1
|
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429:771-6. [PMID: 15175761 PMCID: PMC2820247 DOI: 10.1038/nature02583] [Citation(s) in RCA: 1557] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 04/16/2004] [Indexed: 12/17/2022]
Abstract
Calorie restriction extends lifespan in organisms ranging from yeast to mammals. In yeast, the SIR2 gene mediates the life-extending effects of calorie restriction. Here we show that the mammalian SIR2 orthologue, Sirt1 (sirtuin 1), activates a critical component of calorie restriction in mammals; that is, fat mobilization in white adipocytes. Upon food withdrawal Sirt1 protein binds to and represses genes controlled by the fat regulator PPAR-gamma (peroxisome proliferator-activated receptor-gamma), including genes mediating fat storage. Sirt1 represses PPAR-gamma by docking with its cofactors NCoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptors). Mobilization of fatty acids from white adipocytes upon fasting is compromised in Sirt1+/- mice. Repression of PPAR-gamma by Sirt1 is also evident in 3T3-L1 adipocytes, where overexpression of Sirt1 attenuates adipogenesis, and RNA interference of Sirt1 enhances it. In differentiated fat cells, upregulation of Sirt1 triggers lipolysis and loss of fat. As a reduction in fat is sufficient to extend murine lifespan, our results provide a possible molecular pathway connecting calorie restriction to life extension in mammals.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1557 |
2
|
Abstract
Transcriptional silencing mediated by nuclear receptors is important in development, differentiation and oncogenesis. The mechanism underlying this effect is unknown but is one key to understanding the molecular basis of hormone action. Here we identify a receptor-interacting factor, SMRT, as a silencing mediator (co-repressor) for retinoid and thyroid-hormone receptors. SMRT is a previously undiscovered protein whose association with receptors both in solution and bound to DNA-response elements is destabilized by ligand. The interaction with mutant receptors correlates with their transcriptional silencing activities. In vivo, SMRT functions as a potent co-repressor, and a GAL4 DNA-binding domain fusion of SMRT behaves as a frank repressor of a GAL4-dependent reporter. Together, our results identify a new class of cofactors which may be important mediators of hormone action.
Collapse
|
|
30 |
1448 |
3
|
Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997; 89:373-80. [PMID: 9150137 DOI: 10.1016/s0092-8674(00)80218-4] [Citation(s) in RCA: 964] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The transcriptional corepressors SMRT and N-CoR function as silencing mediators for retinoid and thyroid hormone receptors. Here we show that SMRT and N-CoR directly interact with mSin3A, a corepressor for the Mad-Max heterodimer and a homolog of the yeast global-transcriptional repressor Sin3p. In addition, we demonstrate that the recently characterized histone deacetylase 1 (HDAC1) interacts with Sin3A and SMRT to form a multisubunit repressor complex. Consistent with this model, we find that HDAC inhibitors synergize with retinoic acid to stimulate hormone-responsive genes and differentiation of myeloid leukemia (HL-60) cells. This work establishes a convergence of repression pathways for bHLH-Zip proteins and nuclear receptors and suggests this type of regulation may be more widely conserved than previously suspected.
Collapse
|
|
28 |
964 |
4
|
Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391:811-4. [PMID: 9486654 DOI: 10.1038/35895] [Citation(s) in RCA: 832] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-liganded retinoic acid receptors (RARs) repress transcription of target genes by recruiting the histone deacetylase complex through a class of silencing mediators termed SMRT or N-CoR. Mutant forms of RARalpha, created by chromosomal translocations with either the PML (for promyelocytic leukaemia) or the PLZF (for promyelocytic leukaemia zinc finger) locus, are oncogenic and result in human acute promyelocytic leukaemia (APL). PML-RARalpha APL patients achieve complete remission following treatments with pharmacological doses of retinoic acids (RA); in contrast, PLZF-RARalpha patients respond very poorly, if at all. Here we report that the association of these two chimaeric receptors with the histone deacetylase (HDAC) complex helps to determine both the development of APL and the ability of patients to respond to retinoids. Consistent with these observations, inhibitors of histone deacetylase dramatically potentiate retinoid-induced differentiation of RA-sensitive, and restore retinoid responses of RA-resistant, APL cell lines. Our findings suggest that oncogenic RARs mediate leukaemogenesis through aberrant chromatin acetylation, and that pharmacological manipulation of nuclear receptor co-factors may be a useful approach in the treatment of human disease.
