1
|
Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 2000; 405:962-6. [PMID: 10879539 DOI: 10.1038/35016103] [Citation(s) in RCA: 746] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, is the greatest single infectious cause of mortality worldwide, killing roughly two million people annually. Estimates indicate that one-third of the world population is infected with latent M. tuberculosis. The synergy between tuberculosis and the AIDS epidemic, and the surge of multidrug-resistant clinical isolates of M. tuberculosis have reaffirmed tuberculosis as a primary public health threat. However, new antitubercular drugs with new mechanisms of action have not been developed in over thirty years. Here we report a series of compounds containing a nitroimidazopyran nucleus that possess antitubercular activity. After activation by a mechanism dependent on M. tuberculosis F420 cofactor, nitroimidazopyrans inhibited the synthesis of protein and cell wall lipid. In contrast to current antitubercular drugs, nitroimidazopyrans exhibited bactericidal activity against both replicating and static M. tuberculosis. Lead compound PA-824 showed potent bactericidal activity against multidrugresistant M. tuberculosis and promising oral activity in animal infection models. We conclude that nitroimidazopyrans offer the practical qualities of a small molecule with the potential for the treatment of tuberculosis.
Collapse
|
|
25 |
746 |
2
|
Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, Shimokawa Y, Komatsu M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 2006; 3:e466. [PMID: 17132069 PMCID: PMC1664607 DOI: 10.1371/journal.pmed.0030466] [Citation(s) in RCA: 538] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 09/20/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is still a leading cause of death worldwide. Almost a third of the world's population is infected with TB bacilli, and each year approximately 8 million people develop active TB and 2 million die as a result. Today's TB treatment, which dates back to the 1970s, is long and burdensome, requiring at least 6 mo of multidrug chemotherapy. The situation is further compounded by the emergence of multidrug-resistant TB (MDR-TB) and by the infection's lethal synergy with HIV/AIDS. Global health and philanthropic organizations are now pleading for new drug interventions that can address these unmet needs in TB treatment. METHODS AND FINDINGS Here we report OPC-67683, a nitro-dihydro-imidazooxazole derivative that was screened to help combat the unmet needs in TB treatment. The compound is a mycolic acid biosynthesis inhibitor found to be free of mutagenicity and to possess highly potent activity against TB, including MDR-TB, as shown by its exceptionally low minimum inhibitory concentration (MIC) range of 0.006-0.024 microg/ml in vitro and highly effective therapeutic activity at low doses in vivo. Additionally, the results of the post-antibiotic effect of OPC-67683 on intracellular Mycobacterium tuberculosis showed the agent to be highly and dose-dependently active also against intracellular M. tuberculosis H37Rv after a 4-h pulsed exposure, and this activity at a concentration of 0.1 microg/ml was similar to that of the first-line drug rifampicin (RFP) at a concentration of 3 microg/ml. The combination of OPC-67683 with RFP and pyrazinamide (PZA) exhibited a remarkably quicker eradication (by at least 2 mo) of viable TB bacilli in the lung in comparison with the standard regimen consisting of RFP, isoniazid (INH), ethambutol (EB), and PZA. Furthermore, OPC-67683 was not affected by nor did it affect the activity of liver microsome enzymes, suggesting the possibility for OPC-67683 to be used in combination with drugs, including anti-retrovirals, that induce or are metabolized by cytochrome P450 enzymes. CONCLUSIONS We concluded that based on these properties OPC-67683 has the potential to be used as a TB drug to help combat the unmet needs in TB treatment.
