1
|
Knappe S, Flügge UI, Fischer K. Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. PLANT PHYSIOLOGY 2003; 131:1178-90. [PMID: 12644669 PMCID: PMC166879 DOI: 10.1104/pp.016519] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 11/12/2002] [Accepted: 11/12/2002] [Indexed: 05/17/2023]
Abstract
Analysis of the Arabidopsis genome revealed the complete set of plastidic phosphate translocator (pPT) genes. The Arabidopsis genome contains 16 pPT genes: single copies of genes coding for the triose phosphate/phosphate translocator and the xylulose phosphate/phosphate translocator, and two genes coding for each the phosphoenolpyruvate/phosphate translocator and the glucose-6-phosphate/phosphate translocator. A relatively high number of truncated phosphoenolpyruvate/phosphate translocator genes (six) and glucose-6-phosphate/phosphate translocator genes (four) could be detected with almost conserved intron/exon structures as compared with the functional genes. In addition, a variety of PT-homologous (PTh) genes could be identified in Arabidopsis and other organisms. They all belong to the drug/metabolite transporter superfamily showing significant similarities to nucleotide sugar transporters (NSTs). The pPT, PTh, and NST proteins all possess six to eight transmembrane helices. According to the analysis of conserved motifs in these proteins, the PTh proteins can be divided into (a) the lysine (Lys)/arginine group comprising only non-plant proteins, (b) the Lys-valine/alanine/glycine group of Arabidopsis proteins, (c) the Lys/asparagine group of Arabidopsis proteins, and (d) the Lys/threonine group of plant and non-plant proteins. None of these proteins have been characterized so far. The analysis of the putative substrate-binding sites of the pPT, PTh, and NST proteins led to the suggestion that all these proteins share common substrate-binding sites on either side of the membrane each of which contain a conserved Lys residue.
Collapse
|
research-article |
22 |
133 |
2
|
Martinez-Duncker I, Dupré T, Piller V, Piller F, Candelier JJ, Trichet C, Tchernia G, Oriol R, Mollicone R. Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 2004; 105:2671-6. [PMID: 15576474 DOI: 10.1182/blood-2004-09-3509] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a homozygous G>A substitution in the donor splice site of intron 6 (IVS6 + 1G>A) of the cytidine monophosphate (CMP)-sialic acid transporter gene of Lec2 cells as the mutation responsible for their asialo phenotype. These cells were used in complementation studies to test the activity of the 2 CMP-sialic acid transporter cDNA alleles of a patient devoid of sialyl-Le(x) expression on polymorphonuclear cells. No complementation was obtained with either of the 2 patient alleles, whereas full restoration of the sialylated phenotype was obtained in the Lec2 cells transfected with the corresponding human wild-type transcript. The inactivation of one patient allele by a double microdeletion inducing a premature stop codon at position 327 and a splice mutation of the other allele inducing a 130-base pair (bp) deletion and a premature stop codon at position 684 are proposed to be the causal defects of this disease. A 4-base insertion in intron 6 was found in the mother and is proposed to be responsible for the splice mutation. We conclude that this defect is a new type of congenital disorder of glycosylation (CDG) of type IIf affecting the transport of CMP-sialic acid into the Golgi apparatus.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
110 |
3
|
Floyd S, Favre C, Lasorsa FM, Leahy M, Trigiante G, Stroebel P, Marx A, Loughran G, O'Callaghan K, Marobbio CM, Slotboom DJ, Kunji ER, Palmieri F, O'Connor R. The insulin-like growth factor-I-mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth. Mol Biol Cell 2007; 18:3545-55. [PMID: 17596519 PMCID: PMC1951771 DOI: 10.1091/mbc.e06-12-1109] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 06/11/2007] [Accepted: 06/14/2007] [Indexed: 01/19/2023] Open
Abstract
The insulin/insulin-like growth factor (IGF) signaling pathway to mTOR is essential for the survival and growth of normal cells and also contributes to the genesis and progression of cancer. This signaling pathway is linked with regulation of mitochondrial function, but how is incompletely understood. Here we show that IGF-I and insulin induce rapid transcription of the mitochondrial pyrimidine nucleotide carrier PNC1, which shares significant identity with the essential yeast mitochondrial carrier Rim2p. PNC1 expression is dependent on PI-3 kinase and mTOR activity and is higher in transformed fibroblasts, cancer cell lines, and primary prostate cancers than in normal tissues. Overexpression of PNC1 enhances cell size, whereas suppression of PNC1 expression causes reduced cell size and retarded cell cycle progression and proliferation. Cells with reduced PNC1 expression have reduced mitochondrial UTP levels, but while mitochondrial membrane potential and cellular ATP are not altered, cellular ROS levels are increased. Overall the data indicate that PNC1 is a target of the IGF-I/mTOR pathway that is essential for mitochondrial activity in regulating cell growth and proliferation.