Collapse
MESH Headings
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/therapeutic use
- Cell Line
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Enzyme Inhibitors/pharmacology
- Escherichia coli
- Hematopoiesis
- Histone Deacetylase Inhibitors
- Histone Deacetylases/metabolism
- Hydroxamic Acids/pharmacology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/enzymology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Nuclear Receptor Co-Repressor 2
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Repressor Proteins/metabolism
- Retinoic Acid Receptor alpha
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sin3 Histone Deacetylase and Corepressor Complex
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/metabolism
- Tretinoin/therapeutic use
- Tumor Suppressor Proteins
Collapse
|
|
27 |
832 |
5
|
Abstract
The nuclear hormone receptors constitute a large family of transcription factors. The binding of the hormonal ligands induces nuclear receptors to assume a configuration that leads to transcriptional activation. Recent studies of retinoic acid and thyroid hormone receptors revealed that, upon ligand binding, a histone deacetylase (HDAC)-containing complex is displaced from the nuclear receptor in exchange for a histone acetyltransferase (HAT)-containing complex. These observations suggest that ligand-dependent recruitment of chromatin-remodeling activity serves as a general mechanism underlying the switch of nuclear receptors from being transcriptionally repressive to being transcriptionally active.
Collapse
|
Review |
26 |
685 |
6
|
Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 2002; 9:45-57. [PMID: 11804585 DOI: 10.1016/s1097-2765(01)00429-4] [Citation(s) in RCA: 588] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Histone deacetylases (HDACs) play a key role in regulating eukaryotic gene expression. The HDAC domain, homologous to the yeast repressors RPD3 and HDA1, is considered necessary and sufficient for enzymatic activity. Here, we show that the catalytic domain of HDAC4 interacts with HDAC3 via the transcriptional corepressor N-CoR/SMRT. All experimental conditions leading to the suppression of HDAC4 binding to SMRT/N-CoR and to HDAC3 result in the loss of enzymatic activity associated with HDAC4. In vitro reconstitution experiments indicate that HDAC4 and other class II HDACs are inactive in the context of the SMRT/N-CoR-HDAC3 complex and do not contribute to its enzymatic activity. These observations indicate that class II HDACs regulate transcription by bridging the enzymatically active SMRT/N-CoR-HDAC3 complex and select transcription factors independently of any intrinsic HDAC activity.
Collapse
|
|
23 |
588 |
7
|
Li J, Wang J, Wang J, Nawaz Z, Liu JM, Qin J, Wong J. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J 2000; 19:4342-50. [PMID: 10944117 PMCID: PMC302030 DOI: 10.1093/emboj/19.16.4342] [Citation(s) in RCA: 501] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2000] [Revised: 06/21/2000] [Accepted: 06/26/2000] [Indexed: 11/13/2022] Open
Abstract
We present evidence that both corepressors SMRT and N-CoR exist in large protein complexes with estimated sizes of 1.5-2 MDa in HeLa nuclear extracts. Using a combination of conventional and immunoaffinity chromatography, we have successfully isolated a SMRT complex and identified histone deacetylase 3 (HDAC3) and transducin (beta)-like I (TBL1), a WD-40 repeat-containing protein, as the subunits of the purified SMRT complex. We show that the HDAC3-containing SMRT and N-CoR complexes can bind to unliganded thyroid hormone receptors (TRs) in vitro. We demonstrate further that in Xenopus oocytes, both SMRT and N-CoR also associate with HDAC3 in large protein complexes and that injection of antibodies against HDAC3 or SMRT/N-CoR led to a partial relief of repression by unliganded TR/RXR. These findings thus establish both SMRT and N-CoR complexes as bona fide HDAC-containing complexes and shed new light on the molecular pathways by which N-CoR and SMRT function in transcriptional repression.