Collapse
|
research-article |
19 |
538 |
3
|
Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, Gao M, Awad M, Park SK, Shim TS, Suh GY, Danilovits M, Ogata H, Kurve A, Chang J, Suzuki K, Tupasi T, Koh WJ, Seaworth B, Geiter LJ, Wells CD. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 2012; 366:2151-60. [PMID: 22670901 DOI: 10.1056/nejmoa1112433] [Citation(s) in RCA: 535] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Delamanid (OPC-67683), a nitro-dihydro-imidazooxazole derivative, is a new antituberculosis medication that inhibits mycolic acid synthesis and has shown potent in vitro and in vivo activity against drug-resistant strains of Mycobacterium tuberculosis. METHODS In this randomized, placebo-controlled, multinational clinical trial, we assigned 481 patients (nearly all of whom were negative for the human immunodeficiency virus) with pulmonary multidrug-resistant tuberculosis to receive delamanid, at a dose of 100 mg twice daily (161 patients) or 200 mg twice daily (160 patients), or placebo (160 patients) for 2 months in combination with a background drug regimen developed according to World Health Organization guidelines. Sputum cultures were assessed weekly with the use of both liquid broth and solid medium; sputum-culture conversion was defined as a series of five or more consecutive cultures that were negative for growth of M. tuberculosis. The primary efficacy end point was the proportion of patients with sputum-culture conversion in liquid broth medium at 2 months. RESULTS Among patients who received a background drug regimen plus 100 mg of delamanid twice daily, 45.4% had sputum-culture conversion in liquid broth at 2 months, as compared with 29.6% of patients who received a background drug regimen plus placebo (P=0.008). Likewise, as compared with the placebo group, the group that received the background drug regimen plus 200 mg of delamanid twice daily had a higher proportion of patients with sputum-culture conversion (41.9%, P=0.04). The findings were similar with assessment of sputum-culture conversion in solid medium. Most adverse events were mild to moderate in severity and were evenly distributed across groups. Although no clinical events due to QT prolongation on electrocardiography were observed, QT prolongation was reported significantly more frequently in the groups that received delamanid. CONCLUSIONS Delamanid was associated with an increase in sputum-culture conversion at 2 months among patients with multidrug-resistant tuberculosis. This finding suggests that delamanid could enhance treatment options for multidrug-resistant tuberculosis. (Funded by Otsuka Pharmaceutical Development and Commercialization; ClinicalTrials.gov number, NCT00685360.).
Collapse
|
Multicenter Study |
13 |
535 |
4
|
Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 2005; 294:2581-6. [PMID: 16239637 DOI: 10.1001/jama.294.20.joc50147] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that modulate gene expression. Therapeutic agents targeting 2 distinct families of PPARs (alpha and gamma) have been introduced in the United States. The first dual-PPAR agonist, muraglitazar, was reviewed by a US Food and Drug Administration (FDA) advisory committee on September 9, 2005, resulting in a vote of 8:1 recommending approval for its use in controlling blood glucose levels in patients with type 2 diabetes. OBJECTIVE To evaluate the incidence of death, myocardial infarction (MI), stroke, congestive heart failure (CHF), and transient ischemic attack (TIA) in diabetic patients treated with muraglitazar compared with controls. DESIGN, SETTING, AND PARTICIPANTS The source material for this analysis consisted of documents about phase 2 and 3 clinical trials released under public disclosure laws for the FDA advisory committee meeting. All reviewed trials were prospective, randomized, double-blind, multicenter studies enrolling patients with type 2 diabetes and hemoglobin A(1c) levels between 7% and 10%. Patients (N = 3725) were randomized to receive differing doses of muraglitazar, pioglitazone, or placebo as monotherapy or in combination with metformin or glyburide in trials ranging from 24 to 104 weeks. MAIN OUTCOME MEASURES The primary outcome was the incidence of death, nonfatal MI, or nonfatal stroke. A more comprehensive composite outcome included these events plus the incidence of CHF and TIA. RESULTS In the muraglitazar-treated patients, death, MI, or stroke occurred in 35 of 2374 (1.47%) patients compared with 9 of 1351 (0.67%) patients in the combined placebo and pioglitazone treatment groups (controls) (relative risk [RR], 2.23; 95% confidence interval [CI], 1.07-4.66; P = .03). For the more comprehensive outcome measure that included TIA and CHF, the incidence was 50 of 2374 (2.11%) for muraglitazar compared with 11 of 1351 (0.81%) for controls (RR, 2.62; 95% CI, 1.36-5.05; P = .004). Relative risks for each of the individual components of the composite end point exceeded 2.1 but were not statistically significant. Incidence of adjudicated CHF was 13 of 2374 (0.55%) muraglitazar-treated patients and 1 of 1351 controls (0.07%) (RR, 7.43; 95% CI, 0.97-56.8; P = .053). CONCLUSIONS Compared with placebo or pioglitazone, muraglitazar was associated with an excess incidence of the composite end point of death, major adverse cardiovascular events (MI, stroke, TIA), and CHF. This agent should not be approved to treat diabetes based on laboratory end points until safety is documented in a dedicated cardiovascular events trial.