Collapse
|
research-article |
18 |
95 |
4
|
Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, Moriyama Y, Ikenaka K, Tanaka KF, Koizumi S. Anti-Depressant Fluoxetine Reveals its Therapeutic Effect Via Astrocytes. EBioMedicine 2018; 32:72-83. [PMID: 29887330 PMCID: PMC6020856 DOI: 10.1016/j.ebiom.2018.05.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
Although psychotropic drugs act on neurons and glial cells, how glia respond, and whether glial responses are involved in therapeutic effects are poorly understood. Here, we show that fluoxetine (FLX), an anti-depressant, mediates its anti-depressive effect by increasing the gliotransmission of ATP. FLX increased ATP exocytosis via vesicular nucleotide transporter (VNUT). FLX-induced anti-depressive behavior was decreased in astrocyte-selective VNUT-knockout mice or when VNUT was deleted in mice, but it was increased when astrocyte-selective VNUT was overexpressed in mice. This suggests that VNUT-dependent astrocytic ATP exocytosis has a critical role in the therapeutic effect of FLX. Released ATP and its metabolite adenosine act on P2Y11 and adenosine A2b receptors expressed by astrocytes, causing an increase in brain-derived neurotrophic factor in astrocytes. These findings suggest that in addition to neurons, FLX acts on astrocytes and mediates its therapeutic effects by increasing ATP gliotransmission.
Anti-depressant FLX acts on astrocytes and increases VNUT-dependent ATP exocytosis. Such astrocytic responses are responsible for the FLX-induced therapeutic effects. Astrocytic ATP and its metabolite adenosine increase BDNF in astrocytes, and reveal the therapeutic effects. Kinoshita et al. demonstrated that astrocytes are a therapeutic target of the antidepressant, fluoxetine (FLX). They found that FLX stimulates VNUT-dependent ATP release from astrocytes leading to a BDNF-mediated anti-depressive effect. This study demonstrated the astrocytic regulation of this anti-depressive effect, which complements the previously described conventional mechanism of FLX. Because the involvement of astrocytes in the pathogenesis of depression is of current interest, this new insight into the role of astrocytes in anti-depressive effects should support the establishment of novel therapeutic strategies for depression.
Collapse
|
Journal Article |
7 |
91 |
5
|
Ashikov A, Routier F, Fuhlrott J, Helmus Y, Wild M, Gerardy-Schahn R, Bakker H. The human solute carrier gene SLC35B4 encodes a bifunctional nucleotide sugar transporter with specificity for UDP-xylose and UDP-N-acetylglucosamine. J Biol Chem 2005; 280:27230-5. [PMID: 15911612 DOI: 10.1074/jbc.m504783200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transport of nucleotide sugars from the cytoplasm into the Golgi apparatus is mediated by specialized type III proteins, the nucleotide sugar transporters (NSTs). Transport assays carried out in vitro with Golgi vesicles from mammalian cells showed specific uptake for a total of eight nucleotide sugars. When this study was started, NSTs with transport activities for all but two nucleotide sugars (UDP-Xyl and UDP-Glc) had been cloned. Aiming at identifying these elusive NSTs, bioinformatic methods were used to display putative NST sequences in the human genome. Ten open reading frames were identified, cloned, and heterologously expressed in yeast. Transport capabilities for UDP-Glc and UDP-Xyl were determined with Golgi vesicles isolated from transformed cells. Although a potential UDP-Glc transporter could not be identified due to the high endogenous transport background, the measurement of UDP-Xyl transport was possible on a zero background. Vesicles from yeast cells expressing the human gene SLC35B4 showed specific uptake of UDP-Xyl, and subsequent testing of other nucleotide sugars revealed a second activity for UDP-GlcNAc. Expression of the epitope-tagged SLC35B4 in mammalian cells demonstrated strict Golgi localization. Because decarboxylation of UDP-GlcA is known to produce UDP-Xyl directly in the endoplasmic reticulum and Golgi lumen, our data demonstrate that two ways exist to deliver UDP-Xyl to the Golgi apparatus.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
91 |
6
|
Haferkamp I, Schmitz-Esser S, Linka N, Urbany C, Collingro A, Wagner M, Horn M, Neuhaus HE. A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. Nature 2005; 432:622-5. [PMID: 15577910 DOI: 10.1038/nature03131] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 10/21/2004] [Indexed: 11/08/2022]
Abstract
Bacteria living within eukaryotic cells can be essential for the survival or reproduction of the host but in other cases are among the most successful pathogens. Environmental Chlamydiae, including strain UWE25, thrive as obligate intracellular symbionts within protozoa; are recently discovered relatives of major bacterial pathogens of humans; and also infect human cells. Genome analysis of UWE25 predicted that this symbiont is unable to synthesize the universal electron carrier nicotinamide adenine dinucleotide (NAD+). Compensation of limited biosynthetic capacity in intracellular bacteria is usually achieved by import of primary metabolites. Here, we report the identification of a candidate transporter protein from UWE25 that is highly specific for import of NAD+ when synthesized heterologously in Escherichia coli. The discovery of this candidate NAD+/ADP exchanger demonstrates that intact NAD+ molecules can be transported through cytoplasmic membranes. This protein acts together with a newly discovered nucleotide transporter and an ATP/ADP translocase, and allows UWE25 to exploit its host cell by means of a sophisticated metabolic parasitism.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