Collapse
|
research-article |
25 |
501 |
8
|
Guenther MG, Barak O, Lazar MA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 2001; 21:6091-101. [PMID: 11509652 PMCID: PMC87326 DOI: 10.1128/mcb.21.18.6091-6101.2001] [Citation(s) in RCA: 497] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Accepted: 06/21/2001] [Indexed: 12/21/2022] Open
Abstract
Repression of gene transcription is linked to regulation of chromatin structure through deacetylation of core histone amino-terminal tails. This action is mediated by histone deacetylases (HDACs) that function within active multiprotein complexes directed to the promoters of repressed genes. In vivo, HDAC3 forms a stable complex with the SMRT corepressor. The SMRT-HDAC3 complex exhibits histone deacetylase activity, whereas recombinant HDAC3 is an inactive enzyme. Here we report that SMRT functions as an activating cofactor of HDAC3. In contrast, SMRT does not activate the class II HDAC4, with which it also interacts. Activation of HDAC3 is mediated by a deacetylase activating domain (DAD) that includes one of two SANT motifs present in SMRT. A cognate DAD is present in the related corepressor N-CoR, which can also activate HDAC3. Mutations in the DAD that abolish HDAC3 interaction also eliminate reconstitution of HDAC activity. Using purified components, the SMRT DAD is shown to be necessary and sufficient for activation of HDAC3. Moreover, the DAD is required both for HDAC3 to function enzymatically and for the major repression function of SMRT. Thus, SMRT and N-CoR do not serve merely as platforms for HDAC recruitment but function as an integral component of an active cellular HDAC3 enzyme.
Collapse
|
research-article |
24 |
497 |
9
|
Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE, McKee DD, Galardi CM, Plunket KD, Nolte RT, Parks DJ, Moore JT, Kliewer SA, Willson TM, Stimmel JB. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 2002; 415:813-7. [PMID: 11845213 DOI: 10.1038/415813a] [Citation(s) in RCA: 485] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repression of gene transcription by nuclear receptors is mediated by interactions with co-repressor proteins such as SMRT and N-CoR, which in turn recruit histone deacetylases to the chromatin. Aberrant interactions between nuclear receptors and co-repressors contribute towards acute promyelocytic leukaemia and thyroid hormone resistance syndrome. The binding of co-repressors to nuclear receptors occurs in the unliganded state, and can be stabilized by antagonists. Here we report the crystal structure of a ternary complex containing the peroxisome proliferator-activated receptor-alpha ligand-binding domain bound to the antagonist GW6471 and a SMRT co-repressor motif. In this structure, the co-repressor motif adopts a three-turn alpha-helix that prevents the carboxy-terminal activation helix (AF-2) of the receptor from assuming the active conformation. Binding of the co-repressor motif is further reinforced by the antagonist, which blocks the AF-2 helix from adopting the active position. Biochemical analyses and structure-based mutagenesis indicate that this mode of co-repressor binding is highly conserved across nuclear receptors.
Collapse
|
|
23 |
485 |
10
|
Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 1999; 402:93-6. [PMID: 10573424 DOI: 10.1038/47069] [Citation(s) in RCA: 475] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
N-CoR and SMRT are transcriptional corepressors that associate with nuclear hormone receptors (NRs) in the absence of ligand. This interaction is the molecular target of differentiation therapy for acute promyelocytic leukaemia, wherein retinoic acid dissociates corepressor from leukaemogenic receptor fusion proteins. Binding of ligand to NRs induces a conformation that attracts coactivator proteins containing an Leu-x-x-Leu-Leu motif (the 'NR box'). Here we show that N-CoR and SMRT contain sequences that are similar to the NR box and are repeated in each of two NR interaction domains. We show that this CoRNR ('corner') box is required for NR interaction, and that CoRNR box peptides specifically block corepressor interaction in vitro and repression in vivo. Sequences flanking the CoRNR box determine NR specificity. Thus, the key feature of hormone action, differential recognition of unliganded and liganded NRs by coactivators and corepressors, is due to very subtle differences between CoRNR and NR boxes. The molecular mechanisms of repression and activation by NRs are thus linked in an unexpected manner.
