1
|
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429:771-6. [PMID: 15175761 PMCID: PMC2820247 DOI: 10.1038/nature02583] [Citation(s) in RCA: 1547] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 04/16/2004] [Indexed: 12/17/2022]
Abstract
Calorie restriction extends lifespan in organisms ranging from yeast to mammals. In yeast, the SIR2 gene mediates the life-extending effects of calorie restriction. Here we show that the mammalian SIR2 orthologue, Sirt1 (sirtuin 1), activates a critical component of calorie restriction in mammals; that is, fat mobilization in white adipocytes. Upon food withdrawal Sirt1 protein binds to and represses genes controlled by the fat regulator PPAR-gamma (peroxisome proliferator-activated receptor-gamma), including genes mediating fat storage. Sirt1 represses PPAR-gamma by docking with its cofactors NCoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptors). Mobilization of fatty acids from white adipocytes upon fasting is compromised in Sirt1+/- mice. Repression of PPAR-gamma by Sirt1 is also evident in 3T3-L1 adipocytes, where overexpression of Sirt1 attenuates adipogenesis, and RNA interference of Sirt1 enhances it. In differentiated fat cells, upregulation of Sirt1 triggers lipolysis and loss of fat. As a reduction in fat is sufficient to extend murine lifespan, our results provide a possible molecular pathway connecting calorie restriction to life extension in mammals.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1547 |
2
|
Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377:397-404. [PMID: 7566114 DOI: 10.1038/377397a0] [Citation(s) in RCA: 1433] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thyroid-hormone and retinoic-acid receptors exert their regulatory functions by acting as both activators and repressors of gene expression. A nuclear receptor co-repressor (N-CoR) of relative molecular mass 270K has been identified which mediates ligand-independent inhibition of gene transcription by these receptors, suggesting that the molecular mechanisms of repression by thyroid-hormone and retinoic-acid receptors are analogous to the co-repressor-dependent transcriptional inhibitory mechanisms of yeast and Drosophila.
Collapse
|
|
30 |
1433 |
3
|
Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson T, Rosenfeld MG, Glass CK. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 2005; 437:759-63. [PMID: 16127449 PMCID: PMC1464798 DOI: 10.1038/nature03988] [Citation(s) in RCA: 1005] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 06/30/2005] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has essential roles in adipogenesis and glucose homeostasis, and is a molecular target of insulin-sensitizing drugs. Although the ability of PPAR-gamma agonists to antagonize inflammatory responses by transrepression of nuclear factor kappa B (NF-kappaB) target genes is linked to antidiabetic and antiatherogenic actions, the mechanisms remain poorly understood. Here we report the identification of a molecular pathway by which PPAR-gamma represses the transcriptional activation of inflammatory response genes in mouse macrophages. The initial step of this pathway involves ligand-dependent SUMOylation of the PPAR-gamma ligand-binding domain, which targets PPAR-gamma to nuclear receptor corepressor (NCoR)-histone deacetylase-3 (HDAC3) complexes on inflammatory gene promoters. This in turn prevents recruitment of the ubiquitylation/19S proteosome machinery that normally mediates the signal-dependent removal of corepressor complexes required for gene activation. As a result, NCoR complexes are not cleared from the promoter and target genes are maintained in a repressed state. This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-kappaB target genes that regulate immunity and homeostasis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
1005 |
4
|
Heinzel T, Lavinsky RM, Mullen TM, Söderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997; 387:43-8. [PMID: 9139820 DOI: 10.1038/387043a0] [Citation(s) in RCA: 963] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcriptional repression by nuclear receptors has been correlated to binding of the putative co-repressor, N-CoR. A complex has been identified that contains N-CoR, the Mad presumptive co-repressor mSin3, and the histone deacetylase mRPD3, and which is required for both nuclear receptor- and Mad-dependent repression, but not for repression by transcription factors of the ets-domain family. These data predict that the ligand-induced switch of heterodimeric nuclear receptors from repressor to activator functions involves the exchange of complexes containing histone deacetylases with those that have histone acetylase activity.