82 |
7
|
Arai Y, Hayashi M, Nishimura M. Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. THE PLANT CELL 2008; 20:3227-40. [PMID: 19073762 PMCID: PMC2630451 DOI: 10.1105/tpc.108.062877] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/05/2008] [Accepted: 11/18/2008] [Indexed: 05/17/2023]
Abstract
We have identified the novel protein Glycine max PEROXISOMAL ADENINE NUCLEOTIDE CARRIER (Gm PNC1) by proteomic analyses of peroxisomal membrane proteins using a blue native/SDS-PAGE technique combined with peptide mass fingerprinting. Gm PNC1, and the Arabidopsis thaliana orthologs At PNC1 and At PNC2, were targeted to peroxisomes. Functional integration of Gm PNC1 and At PNC2 into the cytoplasmic membranes of intact Escherichia coli cells revealed ATP and ADP import activities. The amount of Gm PNC1 in cotyledons increased until 5 d after germination under constant darkness and then decreased very rapidly in response to illumination. We investigated the physiological functions of PNC1 in peroxisomal metabolism by analyzing a transgenic Arabidopsis plant in which At PNC1 and At PNC2 expression was suppressed using RNA interference. The pnc1/2i mutant required sucrose for germination and suppressed the degradation of storage lipids during postgerminative growth. These results suggest that PNC1 contributes to the transport of adenine nucleotides that are consumed by reactions that generate acyl-CoA for peroxisomal fatty acid beta-oxidation during postgerminative growth.
Collapse
|
research-article |
17 |
73 |
8
|
Haferkamp I, Schmitz-Esser S, Wagner M, Neigel N, Horn M, Neuhaus HE. Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Mol Microbiol 2006; 60:1534-45. [PMID: 16796686 PMCID: PMC1513512 DOI: 10.1111/j.1365-2958.2006.05193.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protochlamydia amoebophila UWE25 is related to the Chlamydiaceae comprising major pathogens of humans, but thrives as obligate intracellular symbiont in the protozoan host Acanthamoeba sp. The genome of P. amoebophila encodes five paralogous carrier proteins belonging to the nucleotide transporter (NTT) family. Here we report on three P. amoebophila NTT isoforms, PamNTT2, PamNTT3 and PamNTT5, which possess several conserved amino acid residues known to be critical for nucleotide transport. We demonstrated that these carrier proteins are able to transport nucleotides, although substrate specificities and mode of transport differ in an unexpected manner and are unique among known NTTs. PamNTT2 is a counter exchange transporter exhibiting submillimolar apparent affinities for all four RNA nucleotides, PamNTT3 catalyses an unidirectional proton-coupled transport confined to UTP, whereas PamNTT5 mediates a proton-energized GTP and ATP import. All NTT genes of P. amoebophila are transcribed during intracellular multiplication in acanthamoebae. The biochemical characterization of all five NTT proteins from P. amoebophila in this and previous studies uncovered that these metabolically impaired bacteria are intimately connected with their host cell's metabolism in a surprisingly complex manner.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
68 |
9
|
Leroch M, Kirchberger S, Haferkamp I, Wahl M, Neuhaus HE, Tjaden J. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum. J Biol Chem 2005; 280:17992-8000. [PMID: 15737999 DOI: 10.1074/jbc.m412462200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
68 |
10
|
Linka N, Hurka H, Lang BF, Burger G, Winkler HH, Stamme C, Urbany C, Seil I, Kusch J, Neuhaus HE. Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene 2003; 306:27-35. [PMID: 12657464 DOI: 10.1016/s0378-1119(03)00429-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Current knowledge about the nucleotide metabolism of intracellular bacteria is very limited. Here we report on the identification of nucleotide transport proteins (NTT) of two obligate endoparasites, Caedibacter caryophila and Holospora obtusa, both alpha-proteobacteria, which reside in the vegetative macronucleus of Paramecium caudatum. For comparative studies, we also identified the first nucleotide transporter in chloroplasts of a red alga, i.e. Galdieria sulphuraria, and further homologs in plant chloroplasts. Heterologous expression of the NTT proteins from C. caryophila, H. obtusa, and G. sulphuraria in Escherichia coli demonstrate that the nucleotide influx mediated by these transporters is specific for ATP and ADP. The NTT proteins of C. caryophila and H. obtusa exhibit substantial sequence identity with their counterparts in chloroplasts and intracellular bacterial pathogens of humans, but not with the nucleotide transport system of mitochondria. Comprehensive phylogenetic analyses of bacterial and chloroplast NTT proteins showed that homologs in chloroplasts from plants, and green, red, stramenopile and glaucocystophyte algae are monophyletic. In contrast, the evolutionary relationships of the bacterial counterparts appear highly complex. In the presented phylogeny, NTT proteins of C. caryophila and H. obtusa are only distantly related to one another, although these two taxa are close relatives in 16S rRNA trees. The tree topology indicates that some bacterial NTT paralogs have arisen by gene duplications and others by horizontal transfer.