Collapse
|
|
26 |
475 |
11
|
Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 1998; 12:2269-77. [PMID: 9694793 PMCID: PMC317043 DOI: 10.1101/gad.12.15.2269] [Citation(s) in RCA: 456] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Accepted: 06/17/1998] [Indexed: 11/25/2022]
Abstract
The Delta-Notch signal transduction pathway has widespread roles in animal development in which it appears to control cell fate. CBF1/RBP-Jkappa, the mammalian homolog of Drosophila Suppressor of Hairless [Su(H)], switches from a transcriptional repressor to an activator upon Notch activation. The mechanism whereby Notch regulates this switch is not clear. In this report we show that prior to induction CBF1/RBP-Jkappa interacts with a corepressor complex containing SMRT (silencing mediator of retinoid and thyroid hormone receptors) and the histone deacetylase HDAC-1. This complex binds via the CBF1 repression domain, and mutants defective in repression fail to interact with the complex. Activation by Notch disrupts the formation of the repressor complex, thus establishing a molecular basis for the Notch switch. Finally, ESR-1, a Xenopus gene activated by Notch and X-Su(H), is induced in animal caps treated with TSA, an inhibitor of HDAC-1. The functional role for the SMRT/HDAC-1 complex in CBF1/RBP-Jkappa regulation reveals a novel genetic switch in which extracellular ligands control the status of critical nuclear cofactor complexes.
Collapse
|
research-article |
27 |
456 |
12
|
Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A 1998; 95:2920-5. [PMID: 9501191 PMCID: PMC19670 DOI: 10.1073/pnas.95.6.2920] [Citation(s) in RCA: 453] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several lines of evidence indicate that the nuclear receptor corepressor (N-CoR) complex imposes ligand dependence on transcriptional activation by the retinoic acid receptor and mediates the inhibitory effects of estrogen receptor antagonists, such as tamoxifen, suppressing a constitutive N-terminal, Creb-binding protein/coactivator complex-dependent activation domain. Functional interactions between specific receptors and N-CoR or SMRT corepressor complexes are regulated, positively or negatively, by diverse signal transduction pathways. Decreased levels of N-CoR correlate with the acquisition of tamoxifen resistance in a mouse model system for human breast cancer. Our data suggest that N-CoR- and SMRT-containing complexes act as rate-limiting components in the actions of specific nuclear receptors, and that their actions are regulated by multiple signal transduction pathways.
Collapse
|
research-article |
27 |
453 |
13
|
Smith CL, Nawaz Z, O'Malley BW. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 1997; 11:657-66. [PMID: 9171229 DOI: 10.1210/mend.11.6.0009] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mixed antiestrogens, such as 4-hydroxytamoxifen (4HT), act as either partial agonists or antagonists of estrogen receptor (ER) function in a tissue-, cell-, and promoter-specific manner, suggesting that intracellular factors modulate their ability to regulate transcription. To determine whether coactivators and corepressors have the capacity to modulate the relative agonist/antagonist activity of 4HT, ER-dependent gene expression was measured in the absence or presence of expression vectors for SRC-1 (steroid receptor coactivator-1) or SMRT (silencing mediator of retinoic acid and thyroid hormone receptors). In Hep G2 cells in which 4HT is an agonist, exogenous SRC-1 enhanced estradiol (E2)- and 4HT-stimulated transcription in a dose-dependent manner, while SMRT overexpression strongly reduced basal and 4HT-stimulated gene expression with no effect on E2 activity. These observations were not cell- or promoter-specific inasmuch as similar results were obtained in HeLa cells under conditions in which 4HT is an antagonist. A protein-protein interaction assay indicated that the full-length ER binds to SMRT in vitro. To assess whether relative coactivator and corepressor expression within a given cell could modulate the balance of 4HT agonist/antagonist activity, SRC-1 and SMRT were coexpressed. SMRT overexpression blocked SRC-1 coactivation of 4HT-stimulated gene expression and preferentially inhibited 4HT agonist activity whether or not exogenous SRC-1 was present. The cumulative data in this model system indicate that the relative expression of coactivators and corepressors can modulate 4HT regulation of ER transcriptional activity and suggest they could contribute to the tissue-specific ability of mixed antiestrogens to activate or inhibit ER-mediated gene expression.
Collapse
|
|
28 |
366 |
14
|
Abstract
Skeletal muscle cells have provided an especially auspicious system in which to dissect the roles of chromatin structure in the control of cell growth, differentiation, and development. The MyoD and MEF2 families of transcription factors act cooperatively to regulate the expression of skeletal muscle-specific genes. Recent studies have shown that these two classes of transcription factors associate with histone acetyltransferases and histone deacetylases to control the activation and repression, respectively, of the muscle differentiation program. Signaling systems that regulate the growth and differentiation of muscle cells act, at least in part, by regulating the intracellular localization and associations of these chromatin remodeling enzymes with myogenic transcription factors. We describe the molecules and mechanisms involved in chromatin remodeling during skeletal muscle development.
