1
|
Baer GS, Dermody TS. Mutations in reovirus outer-capsid protein sigma3 selected during persistent infections of L cells confer resistance to protease inhibitor E64. J Virol 1997; 71:4921-8. [PMID: 9188554 PMCID: PMC191722 DOI: 10.1128/jvi.71.7.4921-4928.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mutations selected in reoviruses isolated from persistently infected cultures (PI viruses) affect viral entry into cells. Unlike wild-type (wt) viruses, PI viruses can grow in the presence of ammonium chloride, a weak base that blocks acid-dependent proteolysis of viral outer-capsid proteins in cellular endosomes during viral entry. In this study, we show that E64, an inhibitor of cysteine proteases such as those present in the endocytic compartment, blocks growth of wt reovirus by inhibiting viral disassembly. To determine whether PI viruses can grow in the presence of an inhibitor of endocytic proteases, we compared yields of wt and PI viruses in cells treated with E64. Prototype PI viruses L/C, PI 2A1, and PI 3-1 produced substantially greater yields than wt viruses type 1 Lang (T1L) and type 3 Dearing (T3D) in E64-treated cells. To identify viral genes that segregate with growth of PI viruses in the presence of E64, we tested reassortant viruses isolated from independent crosses of T1L and each of the prototype PI viruses for growth in cells treated with E64. Growth of reassortant viruses in the presence of E64 segregated exclusively with the S4 gene, which encodes viral outer-capsid protein sigma3. These results suggest that mutations in sigma3 protein selected during persistent infection alter its susceptibility to cleavage during viral disassembly. To determine the temporal relationship of acid-dependent and protease-dependent steps in reovirus disassembly, cells were infected with wt strain T1L or T3D, and medium containing either ammonium chloride or E64d, a membrane-permeable form of E64, was added at various times after adsorption. Susceptibility to inhibition by both ammonium chloride and E64 was abolished when either inhibitor was added at times greater than 60 min after adsorption. These findings indicate that acid-dependent and protease-dependent disassembly events occur with similar kinetics early in reovirus replication, which suggests that these events take place within the same compartment of the endocytic pathway.
Collapse
|
research-article |
28 |
103 |
2
|
Rodgers SE, Barton ES, Oberhaus SM, Pike B, Gibson CA, Tyler KL, Dermody TS. Reovirus-induced apoptosis of MDCK cells is not linked to viral yield and is blocked by Bcl-2. J Virol 1997; 71:2540-6. [PMID: 9032397 PMCID: PMC191370 DOI: 10.1128/jvi.71.3.2540-2546.1997] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.
Collapse
|
research-article |
28 |
100 |
3
|
Duncan R. Extensive sequence divergence and phylogenetic relationships between the fusogenic and nonfusogenic orthoreoviruses: a species proposal. Virology 1999; 260:316-28. [PMID: 10417266 DOI: 10.1006/viro.1999.9832] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The orthoreoviruses can be divided into subgroups based on either their restricted host range or the unusual ability of certain members of this group of nonenveloped viruses to induce cell-cell fusion from within. Phylogenetic relationships cannot be inferred based on these biological properties because fusogenic reoviruses are present in both the avian and mammalian subgroups. To address this issue, the complete nucleotide sequences of the three S-class genome segments encoding the major sigma-class core, outer capsid, and nonstructural proteins of four fusogenic reoviruses were determined and used to establish the phylogeny of the orthoreoviruses. The viruses analysed included two strains of avian reovirus and the only known fusogenic mammalian reoviruses, Nelson Bay virus and baboon reovirus. Comparative sequence analysis of these fusogenic reoviruses and the prototypical nonfusogenic mammalian reoviruses indicated a highly diverged genus with both conserved and unique sequence-predicted structural motifs in the major sigma-class proteins. Phylogenetic analysis provided the basis for the first taxonomic subdivision of the orthoreoviruses into species classes based on inferred evolutionary relationships. It is proposed that the orthoreoviruses consist of at least four species that separate into three clades. The nonfusogenic mammalian reovirus species represent a single clade, and the fusogenic reoviruses separate into two distinct clades. The first clade of fusogenic reoviruses contains the avian reovirus- and Nelson Bay virus-type species, with the second clade being occupied by the single baboon reovirus isolate that represents a fourth orthoreovirus species.