Collapse
|
|
22 |
67 |
11
|
Kirchberger S, Tjaden J, Neuhaus HE. Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:51-63. [PMID: 18564385 DOI: 10.1111/j.1365-313x.2008.03583.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains a gene (Atbt1) encoding a highly hydrophobic membrane protein of the mitochondrial carrier family, with six predicted transmembrane domains, and showing substantial structural similarity to Brittle1 proteins from maize and potato. We demonstrate that AtBT1 transports AMP, ADP and ATP (but not ADP-glucose), shows a unidirectional mode of transport, and locates to the plastidial membrane and not to the ER as previously proposed. Analysis using an Atbt1 promoter-GUS construct revealed substantial gene expression in rapidly growing root tips and maturating or germinating pollen. Survival of homozygous Atbt1::T-DNA mutants is very limited, and those that do survive produce non-fertile seeds. These observations indicate that no other carrier protein or metabolic mechanism can compensate for the loss of this transporter. Atbt1 RNAi dosage mutants show substantially retarded growth, adenylate levels similar to those of wild-type plants, increased glutamine contents and unchanged starch levels. Interestingly, the growth retardation of Atbt1 RNAi mutant plants was circumvented by adenosine feeding, and was accompanied by increased adenylate levels. Further observations showed the presence of a functional nucleotide salvage pathway in Atbt1 RNAi mutants. In summary, our data indicate that AtBT1 is a plastidial nucleotide uniport carrier protein that is strictly required to export newly synthesized adenylates into the cytosol.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Monophosphate/metabolism
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biological Transport, Active
- DNA, Bacterial/genetics
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Mutagenesis, Insertional
- Nucleotide Transport Proteins/genetics
- Nucleotide Transport Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plastids/genetics
- Plastids/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Plant/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
|
|
17 |
65 |
12
|
Wong NSC, Yap MGS, Wang DIC. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng 2006; 93:1005-16. [PMID: 16432895 DOI: 10.1002/bit.20815] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glycosylation engineering strategies that are currently used to improve quality of recombinant glycoproteins involve the manipulation of glycosyltransferase and/or glycosidase expression. We explored the possibility that over expressing nucleotide sugar transporters, particularly the CMP-sialic acid transporter (CMP-SAT) would improve the sialylation process in Chinese hamster ovary cells (CHO). Our hypothesis was that increasing CMP-SAT in the cells through recombinant means would increase the transport of CMP-sialic acid into the Golgi, resulting in an increased CMP-sialic acid intra-lumenal pool and increased sialylation of the proteins produced. We report the construction of the CMP-SAT expression vector (pcDNA-SAT) using hamster CMP-SAT (GenBank accession number Y12074) and demonstrated its functionality using Lec2 CHO mutant cells. Transfection of pcDNA-SAT into CHO IFN-gamma, a CHO cell line producing recombinant human interferon-gamma (IFN-gamma) resulted in single clones that had 2-20 fold increase in total CMP-SAT expression at the transcript level and 1.8-2.8 fold increase in CMP-SAT at the protein level when compared to untransfected parent CHO IFN-gamma. This resulted in 4%-16% increase in site sialylation of IFN-gamma. There was also a higher proportion of the more sialylated IFN-gamma glycans produced by the clones. We have thus established a novel strategy for sialylation improvement in recombinant protein production that can be considered singly or along with existing glycosylation improvement strategies, including glycosyltransferase over expression and nucleotide sugar feeding. These multiprong approaches can possibly bring us closer toward the goal of maximum and consistent sialylation in glycoprotein production using mammalian cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
65 |
13
|
Blackford AN, Schwab RA, Nieminuszczy J, Deans AJ, West SC, Niedzwiedz W. The DNA translocase activity of FANCM protects stalled replication forks. Hum Mol Genet 2012; 21:2005-16. [PMID: 22279085 DOI: 10.1093/hmg/dds013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
FANCM is the most highly conserved protein within the Fanconi anaemia (FA) tumour suppressor pathway. However, although FANCM contains a helicase domain with translocase activity, this is not required for its role in activating the FA pathway. Instead, we show here that FANCM translocaseactivity is essential for promoting replication fork stability. We demonstrate that cells expressing translocase-defective FANCM show altered global replication dynamics due to increased accumulation of stalled forks that subsequently degenerate into DNA double-strand breaks, leading to ATM activation, CTBP-interacting protein (CTIP)-dependent end resection and homologous recombination repair. Accordingly, abrogation of ATM or CTIP function in FANCM-deficient cells results in decreased cell survival. We also found that FANCM translocase activity protects cells from accumulating 53BP1-OPT domains, which mark lesions resulting from problems arising during replication. Taken together, these data show that FANCM plays an essential role in maintaining chromosomal integrity by promoting the recovery of stalled replication forks and hence preventing tumourigenesis.