Collapse
|
|
20 |
400 |
5
|
Prokocimer P, De Anda C, Fang E, Mehra P, Das A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA 2013; 309:559-69. [PMID: 23403680 DOI: 10.1001/jama.2013.241] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Acute bacterial skin and skin structure infections (ABSSSIs), including cellulitis or erysipelas, major cutaneous abscesses, and wound infections, can be life-threatening and may require surgery and hospitalization. Increasingly, ABSSSIs are associated with drug-resistant pathogens, and many antimicrobial agents have adverse effects restricting their use. Tedizolid phosphate is a novel oxazolidinone in development for the treatment of ABSSSIs. OBJECTIVES To establish the noninferiority of tedizolid phosphate vs linezolid in treating ABSSSIs and compare the safety of the 2 agents. DESIGN, SETTING, AND PATIENTS The Efficacy and Safety of 6-day Oral Tedizolid in Acute Bacterial Skin and Skin Structure Infections vs 10-day Oral Linezolid Therapy (ESTABLISH-1) was a phase 3, randomized, double-blind, noninferiority trial that was conducted from August 2010 through September 2011 at 81 study centers in North America, Latin America, and Europe. The intent-to-treat analysis set consisted of data from 667 adults aged 18 years or older with ABSSSIs treated with tedizolid phosphate (n = 332) or linezolid (n = 335). INTERVENTIONS A 200 mg once daily dose of oral tedizolid phosphate for 6 days or 600 mg of oral linezolid every 12 hours for 10 days. MAIN OUTCOME MEASURES The primary efficacy outcome was early clinical response at the 48- to 72-hour assessment (no increase in lesion surface area from baseline and oral temperature of ≤37.6°C, confirmed by a second temperature measurement within 24 hours). A 10% noninferiority margin was predefined. RESULTS In the intent-to-treat analysis set, the early clinical treatment response rates were 79.5% (95% CI, 74.8% to 83.7%) of 332 patients in the tedizolid phosphate group and 79.4% (95% CI, 74.7% to 83.6%) of 335 patients in the linezolid group (a treatment difference of 0.1% [95% CI, -6.1% to 6.2%]). The sustained clinical treatment response rates at the end of treatment (day 11) were 69.3% (95% CI, 64.0% to 74.2%) in the tedizolid phosphate group and 71.9% (95% CI, 66.8% to 76.7%) in the linezolid group (a treatment difference of -2.6% [95% CI, -9.6% to 4.2%]). Results of investigator-assessed clinical treatment success rates at a posttherapy evaluation visit (1-2 weeks after the end-of-treatment visit) were 85.5% (95% CI, 81.3% to 89.1%) in the tedizolid phosphate group and 86.0% (95% CI, 81.8% to 89.5%) in the linezolid group (a treatment difference of -0.5% [95% CI, -5.8% to 4.9%), and were similar for 178 patients with methicillin-resistant Staphylococcus aureus isolated from the primary lesion. CONCLUSIONS AND RELEVANCE Tedizolid phosphate was a statistically noninferior treatment to linezolid in early clinical response at 48 to 72 hours after initiating therapy for an ABSSSI. Tedizolid phosphate may be a reasonable alternative to linezolid for treating ABSSSI. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01170221.