Collapse
|
Comparative Study |
26 |
99 |
4
|
Chua KB, Voon K, Yu M, Keniscope C, Abdul Rasid K, Wang LF. Investigation of a potential zoonotic transmission of orthoreovirus associated with acute influenza-like illness in an adult patient. PLoS One 2011; 6:e25434. [PMID: 22022394 PMCID: PMC3192755 DOI: 10.1371/journal.pone.0025434] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/05/2011] [Indexed: 11/30/2022] Open
Abstract
Bats are increasingly being recognized as important reservoir hosts for a large number of viruses, some of them can be highly virulent when they infect human and livestock animals. Among the new bat zoonotic viruses discovered in recent years, several reoviruses (respiratory enteric orphan viruses) were found to be able to cause acute respiratory infections in humans, which included Melaka and Kampar viruses discovered in Malaysia, all of them belong to the genus Orthoreovirus, family Reoviridae. In this report, we describe the isolation of a highly related virus from an adult patient who suffered acute respiratory illness in Malaysia. Although there was no direct evidence of bat origin, epidemiological study indicated the potential exposure of the patient to bats before the onset of disease. The current study further demonstrates that spillover events of different strains of related orthoreoviruses from bats to humans are occurring on a regular basis, which calls for more intensive and systematic surveillances to fully assess the true public health impact of these newly discovered bat-borne zoonotic reoviruses.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
76 |
5
|
Dahle MK, Wessel Ø, Timmerhaus G, Nyman IB, Jørgensen SM, Rimstad E, Krasnov A. Transcriptome analyses of Atlantic salmon (Salmo salar L.) erythrocytes infected with piscine orthoreovirus (PRV). FISH & SHELLFISH IMMUNOLOGY 2015; 45:780-790. [PMID: 26057463 DOI: 10.1016/j.fsi.2015.05.049] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/24/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Heart and skeletal muscle inflammation (HSMI) is a widespread disease of farmed Atlantic salmon (Salmo salar L.) and is associated with piscine orthoreovirus (PRV) infection. PRV is detectable in blood long before development of pathology in cardiac- and skeletal muscle appear, and erythrocytes have been identified as important target cells for the virus. The effects of PRV infection on cellular processes of erythrocytes are not known, but haemolytic anemia or systemic lysis of erythrocytes does not seem to occur, even with high virus loads in erythrocytes. In this study, gene expression profiling performed with high-density oligonucleotide microarray showed that PRV infection of erythrocytes induced a large panel of virus responsive genes. These involved interferon-regulated antiviral genes, as well as genes involved in antigen presentation via MHC class I. PRV infection also stimulated negative immune regulators. In contrast, a large number of immune genes expressed prior to infection were down-regulated. Moderate reduction of expression was also found for many genes encoding components of cytoskeleton and myofiber, proteins involved in metabolism, ion exchange, cell-cell interactions as well as growth factors and regulators of differentiation. PRV did not affect expression of genes involved in heme biosynthesis, gas exchange or erythrocyte-specific markers, but some regulators of erythropoiesis showed decreased transcription levels. These results indicate that PRV infection activates innate antiviral immunity in salmon erythrocytes, but suppresses other gene expression programs. Gene expression profiles suggest major phenotypic changes in PRV infected erythrocytes, but the functional consequences remain to be explored.
Collapse
|
|
10 |
71 |
6
|
Martínez-Costas J, González-López C, Vakharia VN, Benavente J. Possible involvement of the double-stranded RNA-binding core protein sigmaA in the resistance of avian reovirus to interferon. J Virol 2000; 74:1124-31. [PMID: 10627522 PMCID: PMC111446 DOI: 10.1128/jvi.74.3.1124-1131.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1999] [Accepted: 11/08/1999] [Indexed: 01/12/2023] Open
Abstract
Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein sigmaA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein sigmaA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins.