Collapse
|
Review |
24 |
326 |
15
|
Zhou W, Zhu P, Wang J, Pascual G, Ohgi KA, Lozach J, Glass CK, Rosenfeld MG. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 2008; 29:69-80. [PMID: 18206970 PMCID: PMC2327256 DOI: 10.1016/j.molcel.2007.11.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/01/2007] [Accepted: 11/05/2007] [Indexed: 11/27/2022]
Abstract
Solving the biological roles of covalent histone modifications, including monoubiquitination of histone H2A, and the molecular mechanisms by which these modifications regulate specific transcriptional programs remains a central question for all eukaryotes. Here we report that the N-CoR/HDAC1/3 complex specifically recruits a specific histone H2A ubiquitin ligase, 2A-HUB/hRUL138, to a subset of regulated gene promoters. 2A-HUB catalyzes monoubiquitination of H2A at lysine 119, functioning as a combinatoric component of the repression machinery required for specific gene regulation programs. Thus, 2A-HUB mediates a selective repression of a specific set of chemokine genes in macrophages, critically modulating migratory responses to TLR activation. H2A monoubiquitination acts to prevent FACT recruitment at the transcriptional promoter region, blocking RNA polymerase II release at the early stage of elongation. We suggest that distinct H2A ubiquitinases, each recruited based on interactions with different corepressor complexes, contribute to distinct transcriptional repression programs.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
300 |
16
|
Hong SH, David G, Wong CW, Dejean A, Privalsky ML. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci U S A 1997; 94:9028-33. [PMID: 9256429 PMCID: PMC23013 DOI: 10.1073/pnas.94.17.9028] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retinoic acid receptors (RARs) are hormone-regulated transcription factors that control key aspects of normal differentiation. Aberrant RAR activity may be a causal factor in neoplasia. Human acute promyelocytic leukemia, for example, is tightly linked to chromosomal translocations that fuse novel amino acid sequences (denoted PML, PLZF, and NPM) to the DNA-binding and hormone-binding domains of RARalpha. The resulting chimeric receptors have unique transcriptional properties that may contribute to leukemogenesis. Normal RARs repress gene transcription by associating with ancillary factors denoted corepressors (also referred to as SMRT, N-CoR, TRAC, or RIP13). We report here that the PML-RARalpha and PLZF-RARalpha oncoproteins retain the ability of RARalpha to associate with corepressors, and that this corepressor association correlates with certain aspects of the leukemic phenotype. Unexpectedly, the PLZF moiety itself can interact with SMRT corepressor. This interaction with corepressor is mediated, in part, by a POZ motif within PLZF. Given the presence of POZ motifs in a number of known transcriptional repressors, similar interactions with SMRT may play a role in transcriptional silencing by a variety of both receptor and nonreceptor transcription factors.
Collapse
|
research-article |
28 |
299 |
17
|
Dhordain P, Albagli O, Lin RJ, Ansieau S, Quief S, Leutz A, Kerckaert JP, Evans RM, Leprince D. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci U S A 1997; 94:10762-7. [PMID: 9380707 PMCID: PMC23478 DOI: 10.1073/pnas.94.20.10762] [Citation(s) in RCA: 290] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The LAZ3/BCL6 (lymphoma-associated zinc finger 3/B cell lymphomas 6) gene frequently is altered in non-Hodgkin lymphomas. It encodes a sequence-specific DNA binding transcriptional repressor that contains a conserved N-terminal domain, termed BTB/POZ (bric-à-brac tramtrack broad complex/pox viruses and zinc fingers). Using a yeast two-hybrid screen, we show here that the LAZ3/BCL6 BTB/POZ domain interacts with the SMRT (silencing mediator of retinoid and thyroid receptor) protein. SMRT originally was identified as a corepressor of unliganded retinoic acid and thyroid receptors and forms a repressive complex with a mammalian homolog of the yeast transcriptional repressor SIN3 and the HDAC-1 histone deacetylase. Protein binding assays demonstrate that the LAZ3/BCL6 BTB/POZ domain directly interacts with SMRT in vitro. Furthermore, DNA-bound LAZ3/BCL6 recruits SMRT in vivo, and both overexpressed proteins completely colocalize in nuclear dots. Finally, overexpression of SMRT enhances the LAZ3/BCL6-mediated repression. These results define SMRT as a corepressor of LAZ3/BCL6 and suggest that LAZ3/BCL6 and nuclear hormone receptors repress transcription through shared mechanisms involving SMRT recruitment and histone deacetylation.
