with the SRC-1 glutamine-rich domain that mediates AR NH(2)-terminal binding. To determine whether bicalutamide agonist activity was being suppressed by NCoR recruitment, we used small interfering RNA to deplete NCoR in CV1 cells and both NCoR and SMRT in LNCaP prostate cancer cells. Depletion of these corepressors enhanced dihydrotestosterone-stimulated AR activity on a reporter gene and on the endogenous AR-regulated PSA gene in LNCaP cells but did not reveal any detectable bicalutamide agonist activity. Taken together, these results indicate that bicalutamide lacks agonist activity and functions as an AR antagonist due to ineffective recruitment of coactivator proteins and that enhanced coactivator recruitment, rather than loss of corepressors, may be a mechanism contributing to bicalutamide resistance.
Collapse
|
23
|
Ng APP, Nin DS, Fong JH, Venkataraman D, Chen CS, Khan M. Therapeutic targeting of nuclear receptor corepressor misfolding in acute promyelocytic leukemia cells with genistein. Mol Cancer Ther 2007; 6:2240-8. [PMID: 17699721 DOI: 10.1158/1535-7163.mct-06-0705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have recently reported that PML-RAR-induced misfolding of the N-CoR protein could be reversed by retinoic acid (RA), a therapeutic agent that promotes differentiation of acute promyelocytic leukemia (APL) cells. This finding suggests a role of misfolded N-CoR in the differentiation arrest of APL cells and highlights its significance as a potential molecular target in protein conformation-based therapy for APL. Based on this hypothesis, we investigated the therapeutic potential of several protein conformation modifiers on APL-derived cell lines NB4 and NB4-R1. Through a small-scale screening of these selected compounds, we identified genistein as a potent inhibitor of growth of both RA-sensitive and RA-resistant APL cells. Genistein inhibited the growth of NB4 cells through its collective regulatory effects on cell cycle progression, differentiation, and apoptosis. Genistein-induced apoptosis of NB4 cells was mediated by activation of caspase-9 and caspase-3 and was associated with a decrease in mitochondrial transmembrane potential and cytosolic release of cytochrome c. Genistein promoted differentiation of both RA-sensitive and RA-resistant NB4 cells and induced cell cycle arrest by blocking the G(2)-M transition. Genistein up-regulated the expression of PML and N-CoR proteins, promoted degradation of PML-RAR, and reorganized the microspeckled distribution of PML oncogenic domains to a normal dot-like pattern in NB4 cells. Moreover, genistein significantly reversed the PML-RAR-induced misfolding of N-CoR protein by possibly inhibiting the selective phosphorylation-dependent binding of N-CoR to PML-RAR. These findings identify genistein as a potent modifier of N-CoR protein conformation and highlights its therapeutic potential in both RA-sensitive and RA-resistant APL cells.
Collapse
|
24
|
Green KA, Carroll JS. Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 2007; 7:713-22. [PMID: 17721435 DOI: 10.1038/nrc2211] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oestrogen receptor-alpha (ERalpha)-regulated transcription in breast cancer cells involves protein co-factors that contribute to the regulation of chromatin structure. These include co-factors with the potential to regulate histone modifications such as acetylation or methylation, and therefore the transcriptional state of target genes. Although much of the information regarding the interaction of specific co-factors with ER has been generated by studying specific promoter regions, we now have an improved understanding of the nature of these interactions and are better placed to relate these with ER activity and potentially with the activity of breast cancer drugs, including tamoxifen.
Collapse
|
25
|
Wu-Wong JR, Nakane M, Ma J, Ruan X, Kroeger PE. Elevated phosphorus modulates vitamin D receptor-mediated gene expression in human vascular smooth muscle cells. Am J Physiol Renal Physiol 2007; 293:F1592-604. [PMID: 17715259 DOI: 10.1152/ajprenal.00492.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clinical observations show that an increase in serum inorganic phosphorus (Pi) is linked to higher cardiovascular (CV) mortality, while vitamin D receptor (VDR) agonist therapy is associated with survival benefit in stage 5 chronic kidney disease. Smooth muscle cells (SMCs) play an important role in CV pathophysiology, but the interaction between Pi and the VDR signaling pathway in SMCs is not known. Real-time RT-PCR studies revealed that elevated Pi (2.06 mM) modulated VDR-mediated regulation of a panel of genes including thrombomodulin and osteopontin in SMCs. DNA microarray results demonstrated that increasing Pi from 0.9 to 2.06 mM exerted a widespread modulating effect on VDR-mediated gene expression. A total of 325 target genes were affected by paricalcitol at 0.9 mM Pi, with 195 up- and 130 downregulated. The number of target genes affected by paricalcitol at 2.06 mM Pi decreased to 86, with 55 up- and 31 downregulated. VDR-mediated gene expression in As4.1 cells (a juxtaglomerular cell-like cell line derived from kidney tumors in SV40 T-antigen transgenic mice) and peroxisome proliferator-activated receptor (PPAR)gamma-mediated gene expression in SMCs were also altered by elevated Pi, suggesting that the observation is not unique to VDR in SMCs. Mechanism analysis showed that elevated Pi had no significant effect on VDR or PPARgamma protein level but altered the cytosolic vs. nuclear distribution of NF-kappaB or nuclear receptor corepressor 1 (NCoR1). Our results demonstrate for the first time that elevated Pi affects VDR-mediated gene expression in human coronary artery SMCs and the effect is not limited to VDR in SMCs.
Collapse
|