Collapse
|
research-article |
25 |
57 |
7
|
Garver KA, Johnson SC, Polinski MP, Bradshaw JC, Marty GD, Snyman HN, Morrison DB, Richard J. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation. PLoS One 2016; 11:e0146229. [PMID: 26730591 PMCID: PMC4701501 DOI: 10.1371/journal.pone.0146229] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Heart and skeletal muscle inflammation (HSMI) is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV) in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America—a region now considered endemic for PRV but without manifestation of HSMI—in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
56 |
8
|
Baer GS, Ebert DH, Chung CJ, Erickson AH, Dermody TS. Mutant cells selected during persistent reovirus infection do not express mature cathepsin L and do not support reovirus disassembly. J Virol 1999; 73:9532-43. [PMID: 10516062 PMCID: PMC112988 DOI: 10.1128/jvi.73.11.9532-9543.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1999] [Accepted: 08/09/1999] [Indexed: 11/20/2022] Open
Abstract
Persistent reovirus infections of murine L929 cells select cellular mutations that inhibit viral disassembly within the endocytic pathway. Mutant cells support reovirus growth when infection is initiated with infectious subvirion particles (ISVPs), which are intermediates in reovirus disassembly formed following proteolysis of viral outer-capsid proteins. However, mutant cells do not support growth of virions, indicating that these cells have a defect in virion-to-ISVP processing. To better understand mechanisms by which viruses use the endocytic pathway to enter cells, we defined steps in reovirus replication blocked in mutant cells selected during persistent infection. Subcellular localization of reovirus after adsorption to parental and mutant cells was assessed using confocal microscopy and virions conjugated to a fluorescent probe. Parental and mutant cells did not differ in the capacity to internalize virions or distribute them to perinuclear compartments. Using pH-sensitive probes, the intravesicular pH was determined and found to be equivalent in parental and mutant cells. In both cell types, virions localized to acidified intracellular organelles. The capacity of parental and mutant cells to support proteolysis of reovirus virions was assessed by monitoring the appearance of disassembly intermediates following adsorption of radiolabeled viral particles. Within 2 h after adsorption to parental cells, proteolysis of viral outer-capsid proteins was observed, consistent with formation of ISVPs. However, in mutant cells, no proteolysis of viral proteins was detected up to 8 h postadsorption. Since treatment of cells with E64, an inhibitor of cysteine-containing proteases, blocks reovirus disassembly, we used immunoblot analysis to assess the expression of cathepsin L, a lysosomal cysteine protease. In contrast to parental cells, mutant cells did not express the mature, proteolytically active form of the enzyme. The defect in cathepsin L maturation was not associated with mutations in procathepsin L mRNA, was not complemented by procathepsin L overexpression, and did not affect the maturation of cathepsin B, another lysosomal cysteine protease. These findings indicate that persistent reovirus infections select cellular mutations that affect the maturation of cathepsin L and suggest that alterations in the expression of lysosomal proteases can modulate viral cytopathicity.
Collapse
|
research-article |
26 |
47 |
9
|
Duncan R, Chen Z, Walsh S, Wu S. Avian reovirus-induced syncytium formation is independent of infectious progeny virus production and enhances the rate, but is not essential, for virus-induced cytopathology and virus egress. Virology 1996; 224:453-64. [PMID: 8874506 DOI: 10.1006/viro.1996.0552] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nonenveloped avian reoviruses represent a distinct antigenic subgroup of orthoreoviruses. Unlike their mammalian counterparts, the avian reoviruses exhibit the unusual property of inducing rapid and extensive syncytium formation in cell cultures, a cytopathic effect more commonly associated with enveloped virus replication. While the syncytium-inducing capability of avian reovirus has been known for quite some time, the relationship between cell fusion and the virus replication cycle has not been determined. The conservation of the syncytial phenotype among all field isolates of avian reovirus suggests that avian reovirus-induced syncytium formation either reflects an essential step in the virus replication cycle involving intracellular membrane interactions or that cell fusion contributes to enhanced virus replication in infected animals. In order to distinguish between these possibilities, we have examined several aspects of virus replication in the presence of inhibitors of syncytium formation. Inhibitors of intracellular vesicle transport and O-linked glycosylation eliminated or markedly reduced syncytium formation with little effect on the rate or extent of virus macromolecular synthesis and infectious progeny virus production. Moreover, syncytium formation was not required for virus-induced cytopathology or virus egress but did significantly enhance the rate of both of these processes. The data indicate that, unlike the syncytium-inducing enveloped viruses, the membrane interactions and protein trafficking required for avian reovirus-induced syncytium formation do not reflect the sequelae of an essential step in the virus replication cycle. These results suggest that the conservation of the avian reovirus syncytial phenotype may reflect a fortuitous aspect of virus replication which confers advantages associated with the rapid spread of the virus within an infected host.