Collapse
|
Clinical Trial, Phase III |
12 |
281 |
6
|
Abstract
Measurement of regional sympathetic activity in lean essential hypertension patients using electrophysiologic (sympathetic nerve recording) and neurochemical (measurement of norepinephrine spillover) techniques demonstrates activation of sympathetic outflow to the heart, kidneys, and skeletal muscle vasculature in younger (< 45 years) patients. The increase in sympathetic activity is a mechanism for both initiating and sustaining the blood pressure elevation. Sympathetic nervous activation also confers specific cardiovascular risk. Stimulation of the sympathetic nerves to the heart promotes the development of left ventricular hypertrophy and contributes to the genesis of ventricular arrhythmias and sudden death. Sympathetically mediated vasoconstriction in skeletal muscle vascular beds reduces the uptake of glucose by muscle, and is thus a basis for insulin resistance and consequent hyperinsulinemia. Understanding the neural pathophysiology of obesity-related hypertension has been more difficult. In normotensive obesity, renal sympathetic tone is doubled, but cardiac norepinephrine spillover (a measure of sympathetic activity in the heart) is only 50% of normal. In obesity-related hypertension, there is a comparable elevation of renal norepinephrine spillover, but without suppression of cardiac sympathetics, as here cardiac norepinephrine spillover is more than double that of normotensive obese and 25% higher than in healthy volunteers. Increased renal sympathetic activity in obesity may be a necessary cause for the development of hypertension (predisposing to hypertension development), but apparently is not a sufficient cause. The discriminating feature of the obese who develop hypertension is the absence of the presumably adaptive suppression of cardiac sympathetic outflow seen in the normotensive obese. The sympathetic nervous system has moved towards center stage in cardiovascular medicine. The importance of sympathetic activation in heart failure progression and mortality and in the generation of ventricular arrhythmias is now well established. In essential hypertension also, although the mechanism differs somewhat between the lean and obese, the sympathetic nervous system is a key factor in the genesis of the disorder, and additionally promotes the development of complications. Through their central inhibition of sympathetic nervous activity, I1 agents such as rilmenidine powerfully reduce sympathetic nervous activity in essential hypertension patients, lowering blood pressure, and carrying the potential for specific cardiovascular protection.
Collapse
|
Review |
25 |
277 |
7
|
Abstract
Treatment of multidrug-resistant Mycobacterium tuberculosis is a challenge. This letter describes the emergence of resistance to new therapies, bedaquiline and delamanid.
Collapse
|
Case Reports |
10 |
252 |
8
|
Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, Kharode YP, Marzolf J, Komm BS, Winneker RC, Frail DE, Henderson RA, Zhu Y, Keith JC. Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology 2003; 144:4241-9. [PMID: 14500559 DOI: 10.1210/en.2003-0550] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The discovery of a second estrogen receptor (ER), called ERbeta, in 1996 sparked intense interest within the scientific community to discover its role in mediating estrogen action. However, despite more than 6 yr of research into the function of this receptor, its physiological role in mediating estrogen action remains unclear and controversial. We have developed a series of highly selective agonists for ERbeta and have characterized their activity in several clinically relevant rodent models of human disease. The activity of one such compound, ERB-041, is reported here. We conclude from these studies that ERbeta does not mediate the bone-sparing activity of estrogen on the rat skeleton and that it does not affect ovulation or ovariectomy-induced weight gain. In addition, these compounds are nonuterotrophic and nonmammotrophic. However, ERB-041 has a dramatic beneficial effect in the HLA-B27 transgenic rat model of inflammatory bowel disease and the Lewis rat adjuvant-induced arthritis model. Daily oral doses as low as 1 mg/kg reverse the chronic diarrhea of HLA-B27 transgenic rats and dramatically improve histological disease scores in the colon. The same dosing regimen in the therapeutic adjuvant-induced arthritis model reduces joint scores from 12 (maximal inflammation) to 1 over a period of 10 d. Synovitis and Mankin (articular cartilage) histological scores are also significantly lowered (50-75%). These data suggest that one function of ERbeta may be to modulate the immune response, and that ERbeta-selective ligands may be therapeutically useful agents to treat chronic intestinal and joint inflammation.