Collapse
|
|
28 |
963 |
5
|
Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391:815-8. [PMID: 9486655 DOI: 10.1038/35901] [Citation(s) in RCA: 782] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming proteins of acute promyelocytic leukaemias (APL) are fusions of the promyelocytic leukaemia (PML) and the promyelocytic leukaemia zinc-finger (PLZF) proteins with retinoic acid receptor-alpha (RARalpha). These proteins retain the RARalpha DNA- and retinoic acid (RA)-binding domains, and their ability to block haematopoietic differentiation depends on the RARalpha DNA-binding domain. Thus RA-target genes are downstream effectors. However, treatment with RA induces differentiation of leukaemic blast cells and disease remission in PML-RARalpha APLs, whereas PLZF-RARa APLs are resistant to RA. Transcriptional regulation by RARs involves modifications of chromatin by histone deacetylases, which are recruited to RA-target genes by nuclear co-repressors. Here we show that both PML-RARalpha and PLZF-RARalpha fusion proteins recruit the nuclear co-repressor (N-CoR)-histone deacetylase complex through the RARalpha CoR box. PLZF-RARalpha contains a second, RA-resistant binding site in the PLZF amino-terminal region. High doses of RA release histone deacetylase activity from PML-RARalpha, but not from PLZF-RARalpha. Mutation of the N-CoR binding site abolishes the ability of PML-RARalpha to block differentiation, whereas inhibition of histone deacetylase activity switches the transcriptional and biological effects of PLZF-RARalpha from being an inhibitor to an activator of the RA signalling pathway. Therefore, recruitment of histone deacetylase is crucial to the transforming potential of APL fusion proteins, and the different effects of RA on the stability of the PML-RARalpha and PLZF-RARalpha co-repressor complexes determines the differential response of APLs to RA.
Collapse
MESH Headings
- Binding Sites
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Neoplastic
- Histone Deacetylase Inhibitors
- Histone Deacetylases/genetics
- Histone Deacetylases/physiology
- Hydroxamic Acids/pharmacology
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Mutagenesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Nuclear Receptor Co-Repressor 1
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Protein Binding
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Retinoic Acid Receptor alpha
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tretinoin/pharmacology
- Tumor Suppressor Proteins
Collapse
|
|
27 |
782 |
6
|
Abstract
The nuclear hormone receptors constitute a large family of transcription factors. The binding of the hormonal ligands induces nuclear receptors to assume a configuration that leads to transcriptional activation. Recent studies of retinoic acid and thyroid hormone receptors revealed that, upon ligand binding, a histone deacetylase (HDAC)-containing complex is displaced from the nuclear receptor in exchange for a histone acetyltransferase (HAT)-containing complex. These observations suggest that ligand-dependent recruitment of chromatin-remodeling activity serves as a general mechanism underlying the switch of nuclear receptors from being transcriptionally repressive to being transcriptionally active.
Collapse
|
Review |
26 |
684 |
7
|
Alland L, Muhle R, Hou H, Potes J, Chin L, Schreiber-Agus N, DePinho RA. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 1997; 387:49-55. [PMID: 9139821 DOI: 10.1038/387049a0] [Citation(s) in RCA: 647] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Normal mammalian growth and development are highly dependent on the regulation of the expression and activity of the Myc family of transcription factors. Mxi1-mediated inhibition of Myc activities requires interaction with mammalian Sin3A or Sin3B proteins, which have been purported to act as scaffolds for additional co-repressor factors. The identification of two such Sin3-associated factors, the nuclear receptor co-repressor (N-CoR) and histone deacetylase (HD1), provides a basis for Mxi1/Sin3-induced transcriptional repression and tumour suppression.