Collapse
|
|
29 |
46 |
10
|
Shmulevitz M, Epand RF, Epand RM, Duncan R. Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein. J Virol 2004; 78:2808-18. [PMID: 14990700 PMCID: PMC353762 DOI: 10.1128/jvi.78.6.2808-2818.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Accepted: 11/13/2003] [Indexed: 11/20/2022] Open
Abstract
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.
Collapse
|
research-article |
21 |
43 |
11
|
Abstract
A syncytium-inducing reovirus was recently isolated from brain homogenates of a baboon suffering from acute, progressive meningoencephalo myelitis. This baboon reovirus (BRV) was classified as a member of the genus Orthoreovirus, family Reoviridae, on the basis of the characteristic capsid morphology and genome and protein profiles. We have assessed the relationship between BRV and the other syncytium-inducing reoviruses in order to determine whether the emergence of this virus represents a host range or pathogenic alteration in a previously described isolate or the appearance of a novel entity. BRV was compared to representative members of the prototype mammalian reoviruses, avian reoviruses, and Nelson Bay virus on the basis of electropherotype, protein profile, and antigenic similarity as measured by immunoprecipitation using homologous and heterologous antisera. In spite of similarities between the genome and protein profiles of BRV and the other orthoreoviruses, migration-rate polymorphisms indicate that BRV has diverged extensively from the previously described syncytium-inducing orthoreoviruses. Most importantly, the limited epitope conservation suggests that BRV has existed in genetic isolation from other reoviruses for quite some time. We conclude that BRV represents a novel syncytium-inducing mammalian reovirus, which is of particular interest in view of its association with disease in nonhuman primates during natural infections and its unusual syncytial phenotype.
Collapse
|
Comparative Study |
30 |
41 |
12
|
Morin MJ, Warner A, Fields BN. Reovirus infection in rat lungs as a model to study the pathogenesis of viral pneumonia. J Virol 1996; 70:541-8. [PMID: 8523567 PMCID: PMC189842 DOI: 10.1128/jvi.70.1.541-548.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We undertook the present study to elucidate the pathogenesis of the pathologic response to reovirus infection in the lungs and further understand the interactions of reoviruses with pulmonary cells. We found that reoviruses were capable of causing acute pneumonia in 25- to 28-day-old Sprague-Dawley rats following intratracheal inoculation with the reoviruses type 1 Lang (T1L) and type 3 Dearing (T3D). The onset of the pneumonia was rapid, marked by type I alveolar epithelial cell degeneration, type II alveolar epithelial cell hyperplasia, and the infiltration of leukocytes into the alveolar spaces. More neutrophils were recruited into the lungs during T3D infection than during T1L infection, and the serotype difference in the neutrophil response was mapped to the S1 gene of reovirus. Viral replication in the lungs was required for the development of pneumonia due to T1L and T3D infections, and replication occurred in type I alveolar epithelial cells. T1L grew to higher titers in the lungs than did either T3D or type 3 clone 9, and the S1 gene was found to play a role in determining the level of viral replication. We propose that experimental reovirus infection in the lungs can serve as a model for the pathogenesis of viral pneumonia in which pulmonary inflammation results following direct infection of lung epithelial cells.
Collapse
|
research-article |
29 |
38 |
13
|
Hazelton PR, Coombs KM. The reovirus mutant tsA279 has temperature-sensitive lesions in the M2 and L2 genes: the M2 gene is associated with decreased viral protein production and blockade in transmembrane transport. Virology 1995; 207:46-58. [PMID: 7871752 DOI: 10.1006/viro.1995.1050] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Temperature-sensitive mutants provide an ideal means for dissecting viral assembly pathways. The morphological variants produced by and biological characteristics of tsA279, a previously uncharacterized mutant from the Fields' panel of temperature-sensitive mutants of reovirus, were determined under restrictive growth conditions. The mutant showed a distinctive pattern of increased temperature sensitivity as the temperature was raised from 39 degrees to 40 degrees. Wild-type reovirus type 1 Lang and the mutant were crossed to generate reassortants. Efficiency of plating analyses of the reassortants showed that tsA279 has temperature-sensitive lesions in two genes, a mildly temperature-sensitive one in L2, which encodes core spike protein lambda 2, and a stronger, dominant lesion in M2, which encodes major outer capsid protein mu 1. Electron microscopic examination of thin-sectioned tsA279-infected cells showed three ways in which the mutant phenotypes were expressed. The mutant appeared to be blocked in transmembrane transport of virions, a phenotype that mapped to the M2 gene; the mutant produced significantly reduced amounts of identifiable particles; and those particles that were produced appeared to be morphological variants. Immunofluorescent microscopy and immunoprecipitations of tsA279- and various T1L x tsA279 reassortant-infected cells suggested that the reduction in observed progeny was caused by a decreased production of viral proteins at the nonpermissive temperature. This phenotype also mapped to the mutant M2 gene.