Collapse
|
|
22 |
247 |
9
|
Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE, Pershadsingh HA, Weinberg G, Heneka MT. Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 2002; 51:694-702. [PMID: 12112074 DOI: 10.1002/ana.10206] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of clinical symptoms in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE) involves T-cell activation and migration into the central nervous system, production of glial-derived inflammatory molecules, and demyelination and axonal damage. Ligands of the peroxisome proliferator-activated receptor (PPAR) exert anti-inflammatory effects on glial cells, reduce proliferation and activation of T cells, and induce myelin gene expression. We demonstrate in two models of EAE that orally administered PPARgamma ligand pioglitazone reduced the incidence and severity of monophasic, chronic disease in C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein peptide and of relapsing disease in B10.Pl mice immunized with myelin basic protein. Pioglitazone also reduced clinical signs when it was provided after disease onset. Clinical symptoms were reduced by two other PPARgamma agonists, suggesting a role for PPARgamma activation in protective effects. The suppression of clinical signs was paralleled by decreased lymphocyte infiltration, lessened demyelination, reduced chemokine and cytokine expression, and increased inhibitor of kappa B (IkB) expression in the brain. Pioglitazone also reduced the antigen-dependent interferon-gamma production from EAE-derived T cells. These results suggest that orally administered PPARgamma agonists could provide therapeutic benefit in demyelinating disease.
Collapse
|
|
23 |
240 |
10
|
Skripconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, Kummik T, Cirule A, Leimane V, Kurve A, Levina K, Geiter LJ, Manissero D, Wells CD. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J 2013; 41:1393-400. [PMID: 23018916 PMCID: PMC3669462 DOI: 10.1183/09031936.00125812] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/24/2012] [Indexed: 12/01/2022]
Abstract
Multidrug-resistant and extensively drug-resistant tuberculosis (TB) are associated with worse treatment outcomes for patients, including higher mortality, than for drug-sensitive tuberculosis. Delamanid (OPC-67683) is a novel anti-TB medication with demonstrated activity against multidrug-resistant disease. Patients who participated in the previously reported randomised, placebo-controlled trial of delamanid and the subsequent open-label extension trial were eligible to participate in a 24-month observational study designed to capture treatment outcomes. Treatment outcomes, as assessed by clinicians and defined by the World Health Organization, were categorised as favourable and unfavourable. Delamanid treatment groups were combined for analysis, based on their duration of treatment. In total, for 421 (87.5%) out of 481 patients from the original randomised controlled trial, consent was granted for follow-up assessments. Favourable outcomes were observed in 143 (74.5%) out of 192 patients who received delamanid for ≥6 months, compared to 126 (55%) out of 229 patients who received delamanid for ≤2 months. Mortality was reduced to 1.0% among those receiving long-term delamanid versus short-term/no delamanid (8.3%; p<0.001). Treatment benefit was also seen among patients with extensively drug-resistant TB. This analysis suggests that treatment with delamanid for 6 months in combination with an optimised background regimen can improve outcomes and reduce mortality among patients with both multidrug-resistant and extensively drug-resistant TB.
Collapse
|
Observational Study |
12 |
237 |
11
|
Abstract
Linezolid is an oxazolidinone antibacterial agent that acts by inhibiting the initiation of bacterial protein synthesis. Cross-resistance between linezolid and other inhibitors of protein synthesis has not been demonstrated. Linezolid has a wide spectrum of activity against gram-positive organisms including methicillin-resistant staphylococci, penicillin-resistant pneumococci and vancomycin-resistant Enterococcus faecalis and E. faecium. Anerobes such as Clostridium spp., Peptostreptococcus spp. and Prevotella spp. are also susceptible to linezolid. Linezolid is bacteriostatic against most susceptible organisms but displays bactericidal activity against some strains of pneumococci, Bacteroides fragilis and C. perfringens. In clinical trials involving hospitalised patients with skin/soft tissue infections (predominantly S. aureus), intravenous/oral linezolid (up to 1250 mg mg/day) produced clinical success in >83% of individuals. In patients with community-acquired pneumonia, success rates were >94%. Preliminary clinical data also indicate that twice daily intravenous/oral linezolid 600 mg is as effective as intravenous vancomycin 1 g in the treatment of patients with hospital-acquired pneumonia and in those with infections caused by methicillin-resistant staphylococci. Moreover, linezolid 600 mg twice daily produced >85% clinical/microbiological cure in vancomycin-resistant enterococcal infections. Linezolid is generally well tolerated and gastrointestinal disturbances are the most commonly occurring adverse events. No clinical evidence of adverse reactions as a result of monoamine oxidase inhibition has been reported.