Collapse
|
|
13 |
64 |
14
|
Spaan AN, Ijlst L, van Roermund CWT, Wijburg FA, Wanders RJA, Waterham HR. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2005; 86:441-7. [PMID: 16165386 DOI: 10.1016/j.ymgme.2005.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have mutations in these genes, other as yet unidentified genes are predicted to be involved as well. Because all affected mitochondrial flavoproteins in MADD have FAD as a prosthetic group, the underlying defect in these patients may be due to a thus far undisclosed disturbance in the metabolism of FAD. Since a proper mitochondrial flavin balance is maintained by a mitochondrial FAD transporter, a defect of this transporter could also cause an MADD-like phenotype. In yeast, FAD is transported across the mitochondrial inner membrane by the FLX1 protein. An FLX1-mutated Saccharomyces cerevisiae strain exhibits a decreased activity of several mitochondrial flavoproteins. In the present study, we report the identification of the human mitochondrial FAD transporter. Based on sequence similarity to FLX1, we identified two human candidate genes (MFT and N111), which were cloned and characterized by functional expression in an FLX1-mutated yeast strain. Of the two candidate genes, only the previously described mitochondrial folate transporter (MFT) was able to functionally complement the FLX1 mutant. Candidates for mutations in the MFT gene are patients with a clinical suspicion of MADD but without any mutation in the alpha- or beta-subunit of ETF or ETF-DH.
Collapse
|
Comparative Study |
20 |
63 |
15
|
Handford M, Rodriguez-Furlán C, Orellana A. Nucleotide-sugar transporters: structure, function and roles in vivo. Braz J Med Biol Res 2007; 39:1149-58. [PMID: 16981043 DOI: 10.1590/s0100-879x2006000900002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 06/06/2006] [Indexed: 11/21/2022] Open
Abstract
The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.
Collapse
|
Review |
18 |
59 |
16
|
Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM. Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 2007; 44:531-42. [PMID: 17071118 DOI: 10.1016/j.fgb.2006.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
In order to get deeper insights into oxidative degradation of the hydrophobic substrates (HS) triglycerides and alkanes by yeasts, tagged mutants affected in these pathways were generated by random insertion of a mutagenesis cassette MTC into the genome of Yarrowia lipolytica. About 9.600 Ura+ transformants were screened in plate tests for utilization of alkanes (C10, C16), oleic acid and tributyrin. HS degradation mutants were recovered as unable to grow on alkane or on intermediates of the pathway (AlkA-AlkE phenotype classes). To identify the disrupted genes, insertion points of the MTC were sequenced using convergent and divergent PCR. Sequence analysis evidenced both known and new genes required for HS utilization, e.g. for AlkD/E mutants MTC insertion had occurred in genes of thioredoxin reductase, peroxines PEX14 and PEX20, succinate-fumarate carrier SFC1, and isocitrate lyase ICL1. Several mutants were affected in alkane utilization depending on chain length. Mutant Z110 (AlkAb: C10- C16+) was shown to be disrupted for ANT1 encoding a peroxisomal membrane localized adenine nucleotide transporter protein, providing ATP for the activation of short-chain fatty acids by acyl-CoA synthetase II in peroxisomes. Mutants N046 and B095 (AlkAc: C10+ C16-) were disrupted for the ABC transporter encoded by ABC1 gene, thus providing first evidence for its participation in chain length dependent alkane transport processes.