Collapse
|
research-article |
28 |
290 |
18
|
Hammer GD, Krylova I, Zhang Y, Darimont BD, Simpson K, Weigel NL, Ingraham HA. Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell 1999; 3:521-6. [PMID: 10230405 DOI: 10.1016/s1097-2765(00)80480-3] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor that serves as an essential regulator of many hormone-induced genes in the vertebrate endocrine system. The apparent absence of a SF-1 ligand prompted speculation that this receptor is regulated by alternative mechanisms involving signal transduction pathways. Here we show that maximal SF-1-mediated transcription and interaction with general nuclear receptor cofactors depends on phosphorylation of a single serine residue (Ser-203) located in a major activation domain (AF-1) of the protein. Moreover, phosphorylation-dependent SF-1 activation is likely mediated by the mitogen-activated protein kinase (MAPK) signaling pathway. We propose that this single modification of SF-1 and the subsequent recruitment of nuclear receptor cofactors couple extracellular signals to steroid and peptide hormone synthesis, thereby maintaining dynamic homeostatic responses in stress and reproduction.
Collapse
|
|
26 |
283 |
19
|
Shi Y, Downes M, Xie W, Kao HY, Ordentlich P, Tsai CC, Hon M, Evans RM. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev 2001; 15:1140-51. [PMID: 11331609 PMCID: PMC312688 DOI: 10.1101/gad.871201] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Accepted: 03/01/2001] [Indexed: 11/25/2022]
Abstract
A yeast two-hybrid screen using the conserved carboxyl terminus of the nuclear receptor corepressor SMRT as a bait led to the isolation of a novel human gene termed SHARP (SMRT/HDAC1 Associated Repressor Protein). SHARP is a potent transcriptional repressor whose repression domain (RD) interacts directly with SMRT and at least five members of the NuRD complex including HDAC1 and HDAC2. In addition, SHARP binds to the steroid receptor RNA coactivator SRA via an intrinsic RNA binding domain and suppresses SRA-potentiated steroid receptor transcription activity. Accordingly, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. Surprisingly, the expression of SHARP is itself steroid inducible, suggesting a simple feedback mechanism for attenuation of the hormonal response.
Collapse
|
research-article |
24 |
265 |
20
|
Huynh KD, Bardwell VJ. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998; 17:2473-84. [PMID: 9824158 DOI: 10.1038/sj.onc.1202197] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virtually all diffuse large cell lymphomas and a significant fraction of follicular lymphomas contain translocations and/or point mutations in the 5' non-coding region of the putative oncogene BCL-6, that are presumed to deregulate its expression. BCL-6 encodes a Cys2-His2 zinc finger transcriptional repressor with a POZ domain at its amino-terminus. The POZ (or BTB) domain, a 120-amino-acid motif, mediates homomeric and, in some proteins, heteromeric POZ-POZ interactions. In addition, the POZ domain is required for transcriptional repression of several proteins, including BCL-6. Using a yeast two-hybrid screen, we identified N-CoR and SMRT as BCL-6 interacting proteins. Both N-CoR and SMRT, which were originally identified as co-repressors for the unliganded nuclear thyroid hormone and retinoic acid receptors, are components of large complexes containing histone deacetylases. We show that the interaction between BCL-6 and these co-repressors is also detected in the more physiologically relevant mammalian two-hybrid assay. The POZ domain is necessary and sufficient for interaction with these co-repressors. BCL-6 and N-CoR co-localize to punctate regions of the nucleus. Furthermore, when BCL-6 is bound to its consensus recognition sequence in vivo, it can interact with N-CoR and SMRT. We find, in vitro, that POZ domains from a variety of other POZ domain-containing proteins, including the transcriptional repressor PLZF, as well as ZID, GAGA and a vaccinia virus protein, SalF17R, also interact with varying affinities with N-CoR and SMRT. We find that BCL-6 POZ domain mutations that disrupt the interaction with N-CoR and SMRT no longer repress transcription. In addition, these mutations no longer self associate suggesting that self interaction is required for interaction with the co-repressors and for repression. More recently N-CoR has also been implicated in transcriptional repression by the Mad/Mxi proteins. Our demonstration that N-CoR and SMRT interact with the POZ domain containing proteins indicates that these co-repressors are likely involved in the mediation of repression by multiple classes of repressors and may explain, in part, how POZ domain containing repressors mediate transcriptional repression.