Collapse
|
|
30 |
38 |
14
|
Hauge H, Vendramin N, Taksdal T, Olsen AB, Wessel Ø, Mikkelsen SS, Alencar ALF, Olesen NJ, Dahle MK. Infection experiments with novel Piscine orthoreovirus from rainbow trout (Oncorhynchus mykiss) in salmonids. PLoS One 2017; 12:e0180293. [PMID: 28678799 PMCID: PMC5497981 DOI: 10.1371/journal.pone.0180293] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/13/2017] [Indexed: 01/12/2023] Open
Abstract
A new disease in farmed rainbow trout (Onchorhyncus mykiss) was described in Norway in 2013. The disease mainly affected the heart and resembled heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar L.). HSMI is associated with Piscine orthoreovirus (PRV), and a search for a similar virus in the diseased rainbow trout led to detection of a sequence with 85% similarity to PRV. This finding called for a targeted effort to assess the risk the new PRV-variant pose on farmed rainbow trout and Atlantic salmon by studying infection and disease pathogenesis, aiming to provide more diagnostic knowledge. Based on the genetic relationship to PRV, the novel virus is referred to as PRV-Oncorhynchus mykiss (PRV-Om) in contrast to PRV-Salmo salar (PRV-Ss). In experimental trials, intraperitoneally injected PRV-Om was shown to replicate in blood in both salmonid species, but more effectively in rainbow trout. In rainbow trout, the virus levels peaked in blood and heart of cohabitants 6 weeks post challenge, along with increased expression of antiviral genes (Mx and viperin) in the spleen, with 80-100% of the cohabitants infected. Heart inflammation was diagnosed in all cohabitants examined 8 weeks post challenge. In contrast, less than 50% of the Atlantic salmon cohabitants were infected between 8 and 16 weeks post challenge and the antiviral response in these fish was very low. From 12 weeks post challenge and onwards, mild focal myocarditis was demonstrated in a few virus-positive salmon. In conclusion, PRV-Om infects both salmonid species, but faster transmission, more notable antiviral response and more prominent heart pathology were observed in rainbow trout.
Collapse
|
Journal Article |
8 |
37 |
15
|
Chiu M, Armstrong EJL, Jennings V, Foo S, Crespo-Rodriguez E, Bozhanova G, Patin EC, McLaughlin M, Mansfield D, Baker G, Grove L, Pedersen M, Kyula J, Roulstone V, Wilkins A, McDonald F, Harrington K, Melcher A. Combination therapy with oncolytic viruses and immune checkpoint inhibitors. Expert Opin Biol Ther 2020; 20:635-652. [PMID: 32067509 DOI: 10.1080/14712598.2020.1729351] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Introduction: Immune checkpoint inhibitors (ICI) have dramatically improved the outcome for cancer patients across multiple tumor types. However the response rates to ICI monotherapy remain relatively low, in part due to some tumors cultivating an inherently 'cold' immune microenvironment. Oncolytic viruses (OV) have the capability to promote a 'hotter' immune microenvironment which can improve the efficacy of ICI.Areas covered: In this article we conducted a literature search through Pubmed/Medline to identify relevant articles in both the pre-clinical and clinical settings for combining OVs with ICIs and discuss the impact of this approach on treatment as well as changes within the tumor microenvironment. We also explore the future directions of this novel combination strategy.Expert opinion: The imminent results of the Phase 3 study combining pembrolizumab with or without T-Vec injection are eagerly awaited. OV/ICI combinations remain one of the most promising avenues to explore in the success of cancer immunotherapy.