Collapse
|
|
28 |
647 |
8
|
Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 2002; 87:5185-90. [PMID: 12414890 DOI: 10.1210/jc.2002-020209] [Citation(s) in RCA: 546] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bisphenol A (BPA), a monomer of polycarbonate plastics, has been shown to possess estrogenic properties and act as an agonist for the estrogen receptors. Although an epidemiologically based investigation has suggested that some chemicals could disrupt thyroid function in animals, the effects on thyroid hormone receptors (TRs) are unknown. We show here that BPA inhibits TR-mediated transcription by acting as an antagonist. In the transient gene expression experiments, BPA suppressed transcriptional activity that is stimulated by thyroid hormone (T(3)) in a dose-dependent manner. The inhibitory effects were observed in the presence of physiological concentrations of T(3). In contrast, in the case of negatively regulated TSHalpha promoter, BPA activated the gene transcription that is suppressed by T(3). To elucidate possible mechanisms of the antagonistic action of BPA, the effects on T(3) binding and cofactor interaction with TR were examined. The K(i) value for BPA was 200 micro M when assessed by inhibition of [(125)I]T(3) binding to rat hepatic nuclear TRs. In a mammalian two-hybrid assay, BPA recruited the nuclear corepressor to the TR. These results suggest that BPA could displace T(3) from the TR and recruit a transcriptional repressor, resulting in gene suppression. This is the first report that BPA can antagonize T(3) action at the transcriptional level. BPA may disrupt the function of various types of nuclear hormone receptors and their cofactors to disturb our internal hormonal environment.
Collapse
|
|
23 |
546 |
9
|
Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM, Mullen TM, Glass CK, Rosenfeld MG. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 1998; 279:703-7. [PMID: 9445475 DOI: 10.1126/science.279.5351.703] [Citation(s) in RCA: 510] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Different classes of mammalian transcription factors-nuclear receptors, cyclic adenosine 3',5'-monophosphate-regulated enhancer binding protein (CREB), and signal transducer and activator of transcription-1 (STAT-1)-functionally require distinct components of the coactivator complex, including CREB-binding protein (CBP/p300), nuclear receptor coactivators (NCoAs), and p300/CBP-associated factor (p/CAF), based on their platform or assembly properties. Retinoic acid receptor, CREB, and STAT-1 also require different histone acetyltransferase (HAT) activities to activate transcription. Thus, transcription factor-specific differences in configuration and content of the coactivator complex dictate requirements for specific acetyltransferase activities, providing an explanation, at least in part, for the presence of multiple HAT components of the complex.
Collapse
|
|
27 |
510 |
10
|
Li J, Wang J, Wang J, Nawaz Z, Liu JM, Qin J, Wong J. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J 2000; 19:4342-50. [PMID: 10944117 PMCID: PMC302030 DOI: 10.1093/emboj/19.16.4342] [Citation(s) in RCA: 490] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2000] [Revised: 06/21/2000] [Accepted: 06/26/2000] [Indexed: 11/13/2022] Open
Abstract
We present evidence that both corepressors SMRT and N-CoR exist in large protein complexes with estimated sizes of 1.5-2 MDa in HeLa nuclear extracts. Using a combination of conventional and immunoaffinity chromatography, we have successfully isolated a SMRT complex and identified histone deacetylase 3 (HDAC3) and transducin (beta)-like I (TBL1), a WD-40 repeat-containing protein, as the subunits of the purified SMRT complex. We show that the HDAC3-containing SMRT and N-CoR complexes can bind to unliganded thyroid hormone receptors (TRs) in vitro. We demonstrate further that in Xenopus oocytes, both SMRT and N-CoR also associate with HDAC3 in large protein complexes and that injection of antibodies against HDAC3 or SMRT/N-CoR led to a partial relief of repression by unliganded TR/RXR. These findings thus establish both SMRT and N-CoR complexes as bona fide HDAC-containing complexes and shed new light on the molecular pathways by which N-CoR and SMRT function in transcriptional repression.