Collapse
|
|
27 |
260 |
21
|
Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol Cell Biol 2000; 20:3102-15. [PMID: 10757795 PMCID: PMC85605 DOI: 10.1128/mcb.20.9.3102-3115.2000] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human progesterone receptor (PR) exists as two functionally distinct isoforms, hPRA and hPRB. hPRB functions as a transcriptional activator in most cell and promoter contexts, while hPRA is transcriptionally inactive and functions as a strong ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity. Although the precise mechanism of hPRA-mediated transrepression is not fully understood, an inhibitory domain (ID) within human PR, which is necessary for transrepression by hPRA, has been identified. Interestingly, although ID is present within both hPR isoforms, it is functionally active only in the context of hPRA, suggesting that the two receptors adopt distinct conformations within the cell which allow hPRA to interact with a set of cofactors that are different from those recognized by hPRB. In support of this hypothesis, we identified, using phage display technology, hPRA-selective peptides which differentially modulate hPRA and hPRB transcriptional activity. Furthermore, using a combination of in vitro and in vivo methodologies, we demonstrate that the two receptors exhibit different cofactor interactions. Specifically, it was determined that hPRA has a higher affinity for the corepressor SMRT than hPRB and that this interaction is facilitated by ID. Interestingly, inhibition of SMRT activity, by either a dominant negative mutant (C'SMRT) or histone deacetylase inhibitors, reverses hPRA-mediated transrepression but does not convert hPRA to a transcriptional activator. Together, these data indicate that the ability of hPRA to transrepress steroid hormone receptor transcriptional activity and its inability to activate progesterone-responsive promoters occur by distinct mechanisms. To this effect, we observed that hPRA, unlike hPRB, was unable to efficiently recruit the transcriptional coactivators GRIP1 and SRC-1 upon agonist binding. Thus, although both receptors contain sequences within their ligand-binding domains known to be required for coactivator binding, the ability of PR to interact with cofactors in a productive manner is regulated by sequences contained within the amino terminus of the receptors. We propose, therefore, that hPRA is transcriptionally inactive due to its inability to efficiently recruit coactivators. Furthermore, our experiments indicate that hPRA interacts efficiently with the corepressor SMRT and that this activity permits it to function as a transdominant repressor.
Collapse
|
research-article |
25 |
254 |
22
|
Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 1997; 11:693-705. [PMID: 9171233 DOI: 10.1210/mend.11.6.0004] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Steroid receptor antagonists, such as the antiestrogen tamoxifen or the antiprogestin RU486, can have inappropriate agonist-like effects in tissues and tumors. To explain this paradox we postulated that coactivators are inadvertently brought to the promoters of DNA-bound, antagonist-occupied receptors. The human (h) progesterone receptor (PR) hinge-hormone binding domain (H-HBD) was used as bait in a two-hybrid screen of a HeLa cDNA library, in which the yeast cells were treated with RU486. We have isolated and characterized two interesting steroid receptor-interacting proteins that regulate transcription in opposite directions. The first is L7/SPA, a previously described 27-kDa protein containing a basic region leucine zipper domain, having no known nuclear function. When coexpressed with tamoxifen-occupied estrogen receptors (hER) or RU486-occupied hPR or glucocorticoid receptors (hGR), L7/SPA increases the partial agonist activity of the antagonists by 3- to 10-fold, but it has no effect on agonist-mediated transcription. The interaction of L7/SPA with hPR maps to the hinge region, and indeed, the hPR hinge region squelches L7/SPA-dependent induction of antagonist-mediated transcription. Interestingly, pure antagonists that lack partial agonist effects, such as the antiestrogen ICI164,384 or the antiprogestin ZK98299, cannot be up-regulated by L7/SPA. We also isolated, cloned, and sequenced the human homolog (hN-CoR) of the 270-kDa mouse (m) thyroid/retinoic acid receptor corepressor. Binding of hN-CoR maps to the hPR-HBD. mN-CoR, and a related human corepressor, SMRT, suppress RU486 or tamoxifen-mediated partial agonist activity by more than 90%. This suppression is completely squelched by overexpression of the hPR H-HBD. Additionally, both corepressors reverse the antagonist-dependent transcriptional up-regulation produced by L7/SPA. Our data suggest that the direction of transcription by antagonist-occupied steroid receptors can be controlled by the ratio of coactivators to corepressors recruited to the transcription complex by promoter-bound receptors. In normal tissues and in hormone-resistant breast cancers in which the agonist activity of mixed antagonists predominates, steroid receptors may be preferentially bound by coactivators. This suggests a strategy by which such partial agonist activity can be eliminated and by which candidate receptor ligands can be screened for this activity.