Collapse
|
Review |
5 |
35 |
16
|
Berry JM, Barnabé N, Coombs KM, Butler M. Production of reovirus type-1 and type-3 from Vero cells grown on solid and macroporous microcarriers. Biotechnol Bioeng 1999; 62:12-9. [PMID: 10099508 DOI: 10.1002/(sici)1097-0290(19990105)62:1<12::aid-bit2>3.0.co;2-g] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two strains of reovirus were propagated in Vero cells grown in stationary or microcarriers cultures. Vero cells grown as monolayers on T-flasks or in spinner cultures of Cytodex-1 or Cultispher-G microcarriers could be infected with reovirus serotype 1, strain Lang (T1L), and serotype 3, strain Dearing (T3D). A regime of intermittent low speed stirring at reduced culture volume was critical to ensure viral infection of cells in microcarrier cultures. The virus titre increased by 3 to 4 orders of magnitude over a culture period of 150 h. Titres of the T3D reovirus strain were higher (43%) compared to those of the T1L strain in all cultures. Titres were significantly higher in T-flask and Cytodex-1 microcarrier cultures compared to Cultispher-G cultures with respect to either reovirus type. The viral productivity in the microcarrier cultures was dependent upon the multiplicity of infection (MOI) and the cell/bead ratio at the point of infection. A combination of high MOI (5 pfu/cell) and high cell/bead loading (>400 for Cytodex-1 and >1,000 for Cultispher-G) resulted in a low virus productivity per cell. However, at low MOI (0.5 pfu/cell) the virus productivity per cell was significantly higher at high cell/bead loading in cultures of either microcarrier type. The maximum virus titre (8.5 x 10(9) pfu/mL) was obtained in Cytodex-1 cultures with a low MOI (0.5 pfu/cell) and a cell/bead loading of 1,000. The virus productivity per cell in these cultures was 4,000 pfu/cell. The lower viral yield in the Cultispher-G microcarrier cultures is attributed to a decreased accessibility of the entrapped cells to viral infection. The high viral productivity from the Vero cells in Cytodex-1 cultures suggests that this is a suitable system for the development of a vaccine production system for the Reoviridae viruses.
Collapse
|
Comparative Study |
26 |
34 |
17
|
Dawe S, Corcoran JA, Clancy EK, Salsman J, Duncan R. Unusual topological arrangement of structural motifs in the baboon reovirus fusion-associated small transmembrane protein. J Virol 2005; 79:6216-26. [PMID: 15858006 PMCID: PMC1091723 DOI: 10.1128/jvi.79.10.6216-6226.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Select members of the Reoviridae are the only nonenveloped viruses known to induce syncytium formation. The fusogenic orthoreoviruses accomplish cell-cell fusion through a distinct class of membrane fusion-inducing proteins referred to as the fusion-associated small transmembrane (FAST) proteins. The p15 membrane fusion protein of baboon reovirus is unique among the FAST proteins in that it contains two hydrophobic regions (H1 and H2) recognized as potential transmembrane (TM) domains, suggesting a polytopic topology. However, detailed topological analysis of p15 indicated only the H1 domain is membrane spanning. In the absence of an N-terminal signal peptide, the H1 TM domain serves as a reverse signal-anchor to direct p15 membrane insertion and a bitopic N(exoplasmic)/C(cytoplasmic) topology. This topology results in the translocation of the smallest ectodomain ( approximately 20 residues) of any known viral fusion protein, with the majority of p15 positioned on the cytosolic side of the membrane. Mutagenic analysis indicated the unusual presence of an N-terminal myristic acid on the small p15 ectodomain is essential to the fusion process. Furthermore, the only other hydrophobic region (H2) present in p15, aside from the TM domain, is located within the endodomain. Consequently, the p15 ectodomain is devoid of a fusion peptide motif, a hallmark feature of membrane fusion proteins. The exceedingly small, myristoylated ectodomain and the unusual topological distribution of structural motifs in this nonenveloped virus membrane fusion protein necessitate alternate models of protein-mediated membrane fusion.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
34 |
18
|
Duncan R. The low pH-dependent entry of avian reovirus is accompanied by two specific cleavages of the major outer capsid protein mu 2C. Virology 1996; 219:179-89. [PMID: 8623527 DOI: 10.1006/viro.1996.0235] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Avian reoviruses are capable of inducing rapid and extensive syncytium formation, a process that occurs preferentially under conditions of neutral or alkaline pH. In order to ascertain whether the membrane fusion-inducing capability of avian reovirus confers a pH-independent entry mechanism on the virus, virus entry was investigated using internalization assays and several lysomotropic agents that inhibit endosomal acidification. The ability of avian reovirus to infect cells was severely restricted under all conditions that prevented endosomal acidification. The decreased infection efficiency in the presence of the lysomotropic agents correlated with an inhibition in the proteolytic processing of the