Collapse
|
Review |
25 |
195 |
12
|
Lincoff AM, Tardif JC, Schwartz GG, Nicholls SJ, Rydén L, Neal B, Malmberg K, Wedel H, Buse JB, Henry RR, Weichert A, Cannata R, Svensson A, Volz D, Grobbee DE. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA 2014; 311:1515-25. [PMID: 24682069 DOI: 10.1001/jama.2014.3321] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IMPORTANCE No therapy directed against diabetes has been shown to unequivocally reduce the excess risk of cardiovascular complications. Aleglitazar is a dual agonist of peroxisome proliferator-activated receptors with insulin-sensitizing and glucose-lowering actions and favorable effects on lipid profiles. OBJECTIVE To determine whether the addition of aleglitazar to standard medical therapy reduces cardiovascular morbidity and mortality among patients with type 2 diabetes mellitus and a recent acute coronary syndrome (ACS). DESIGN, SETTING, AND PARTICIPANTS AleCardio was a phase 3, multicenter, randomized, double-blind, placebo-controlled trial conducted in 720 hospitals in 26 countries throughout North America, Latin America, Europe, and Asia-Pacific regions. The enrollment of 7226 patients hospitalized for ACS (myocardial infarction or unstable angina) with type 2 diabetes occurred between February 2010 and May 2012; treatment was planned to continue until patients were followed-up for at least 2.5 years and 950 primary end point events were positively adjudicated. INTERVENTIONS Randomized in a 1:1 ratio to receive aleglitazar 150 µg or placebo daily. MAIN OUTCOMES AND MEASURES The primary efficacy end point was time to cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke. Principal safety end points were hospitalization due to heart failure and changes in renal function. RESULTS The trial was terminated on July 2, 2013, after a median follow-up of 104 weeks, upon recommendation of the data and safety monitoring board due to futility for efficacy at an unplanned interim analysis and increased rates of safety end points. A total of 3.1% of patients were lost to follow-up and 3.2% of patients withdrew consent. The primary end point occurred in 344 patients (9.5%) in the aleglitazar group and 360 patients (10.0%) in the placebo group (hazard ratio, 0.96 [95% CI, 0.83-1.11]; P = .57). Rates of serious adverse events, including heart failure (3.4% for aleglitazar vs 2.8% for placebo, P = .14), gastrointestinal hemorrhages (2.4% for aleglitazar vs 1.7% for placebo, P = .03), and renal dysfunction (7.4% for aleglitazar vs 2.7% for placebo, P < .001) were increased. CONCLUSIONS AND RELEVANCE Among patients with type 2 diabetes and recent ACS, use of aleglitazar did not reduce the risk of cardiovascular outcomes. These findings do not support the use of aleglitazar in this setting with a goal of reducing cardiovascular risk. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01042769.
Collapse
|
Clinical Trial, Phase III |
11 |
188 |
13
|
Kaito C, Akimitsu N, Watanabe H, Sekimizu K. Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb Pathog 2002; 32:183-90. [PMID: 12079408 DOI: 10.1006/mpat.2002.0494] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Silkworm larvae, Bombyx mori, were examined as an animal model of human infection with pathogenic bacteria. When 3 x 10(7) cells of Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa, or Vibrio cholerae were injected into the blood of fifth instar silkworm larvae, over 90% of the larvae died within 2 days, whereas over 90% survived for 5 days after injection of the same amount of Escherichia coli. Growth of S. aureus was observed in larvae blood and tissues. Immunostaining analysis revealed that S. aureus proliferated at the surface of the midgut. Infection of silkworm larvae by methicillin-sensitive S. aureus was cured by ampicillin, oxacillin, and vancomycin, whereas infection by methicillin-resistant S. aureus was not cured by ampicillin or oxacillin, although vancomycin was effective. Disinfectants were not effective because of toxicity against the larvae. Thus, silkworm larvae are useful for evaluating antibiotics for pathogenic bacterial infection in humans.