Collapse
|
research-article |
25 |
490 |
11
|
Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 1999; 402:93-6. [PMID: 10573424 DOI: 10.1038/47069] [Citation(s) in RCA: 472] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
N-CoR and SMRT are transcriptional corepressors that associate with nuclear hormone receptors (NRs) in the absence of ligand. This interaction is the molecular target of differentiation therapy for acute promyelocytic leukaemia, wherein retinoic acid dissociates corepressor from leukaemogenic receptor fusion proteins. Binding of ligand to NRs induces a conformation that attracts coactivator proteins containing an Leu-x-x-Leu-Leu motif (the 'NR box'). Here we show that N-CoR and SMRT contain sequences that are similar to the NR box and are repeated in each of two NR interaction domains. We show that this CoRNR ('corner') box is required for NR interaction, and that CoRNR box peptides specifically block corepressor interaction in vitro and repression in vivo. Sequences flanking the CoRNR box determine NR specificity. Thus, the key feature of hormone action, differential recognition of unliganded and liganded NRs by coactivators and corepressors, is due to very subtle differences between CoRNR and NR boxes. The molecular mechanisms of repression and activation by NRs are thus linked in an unexpected manner.
Collapse
|
|
26 |
472 |
12
|
Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, Davis RG, Hull-Ryde EA, Lenhard JM, Patel L, Plunket KD, Shenk JL, Stimmel JB, Therapontos C, Willson TM, Blanchard SG. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 2002; 41:6640-50. [PMID: 12022867 DOI: 10.1021/bi0159581] [Citation(s) in RCA: 458] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the course of a high throughput screen to search for ligands of peroxisome proliferator activated receptor-gamma (PPARgamma), we identified GW9662 using a competition binding assay against the human ligand binding domain. GW9662 had nanomolar IC(50) versus PPARgamma and was 10- and 600-fold less potent in binding experiments using PPARalpha and PPARdelta, respectively. Pretreatment of all three PPARs with GW9662 resulted in the irreversible loss of ligand binding as assessed by scintillation proximity assay. Incubation of PPAR with GW9662 resulted in a change in the absorbance spectra of the receptors consistent with covalent modification. Mass spectrometric analysis of the PPARgamma ligand binding domain treated with GW9662 established Cys(285) as the site of covalent modification. This cysteine is conserved among all three PPARs. In cell-based reporter assays, GW9662 was a potent and selective antagonist of full-length PPARgamma. The functional activity of GW9662 as an antagonist of PPARgamma was confirmed in an assay of adipocyte differentiation. GW9662 showed essentially no effect on transcription when tested using both full-length PPARdelta and PPARalpha. Time-resolved fluorescence assays of ligand-modulated receptor heterodimerization, coactivator binding, and corepressor binding were consistent with the effects observed in the reporter gene assays. Control activators increased PPAR:RXR heterodimer formation and coactivator binding to both PPARgamma and PPARdelta. Corepressor binding was decreased. In the case of PPARalpha, GW9662 treatment did not significantly increase heterodimerization and coactivator binding or decrease corepressor binding. The experimental data indicate that GW9662 modification of each of the three PPARs results in different functional consequences. The selective and irreversible nature of GW9662 treatment, and the observation that activity is maintained in cell culture experiments, suggests that this compound may be a useful tool for elucidation of the role of PPARgamma in biological processes.
Collapse
|
|
23 |
458 |
13
|
Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A 1998; 95:2920-5. [PMID: 9501191 PMCID: PMC19670 DOI: 10.1073/pnas.95.6.2920] [Citation(s) in RCA: 452] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several lines of evidence indicate that the nuclear receptor corepressor (N-CoR) complex imposes ligand dependence on transcriptional activation by the retinoic acid receptor and mediates the inhibitory effects of estrogen receptor antagonists, such as tamoxifen, suppressing a constitutive N-terminal, Creb-binding protein/coactivator complex-dependent activation domain. Functional interactions between specific receptors and N-CoR or SMRT corepressor complexes are regulated, positively or negatively, by diverse signal transduction pathways. Decreased levels of N-CoR correlate with the acquisition of tamoxifen resistance in a mouse model system for human breast cancer. Our data suggest that N-CoR- and SMRT-containing complexes act as rate-limiting components in the actions of specific nuclear receptors, and that their actions are regulated by multiple signal transduction pathways.