Collapse
|
|
18 |
59 |
17
|
van Roermund CWT, de Jong M, IJlst L, van Marle J, Dansen TB, Wanders RJA, Waterham HR. The peroxisomal lumen in Saccharomyces cerevisiae is alkaline. J Cell Sci 2005; 117:4231-7. [PMID: 15316083 DOI: 10.1242/jcs.01305] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisomes have a central function in lipid metabolism, including the beta-oxidation of various fatty acids. The products and substrates involved in the beta-oxidation have to cross the peroxisomal membrane, which previously has been demonstrated to constitute a closed barrier, implying the existence of specific transport mechanisms. Fatty acid transport across the yeast peroxisomal membrane may follow two routes: one for activated fatty acids, dependent on the peroxisomal ABC half transporter proteins Pxa1p and Pxa2p, and one for free fatty acids, which depends on the peroxisomal acyl-CoA synthetase Faa2p and the ATP transporter Ant1p. A proton gradient across the peroxisomal membrane as part of a proton motive force has been proposed to be required for proper peroxisomal function, but the nature of the peroxisomal pH has remained inconclusive and little is known about its generation. To determine the pH of Sacharomyces cerevisiae peroxisomes in vivo, we have used two different pH-sensitive yellow fluorescent proteins targeted to the peroxisome by virtue of a C-terminal SKL and found the peroxisomal matrix in wild-type cells to be alkaline (pH(per) 8.2), while the cytosolic pH was neutral (pH(cyt) 7.0). No Delta pH was present in ant1 Delta cells, indicating that the peroxisomal pH is regulated in an ATP-dependent way and suggesting that Ant1p activity is directly involved in maintenance of the peroxisomal pH. Moreover, we found a high peroxisomal pH of >8.6 in faa2 Delta cells, while the peroxisomal pH remained 8.1+/-0.2 in pxa2 Delta cells. Our combined results suggest that the proton gradient across the peroxisomal membrane is dependent on Ant1p activity and required for the beta-oxidation of medium chain fatty acids.
Collapse
|
Journal Article |
20 |
59 |
18
|
Caffaro CE, Koshy AA, Liu L, Zeiner GM, Hirschberg CB, Boothroyd JC. A nucleotide sugar transporter involved in glycosylation of the Toxoplasma tissue cyst wall is required for efficient persistence of bradyzoites. PLoS Pathog 2013; 9:e1003331. [PMID: 23658519 PMCID: PMC3642066 DOI: 10.1371/journal.ppat.1003331] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/15/2013] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that transitions from acute infection to a chronic infective state in its intermediate host via encystation, which enables the parasite to evade immune detection and clearance. It is widely accepted that the tissue cyst perimeter is highly and specifically decorated with glycan modifications; however, the role of these modifications in the establishment and persistence of chronic infection has not been investigated. Here we identify and biochemically and biologically characterize a Toxoplasma nucleotide-sugar transporter (TgNST1) that is required for cyst wall glycosylation. Toxoplasma strains deleted for the TgNST1 gene (Δnst1) form cyst-like structures in vitro but no longer interact with lectins, suggesting that Δnst1 strains are deficient in the transport and use of sugars for the biosynthesis of cyst-wall structures. In vivo infection experiments demonstrate that the lack of TgNST1 activity does not detectably impact the acute (tachyzoite) stages of an infection or tropism of the parasite for the brain but that Δnst1 parasites are severely defective in persistence during the chronic stages of the infection. These results demonstrate for the first time the critical role of parasite glycoconjugates in the persistence of Toxoplasma tissue cysts. The Toxoplasma tissue cyst is essential to the persistence of the parasite during the chronic infection of an immunocompetent host. While significant efforts have been made to identify molecular factors that trigger and sustain parasite encystation, the role of the glycoconjugates that decorate the cyst wall has received little attention. Here we identify and characterize a bona fide nucleotide-sugar transporter, TgNST1, whose activity is required for the proper assembly of cyst wall glycoconjugates. We found that deletion of TgNST1 interferes with glycosylation during both the tachyzoite and bradyzoite stages of infection, and we observed substantial defects in the ability of Δnst1 parasites to maintain chronic infection. Surprisingly, Δnst1 parasites were not significantly defective in acute infection of mice, and showed wild type levels and migration rates to the brain. These results highlight the important role of cyst-wall glycosylation in parasite persistence during chronic infection, and suggest that drugs targeting nucleotide-sugar transporters and other enzymes required for glycosylation, perhaps in combination with drugs targeting other pathways, might be useful to prevent the establishment of chronic parasite infection.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
56 |
19
|
Abstract
Sphingolipids are abundant components of eucaryotic membranes, where they perform essential functions. To uncover new roles for sphingolipids, we studied Saccharomyces cerevisiae lcb1-100 cells, which have a temperature-sensitive block in the first step in sphingolipid synthesis. We find that the level of all five species of the sphingoid long chain base intermediates is reduced 2-7-fold in cells grown at a permissive temperature, and the level of complex sphingolipids is reduced 50%. In addition, lcb1-100 cells make no detectable phosphorylated sphingoid bases. After transfer to a restrictive temperature (a heat shock), the level of the major sphingoid bases drops rather than transiently rising, as in wild type cells. These changes affect lcb1-100 cells in multiple ways. Basal uracil transport by Fur4p is reduced 25%, and when cells are heat-shocked, uracil transport activity falls rapidly and is not restored as it is in wild type cells. Restoration requires a functional secretory pathway and synthesis of complex sphingolipids, leading us to hypothesize that Fur4p associates with lipid rafts. The finding that Fur4p is insoluble in TritonX-100 at 4 degrees C and behaves like a raft-associated protein on a density gradient supports this hypothesis. Raft association may be essential for regulating breakdown of Fur4p in response to stresses and other factors that govern uracil transport activity. Our results show that long chain bases do not contribute to the inactivation of Fur4p transport activity after heat stress, but they are essential for some later, but unknown, process that leads to degradation of the protein. Further studies using lcb1-100 cells should reveal new roles of sphingolipids in nutrient uptake and other membrane-dependent processes.