major outer capsid protein mu 2C. The importance, with respect to virus infection, of the low pH-dependent cleavage of the avian reovirus mu 2C protein was confirmed by demonstrating that infectious subviral particles, generated by proteolytic processing in vitro, were capable of efficiently infecting cells in the presence of the lysomotropic agents. These results indicated that avian reovirus entry-specific membrane interactions are largely dependent on an endosome-mediated proteolytic processing of the virus particle, suggesting that the syncytium-inducing properly of the sigma 3 protein is not sufficient to promote virus uptake. Furthermore, avian reovirus internalization was associated with two distinct cleavages of the major outer capsid protein mu 2C, unlike the entry-specific processing of the analagous mammalian reovirus major outer capsid protein mu 1C. The mu 2C cleavages occured sequentially and appeared to involve distinct cleavage specificities. Moreover, the second cleavage event was observed to be both virus strain- and cell type-independent, suggesting that the cleavage is both specific and biologically significant.
Collapse
|
|
29 |
30 |
19
|
Middleton JK, Agosto MA, Severson TF, Yin J, Nibert ML. Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. Virology 2007; 361:412-25. [PMID: 17208266 PMCID: PMC1913285 DOI: 10.1016/j.virol.2006.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/31/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The 76-kDa mu1 protein of nonfusogenic mammalian reovirus is a major component of the virion outer capsid, which contains 200 mu1 trimers arranged in an incomplete T=13 lattice. In virions, mu1 is largely covered by a second major outer-capsid protein, sigma3, which limits mu1 conformational mobility. In infectious subvirion particles, from which sigma3 has been removed, mu1 is broadly exposed on the surface and can be promoted to rearrange into a protease-sensitive and hydrophobic conformer, leading to membrane perforation or penetration. In this study, mutants that resisted loss of infectivity upon heat inactivation (heat-resistant mutants) were selected from infectious subvirion particles of reovirus strains Type 1 Lang and Type 3 Dearing. All of the mutants were found to have mutations in mu1, and the heat-resistance phenotype was mapped to mu1 by both recoating and reassortant genetics. Heat-resistant mutants were also resistant to rearrangement to the protease-sensitive conformer of mu1, suggesting that heat inactivation is associated with mu1 rearrangement, consistent with published results. Rate constants of heat inactivation were determined, and the dependence of inactivation rate on temperature was consistent with the Arrhenius relationship. The Gibbs free energy of activation was calculated with reference to transition-state theory and was found to be correlated with the degree of heat resistance in each of the analyzed mutants. The mutations are located in upper portions of the mu1 trimer, near intersubunit contacts either within or between trimers in the viral outer capsid. We propose that the mutants stabilize the outer capsid by interfering with unwinding of the mu1 trimer.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
27 |
20
|
|
Review |
27 |
21 |
21
|
Vendramin N, Kannimuthu D, Olsen AB, Cuenca A, Teige LH, Wessel Ø, Iburg TM, Dahle MK, Rimstad E, Olesen NJ. Piscine orthoreovirus subtype 3 (PRV-3) causes heart inflammation in rainbow trout (Oncorhynchus mykiss). Vet Res 2019; 50:14. [PMID: 30777130 PMCID: PMC6380033 DOI: 10.1186/s13567-019-0632-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022] Open
Abstract
Piscine orthoreovirus (PRV) mediated diseases have emerged throughout salmonid aquaculture. Three PRV subtypes are currently reported as causative agents of or in association with diseases in different salmonid species. PRV-1 causes heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar) and is associated with jaundice syndrome in farmed chinook salmon (Oncorhynchus tshawytscha). PRV-2 causes erythrocytic inclusion body syndrome (EIBS) in coho salmon in Japan. PRV-3 has recently been associated with a disease in rainbow trout (Oncorhynchus mykiss) characterized by anaemia, heart and red muscle pathology; to jaundice syndrome in coho salmon (Oncorhynchus kisutch). In this study, we conducted a 10-week long experimental infection trial in rainbow trout with purified PRV-3 particles to assess the causal relationship between the virus and development of heart inflammation. The monitoring the PRV-3 load in heart and spleen by RT-qPCR shows a progressive increase of viral RNA to a peak, followed by clearance without a measurable change in haematocrit. The development of characteristic cardiac histopathological findings occurred in the late phase of the trial and was associated with increased expression of CD8+, indicating cytotoxic T cell proliferation. The findings indicate that, under these experimental conditions, PRV-3 infection in rainbow trout act similarly to PRV-1 infection in Atlantic salmon with regards to immunological responses and development of heart pathology, but not in the ability to establish a persistent infection.