Collapse
|
research-article |
27 |
452 |
14
|
Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 2002; 110:55-67. [PMID: 12150997 DOI: 10.1016/s0092-8674(02)00809-7] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Defining the molecular mechanisms that integrate diverse signaling pathways at the level of gene transcription remains a central issue in biology. Here, we demonstrate that interleukin-1beta (IL-1beta) causes nuclear export of a specific N-CoR corepressor complex, resulting in derepression of a specific subset of NF-kappaB-regulated genes, exemplified by the tetraspanin KAI1 that regulates membrane receptor function. Nuclear export of the N-CoR/TAB2/HDAC3 complex by IL-1beta is temporally linked to selective recruitment of a Tip60 coactivator complex. Surprisingly, KAI1 is also directly activated by a ternary complex, dependent on the acetyltransferase activity of Tip60, consisting of the presenilin-dependent C-terminal cleavage product of the amyloid beta precursor protein (APP), Fe65, and Tip60, identifying a specific in vivo gene target of an APP-dependent transcription complex in the brain.
Collapse
|
|
23 |
431 |
15
|
Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG. Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 1999; 13:3198-208. [PMID: 10617569 PMCID: PMC317209 DOI: 10.1101/gad.13.24.3198] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1999] [Accepted: 10/29/1999] [Indexed: 12/23/2022]
Abstract
Retinoic acid and thyroid hormone receptors can act alternatively as ligand-independent repressors or ligand-dependent activators, based on an exchange of N-CoR or SMRT-containing corepressor complexes for coactivator complexes in response to ligands. We provide evidence that the molecular basis of N-CoR recruitment is similar to that of coactivator recruitment, involving cooperative binding of two helical interaction motifs within the N-CoR carboxyl terminus to both subunits of a RAR-RXR heterodimer. The N-CoR and SMRT nuclear receptor interaction motifs exhibit a consensus sequence of LXX I/H I XXX I/L, representing an extended helix compared to the coactivator LXXLL helix, which is able to interact with specific residues in the same receptor pocket required for coactivator binding. We propose a model in which discrimination of the different lengths of the coactivator and corepressor interaction helices by the nuclear receptor AF2 motif provides the molecular basis for the exchange of coactivators for corepressors, with ligand-dependent formation of the charge clamp that stabilizes LXXLL binding sterically inhibiting interaction of the extended corepressor helix.
Collapse
|
research-article |
26 |
413 |
16
|
Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A 1998; 95:10860-5. [PMID: 9724795 PMCID: PMC27986 DOI: 10.1073/pnas.95.18.10860] [Citation(s) in RCA: 409] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The t(8;21) translocation between two genes known as AML1 and ETO is seen in approximately 12-15% of all acute myeloid leukemia (AML) and is the second-most-frequently observed nonrandom genetic alteration associated with AML. AML1 up-regulates a number of target genes critical to normal hematopoiesis, whereas the AML1/ETO fusion interferes with this trans-activation. We discovered that the fusion partner ETO binds to the human homolog of the murine nuclear receptor corepressor (N-CoR). The interaction is mediated by two unusual zinc finger motifs present at the carboxyl terminus of ETO. Human N-CoR (HuN-CoR), which we cloned and sequenced in its entirety, encodes a 2,440-amino acid polypeptide and has a central domain that binds ETO. N-CoR, mammalian Sin3 (mSin3A and B), and histone deacetylase 1 (HDAC1) form a complex that alters chromatin structure and mediates transcriptional repression by nuclear receptors and by a number of oncoregulatory proteins. We found that ETO, through its interaction with the N-CoR/mSin3/HDAC1 complex, is also a potent repressor of transcription. This observation provides a mechanism for how the AML1/ETO fusion may inhibit expression of AML1-responsive target genes and disturb normal hematopoiesis.
Collapse
|
research-article |
27 |
409 |
17
|
Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 1999; 286:771-4. [PMID: 10531062 DOI: 10.1126/science.286.5440.771] [Citation(s) in RCA: 397] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.