Collapse
|
|
22 |
56 |
20
|
Sesma JI, Esther CR, Kreda SM, Jones L, O'Neal W, Nishihara S, Nicholas RA, Lazarowski ER. Endoplasmic reticulum/golgi nucleotide sugar transporters contribute to the cellular release of UDP-sugar signaling molecules. J Biol Chem 2009; 284:12572-83. [PMID: 19276090 PMCID: PMC2673323 DOI: 10.1074/jbc.m806759200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/21/2009] [Indexed: 12/29/2022] Open
Abstract
Extracellular UDP-sugars promote cellular responses by interacting with widely distributed P2Y(14) receptors, but the mechanisms by which these molecules are released from cells are poorly understood. Given the active role of UDP-sugars in glycosylation reactions within the secretory pathway, we hypothesized that UDP-sugar release includes an exocytotic component. This hypothesis was tested by assessing the contribution of endoplasmic reticulum (ER)/Golgi-resident UDP-GlcNAc transporters to the cellular release of their cognate substrates. A sensitive and highly selective assay for UDP-GlcNAc mass was developed using purified AGX2, an isoenzyme of human UDP-GlcNAc pyrophosphorylase. Robust constitutive release of UDP-GlcNAc was observed in yeast as well as in well differentiated human airway epithelial cells. The human UDP-GlcNAc transporter HFRC1 was overexpressed in human bronchial epithelial cells and was shown to localize in the Golgi and to enhance the surface expression of N-acetylglucosamine-rich glycans. HFRC1-overexpressing cells also displayed increased constitutive and hypotonic stress-stimulated release of UDP-GlcNAc. Yeast mutants lacking Yea4 (the ER UDP-GlcNAc transporter endogenously expressed in Saccharomyces cerevisiae) showed reduced UDP-GlcNAc release. Yea4-deficient cells complemented with Yea4 showed UDP-GlcNAc release rates at levels similar to or higher than wild type cells. Our results illustrate that ER/Golgi lumen constitutes a significant source of extracellular UDP-sugars and therefore plays a critical role in nucleotide sugar-promoted cell signaling.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
53 |
21
|
Capul AA, Barron T, Dobson DE, Turco SJ, Beverley SM. Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major. J Biol Chem 2007; 282:14006-17. [PMID: 17347153 PMCID: PMC2807729 DOI: 10.1074/jbc.m610869200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the protozoan parasite Leishmania, abundant surface and secreted molecules, such as lipophosphoglycan (LPG) and proteophosphoglycans (PPGs), contain extensive galactose in the form of phosphoglycans (PGs) based on (Gal-Man-PO(4)) repeating units. PGs are synthesized in the parasite Golgi apparatus and require transport of cytoplasmic nucleotide sugar precursors to the Golgi lumen by nucleotide sugar transporters (NSTs). GDP-Man transport is mediated by the LPG2 gene product, and here we focused on transporters for UDP-Gal. Data base mining revealed 12 candidate NST genes in the L. major genome, including LPG2 as well as a candidate endoplasmic reticulum UDP-glucose transporter (HUT1L) and several pseudogenes. Gene knock-out studies established that two genes (LPG5A and LPG5B) encoded UDP-Gal NSTs. Although the single lpg5A(-) and lpg5B(-) mutants produced PGs, an lpg5A(-)/5B(-) double mutant was completely deficient. PG synthesis was restored in the lpg5A(-)/5B(-) mutant by heterologous expression of the human UDP-Gal transporter, and heterologous expression of LPG5A and LPG5B rescued the glycosylation defects of the mammalian Lec8 mutant, which is deficient in UDP-Gal uptake. Interestingly, the LPG5A and LPG5B functions overlap but are not equivalent, since the lpg5A(-) mutant showed a partial defect in LPG but not PPG phosphoglycosylation, whereas the lpg5B(-) mutant showed a partial defect in PPG but not LPG phosphoglycosylation. Identification of these key NSTs in Leishmania will facilitate the dissection of glycoconjugate synthesis and its role(s) in the parasite life cycle and further our understanding of NSTs generally.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
53 |
22
|
Sakamoto S, Miyaji T, Hiasa M, Ichikawa R, Uematsu A, Iwatsuki K, Shibata A, Uneyama H, Takayanagi R, Yamamoto A, Omote H, Nomura M, Moriyama Y. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity. Sci Rep 2014; 4:6689. [PMID: 25331291 PMCID: PMC4204045 DOI: 10.1038/srep06689] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/17/2014] [Indexed: 12/04/2022] Open
Abstract
Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.