Collapse
|
research-article |
6 |
21 |
22
|
Theophilos MB, Huang JA, Holmes IH. Avian reovirus sigma C protein contains a putative fusion sequence and induces fusion when expressed in mammalian cells. Virology 1995; 208:678-84. [PMID: 7747439 DOI: 10.1006/viro.1995.1199] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The biological functions of the structural protein sigma C, from avian reovirus strain RAM-1, were investigated in this study. A putative fusion peptide in sigma C was recognized in the deduced amino acid sequence by homology with Pneumovirus fusion sequences, and it was thus postulated that this protein may be involved in the formation of syncytia in cells infected with RAM-1. The sigma C gene was cloned and expressed in mammalian (COS7) cells and the sigma C protein was found to induce syncytia. It was therefore concluded that this protein is indeed responsible for avian reovirus-induced cell fusion. It was also found that sigma C caused condensation of the nuclei within a syncytium, as observed in RAM-1-infected cells. On the basis that this represented condensation of the chromatin, the inhibition of cellular DNA synthesis by the virus and by the sigma C protein was measured. It was found that the virus caused a 50% reduction in cellular DNA synthesis, but the sigma C protein did not inhibit DNA synthesis. Therefore pyknosis of the nuclei and inhibition of cellular DNA synthesis by RAM-1 are likely to be separate events.
Collapse
|
|
30 |
21 |
23
|
|
Review |
27 |
20 |
24
|
Abstract
The members of the Reoviridae family are extremely varied in host ranges and have such diverse natural histories that it is compelling to conclude that their structural asset and replication strategy are uniquely successful in evolutionary terms. It follows that their study addresses fundamental aspects of virology, besides the ones which are customary with important pathogens affecting humans, animals and plants. We deal here with the present taxonomy of the family Reoviridae and of its genera, two of which (Orbivirus and Rotavirus) are treated separately in this issue. Along with a cursory presentation of the remaining genera, we give a concise update of recent findings on the genus Orthoreovirus.
Collapse
|
Review |
31 |
20 |
25
|
Abstract
Reovirus induces IFN, and reovirus is sensitive to the antiviral actions of IFN. The characteristics of the IFN-inducing capacity of reovirus, and the antiviral actions of IFN exerted against reovirus, are dependent upon the specific combination of reovirus strain, host cell line, and IFN type. Responses, both IFN induction and IFN action, differ quantitatively if not qualitatively and are dependent upon the virus, cell, and IFN combination. Stable natural dsRNA, identified as the form of nucleic acid that constitutes the reovirus genome, is centrally involved in the function of at least three IFN-induced enzymes. Protein phosphorylation by PKR, RNA editing by the ADAR adenosine deaminase, and RNA degradation by the 2',5'-oligoA pathway all involve dsRNA either as an effector or as a substrate. Considerable evidence implicates PKR as a particularly important contributor to the IFN-induced antiviral state displayed at the level of the single virus-infected cell, where the translation of viral mRNA is often observed to be inhibited following treatment with IFN-alpha/beta. In the whole animal infected with reovirus, elevated cellular immune responses mediated by enhanced expression of MHC class I and class II antigens induced by IFN-alpha/beta or IFN-gamma may contribute significantly to the overall antiviral response.
Collapse
|
Review |
27 |
20 |