Collapse
|
|
26 |
397 |
18
|
Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, Kurokawa R, Kumar V, Liu F, Seto E, Hedrick SM, Mandel G, Glass CK, Rose DW, Rosenfeld MG. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 2000; 102:753-63. [PMID: 11030619 DOI: 10.1016/s0092-8674(00)00064-7] [Citation(s) in RCA: 393] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional repression plays crucial roles in diverse aspects of metazoan development, implying critical regulatory roles for corepressors such as N-CoR and SMRT. Altered patterns of transcription in tissues and cells derived from N-CoR gene-deleted mice and the resulting block at specific points in CNS, erythrocyte, and thymocyte development indicated that N-CoR was a required component of short-term active repression by nuclear receptors and MAD and of a subset of long-term repression events mediated by REST/NRSF. Unexpectedly, N-CoR and a specific deacetylase were also required for transcriptional activation of one class of retinoic acid response element. Together, these findings suggest that specific combinations of corepressors and histone deacetylases mediate the gene-specific actions of DNA-bound repressors in development of multiple organ systems.
Collapse
|
|
25 |
393 |
19
|
Kurokawa R, Söderström M, Hörlein A, Halachmi S, Brown M, Rosenfeld MG, Glass CK. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 1995; 377:451-4. [PMID: 7566126 DOI: 10.1038/377451a0] [Citation(s) in RCA: 393] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinoic acid receptors (RARs) and retinoid-X receptors (RXRs) activate or repress transcription by binding as heterodimers to DNA-response elements that generally consist of two direct repeat half-sites of consensus sequence AGGTCA. On response elements consisting of direct repeats spaced by five base pairs (DR + 5 elements), RAR/RXR heterodimers activate transcription in response to RAR-specific ligands, such as all-trans-retinoic acid (RA). In contrast, on elements consisting of direct repeats spaced by one base pair (DR + 1 elements), RAR/RXR heterodimers exhibit little or no response to activating ligands and repress RXR-dependent transcription. Here we show that ligand-dependent transactivation by RAR on DR + 5 elements requires the dissociation of a new nuclear receptor co-repressor, N-CoR, and recruitment of the putative co-activators p140 and p160. Surprisingly, on DR + 1 elements, N-CoR remains associated with RAR/RXR heterodimers even in the presence of RAR ligands, resulting in constitutive repression. These observations indicate that DNA-response elements can allosterically regulate RAR-co-repressor interactions to determine positive or negative regulation of gene expression.
Collapse
|
|
30 |
393 |
20
|
Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 1998; 18:7185-91. [PMID: 9819405 PMCID: PMC109300 DOI: 10.1128/mcb.18.12.7185] [Citation(s) in RCA: 390] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Accepted: 09/03/1998] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptor corepressor (CoR)-histone deacetylase (HDAC) complex recruitment is indispensable for the biological activities of the retinoic acid receptor fusion proteins of acute promyelocytic leukemias. We report here that ETO (eight-twenty-one or MTG8), which is fused to the acute myelogenous leukemia 1 (AML1) transcription factor in t(8;21) AML, interacts via its zinc finger region with a conserved domain of the corepressors N-CoR and SMRT and recruits HDAC in vivo. The fusion protein AML1-ETO retains the ability of ETO to form stable complexes with N-CoR/SMRT and HDAC. Deletion of the ETO C terminus abolishes CoR binding and HDAC recruitment and severely impairs the ability of AML1-ETO to inhibit differentiation of hematopoietic precursors. These data indicate that formation of a stable complex with CoR-HDAC is crucial to the activation of the leukemogenic potential of AML1 by ETO and suggest that aberrant recruitment of corepressor complexes is a general mechanism of leukemogenesis.