Collapse
|
|
28 |
243 |
23
|
Polo JM, Dell'Oso T, Ranuncolo SM, Cerchietti L, Beck D, Da Silva GF, Prive GG, Licht JD, Melnick A. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 2004; 10:1329-35. [PMID: 15531890 DOI: 10.1038/nm1134] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/14/2004] [Indexed: 11/09/2022]
Abstract
The BTB/POZ transcriptional repressor and candidate oncogene BCL6 is frequently misregulated in B-cell lymphomas. The interface through which the BCL6 BTB domain mediates recruitment of the SMRT, NCoR and BCoR corepressors was recently identified. To determine the contribution of this interface to BCL6 transcriptional and biological properties, we generated a peptide that specifically binds BCL6 and blocks corepressor recruitment in vivo. This inhibitor disrupts BCL6-mediated repression and establishment of silenced chromatin, reactivates natural BCL6 target genes, and abrogates BCL6 biological function in B cells. In BCL6-positive lymphoma cells, peptide blockade caused apoptosis and cell cycle arrest. BTB domain peptide inhibitors may constitute a novel therapeutic agent for B-cell lymphomas.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
240 |
24
|
Germain P, Iyer J, Zechel C, Gronemeyer H. Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 2002; 415:187-92. [PMID: 11805839 DOI: 10.1038/415187a] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Crystal structure and co-regulator interaction studies have led to a general mechanistic view of the initial steps of nuclear receptor (NR) action. Agonist-induced transconformation of the ligand-binding domain (holo-LBD) leads to the formation of co-activator complexes, and destabilizes the co-repressor complexes bound to the ligand-free (apo) LBD. However, the molecular basis of retinoid-X receptor (RXR) 'subordination' in heterodimers, an essential mechanism to avoid signalling pathway promiscuity, has remained elusive. RXR, in contrast to its heterodimer partner, cannot autonomously induce transcription on binding of cognate agonists. Here we show that RXR can bind ligand and recruit co-activators as a heterodimer with apo-retinoic-acid receptor (apo-RAR). However, in the usual cellular environment co-repressors do not dissociate and they prohibit co-activator access because co-regulator binding is mutually exclusive. Accordingly, RXR subordination can be overcome in heterodimers that bind co-repressor weakly or in cells with a high co-activator content. We identify two types of RAR antagonists that differentially modulate co-regulator interaction, and we demonstrate that synergy between RAR ligands and RXR agonists results from increased interaction efficiency of a single p160 with the heterodimer, requiring two intact receptor-binding surfaces on the co-activator.
Collapse
|
|
23 |
236 |
25
|
Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang CL, Mayer S, Takahashi S, Licht JD, Privé GG. Mechanism of SMRT Corepressor Recruitment by the BCL6 BTB Domain. Mol Cell 2003; 12:1551-64. [PMID: 14690607 DOI: 10.1016/s1097-2765(03)00454-4] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BCL6 encodes a transcription factor that represses genes necessary for the terminal differentiation of lymphocytes within germinal centers, and the misregulated expression of this factor is strongly implicated in several types of B cell lymphoma. The homodimeric BTB domain of BCL6 (also known as the POZ domain) is required for the repression activity of the protein and interacts directly with the SMRT and N-CoR corepressors that are found within large multiprotein histone deacetylase-containing complexes. We have identified a 17 residue fragment from SMRT that binds to the BCL6 BTB domain, and determined the crystal structure of the complex to 2.2 A. Two SMRT fragments bind symmetrically to the BCL6 BTB homodimer and, in combination with biochemical and in vivo data, the structure provides insight into the basis of transcriptional repression by this critical B cell lymphoma protein.
Collapse
|
|
22 |
233 |