Collapse
|
research-article |
11 |
52 |
23
|
Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C. Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 2013; 154:675-84. [PMID: 23254199 PMCID: PMC3548185 DOI: 10.1210/en.2012-1818] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Extracellular ATP plays a critical role in regulating insulin secretion in pancreatic β cells. The ATP released from insulin secretory vesicles has been proposed to be a major source of extracellular ATP. Currently, the mechanism by which ATP accumulates into insulin secretory granules remains elusive. In this study, the authors identified the expression of a vesicular nucleotide transporter (VNUT) in mouse pancreas, isolated mouse islets, and MIN6 cells, a mouse β cell line. Immunohistochemistry and immunofluorescence revealed that VNUT colocalized extensively with insulin secretory granules. Functional studies showed that suppressing endogenous VNUT expression in β cells by small hairpin RNA knockdown greatly reduced basal- and glucose-induced ATP release. Importantly, knocking down VNUT expression by VNUT small hairpin RNA in MIN6 cells and isolated mouse islets dramatically suppressed basal insulin release and glucose-stimulated insulin secretion (GSIS). Moreover, acute pharmacologic blockade of VNUT with Evans blue, a VNUT antagonist, greatly attenuated GSIS in a dose-dependent manner. Exogenous ATP treatment effectively reversed the insulin secretion defect induced by both VNUT knockdown and functional inhibition, indicating that VNUT-mediated ATP release is essential for maintaining normal insulin secretion. In contrast to VNUT knockdown, overexpression of VNUT in β cells resulted in excessive ATP release and enhanced basal insulin secretion and GSIS. Elevated insulin secretion induced by VNUT overexpression was reversed by pharmacologic inhibition of P2X but not P2Y purinergic receptors. This study reveals VNUT is expressed in pancreatic β cells and plays an essential and novel role in regulating insulin secretion through vesicular ATP release and extracellular purinergic signaling.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
50 |
24
|
Reyes F, León G, Donoso M, Brandizzí F, Weber APM, Orellana A. The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:423-35. [PMID: 19906043 DOI: 10.1111/j.1365-313x.2009.04066.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Uridine 5'-diphosphate (UDP)-glucose is transported into the lumen of the endoplasmic reticulum (ER), and the Arabidopsis nucleotide sugar transporter AtUTr1 has been proposed to play a role in this process; however, different lines of evidence suggest that another transporter(s) may also be involved. Here we show that AtUTr3 is involved in the transport of UDP-glucose and is located at the ER but also at the Golgi. Insertional mutants in AtUTr3 showed no obvious phenotype. Biochemical analysis in both AtUTr1 and AtUTr3 mutants indicates that uptake of UDP-glucose into the ER is mostly driven by these two transporters. Interestingly, the expression of AtUTr3 is induced by stimuli that trigger the unfolded protein response (UPR), a phenomenon also observed for AtUTr1, suggesting that both AtUTr1 and AtUTr3 are involved in supplying UDP-glucose into the ER lumen when misfolded proteins are accumulated. Disruption of both AtUTr1 and AtUTr3 causes lethality. Genetic analysis showed that the atutr1 atutr3 combination was not transmitted by pollen and was poorly transmitted by the ovules. Cell biology analysis indicates that knocking out both genes leads to abnormalities in both male and female germ line development. These results show that the nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the ER, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana.
Collapse
|
|
15 |
47 |
25
|
Saez-Aguayo S, Rautengarten C, Temple H, Sanhueza D, Ejsmentewicz T, Sandoval-Ibañez O, Doñas D, Parra-Rojas JP, Ebert B, Lehner A, Mollet JC, Dupree P, Scheller HV, Heazlewood JL, Reyes FC, Orellana A. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. THE PLANT CELL 2017; 29:129-143. [PMID: 28062750 PMCID: PMC5304346 DOI: 10.1105/tpc.16.00465] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/14/2016] [Accepted: 12/31/2016] [Indexed: 05/17/2023]
Abstract
UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.
Collapse
|
research-article |
8 |
46 |