Collapse
|
research-article |
27 |
390 |
21
|
Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998; 18:7176-84. [PMID: 9819404 PMCID: PMC109299 DOI: 10.1128/mcb.18.12.7176] [Citation(s) in RCA: 362] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1998] [Accepted: 08/27/1998] [Indexed: 11/20/2022] Open
Abstract
t(8;21) is one of the most frequent translocations associated with acute myeloid leukemia. It produces a chimeric protein, acute myeloid leukemia-1 (AML-1)-eight-twenty-one (ETO), that contains the amino-terminal DNA binding domain of the AML-1 transcriptional regulator fused to nearly all of ETO. Here we demonstrate that ETO interacts with the nuclear receptor corepressor N-CoR, the mSin3 corepressors, and histone deacetylases. Endogenous ETO also cosediments on sucrose gradients with mSin3A, N-CoR, and histone deacetylases, suggesting that it is a component of one or more corepressor complexes. Deletion mutagenesis indicates that ETO interacts with mSin3A independently of its association with N-CoR. Single amino acid mutations that impair the ability of ETO to interact with the central portion of N-CoR affect the ability of the t(8;21) fusion protein to repress transcription. Finally, AML-1/ETO associates with histone deacetylase activity and a histone deacetylase inhibitor impairs the ability of the fusion protein to repress transcription. Thus, t(8;21) fuses a component of a corepressor complex to AML-1 to repress transcription.
Collapse
|
research-article |
27 |
362 |
22
|
Rosenfeld MG, Glass CK. Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 2001; 276:36865-8. [PMID: 11459854 DOI: 10.1074/jbc.r100041200] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
Review |
24 |
349 |
23
|
Abstract
Over the past few years, the long-standing idea that covalent modification of chromatin can play a role in determining states of gene activity has been confirmed. Eukaryotic genes can be silenced by deacetylation of acetyl-lysine moieties in the N-terminal tails of histones. Recent work links histone deacetylases with an increasing number of repressors, suggesting that deacetylation might be a rather pervasive feature of transcriptional repression systems.
Collapse
|
Review |
25 |
342 |
24
|
Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 2002; 9:611-23. [PMID: 11931768 DOI: 10.1016/s1097-2765(02)00468-9] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The corepressors N-CoR and SMRT partner with histone deacetylases (HDACs) in diverse repression pathways. We report here that GPS2, a protein involved in intracellular signaling, is an integral subunit of the N-CoR-HDAC3 complex. We have determined structural motifs that direct the formation of a highly stable and active deacetylase complex. GPS2 and TBL1, another component of the N-CoR-HDAC3 complex, interact cooperatively with repression domain 1 of N-CoR to form a heterotrimeric structure and are indirectly linked to HDAC3 via an extended N-CoR SANT domain that also activates latent HDAC3 activity. More importantly, we show here that the N-CoR-HDAC3 complex inhibits JNK activation through the associated GPS2 subunit and thus could potentially provide an alternative mechanism for hormone-mediated antagonism of AP-1 function.
Collapse
|
|
23 |
337 |
25
|
Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Krishna V, Chatterjee K, Evans RM, Schwabe JW. Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 1999; 13:3209-16. [PMID: 10617570 PMCID: PMC317208 DOI: 10.1101/gad.13.24.3209] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/1999] [Accepted: 11/04/1999] [Indexed: 11/25/2022]
Abstract
The association of transcription corepressors SMRT and N-CoR with retinoid and thyroid receptors results in suppression of basal transcriptional activity. A key event in nuclear receptor signaling is the hormone-dependent release of corepressor and the recruitment of coactivator. Biochemical and structural studies have identified a universal motif in coactivator proteins that mediates association with receptor LBDs. We report here the identity of complementary acting signature motifs in SMRT and N-CoR that are sufficient for receptor binding and ligand-induced release. Interestingly, the motif contains a hydrophobic core (PhixxPhiPhi) similar to that found in NR coactivators. Surprisingly, mutations in the amino acids that directly participate in coactivator binding disrupt the corepressor association. These results indicate a direct mechanistic link between activation and repression via competition for a common or at least partially overlapping binding site.
Collapse
|
research-article |
26 |
332 |