Collapse
|
Evaluation Study |
23 |
188 |
14
|
Welti J, Sharp A, Brooks N, Yuan W, McNair C, Chand SN, Pal A, Figueiredo I, Riisnaes R, Gurel B, Rekowski J, Bogdan D, West W, Young B, Raja M, Prosser A, Lane J, Thomson S, Worthington J, Onions S, Shannon J, Paoletta S, Brown R, Smyth D, Harbottle GW, Gil VS, Miranda S, Crespo M, Ferreira A, Pereira R, Tunariu N, Carreira S, Neeb AJ, Ning J, Swain A, Taddei D, Schiewer MJ, Knudsen KE, Pegg N, de Bono JS. Targeting the p300/CBP Axis in Lethal Prostate Cancer. Cancer Discov 2021; 11:1118-1137. [PMID: 33431496 PMCID: PMC8102310 DOI: 10.1158/2159-8290.cd-20-0751] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC-regulated gene expression. In AR-SV-driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. SIGNIFICANCE: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies.See related commentary by Rasool et al., p. 1011.This article is highlighted in the In This Issue feature, p. 995.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
183 |
15
|
Cynamon MH, Klemens SP, Sharpe CA, Chase S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother 1999; 43:1189-91. [PMID: 10223934 PMCID: PMC89131 DOI: 10.1128/aac.43.5.1189] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activities of linezolid, eperezolid, and PNU-100480 were evaluated in a murine model of tuberculosis. Approximately 10(7) viable Mycobacterium tuberculosis ATCC 35801 organisms were given intravenously to 4-week-old outbred CD-1 mice. In the first study, treatment was started 1 day postinfection and was given by gavage for 4 weeks. Viable cell counts were determined from homogenates of spleens and lungs. PNU-100480 was as active as isoniazid. Linezolid was somewhat less active than PNU-100480 and isoniazid. Eperezolid had little activity in this model. In the next two studies, treatment was started 1 week postinfection. A dose-response study was performed with PNU-100480 and linezolid (both at 25, 50, and 100 mg/kg of body weight). PNU-100480 was more active than linezolid, and its efficacy increased with an escalation of the dose. Subsequently, the activity of PNU-100480 alone and in combination with rifampin or isoniazid was evaluated and was compared to that of isoniazid-rifampin. The activity of PNU-100480 was similar to that of isoniazid and/or rifampin in the various combinations tested. Further evaluation of these oxazolidinones in the murine test system would be useful prior to the development of clinical studies with humans.
Collapse
|
research-article |
26 |
169 |
16
|
Hayden FG, Turner RB, Gwaltney JM, Chi-Burris K, Gersten M, Hsyu P, Patick AK, Smith GJ, Zalman LS. Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob Agents Chemother 2004; 47:3907-16. [PMID: 14638501 PMCID: PMC296196 DOI: 10.1128/aac.47.12.3907-3916.2003] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinovirus (HRV) infections are usually self-limited but may be associated with serious consequences, particularly in those with asthma and chronic respiratory disease. Effective antiviral agents are needed for preventing and treating HRV illnesses. Ruprintrivir (Agouron Pharmaceuticals, Inc., San Diego, Calif.) selectively inhibits HRV 3C protease and shows potent, broad-spectrum anti-HRV activity in vitro. We conducted three double-blind, placebo-controlled clinical trials in 202 healthy volunteers to assess the activity of ruprintrivir in experimental HRV infection. Subjects were randomized to receive intranasal ruprintrivir (8 mg) or placebo sprays as prophylaxis (two or five times daily [2x/day or 5x/day] for 5 days) starting 6 h before infection or as treatment (5x/day for 4 days) starting 24 h after infection. Ruprintrivir prophylaxis reduced the proportion of subjects with positive viral cultures (for 5x/day dosing groups, 44% for ruprintrivir treatment group versus 70% for placebo treatment group [P=0.03]; for 2x/day dosing groups, 60% for ruprintrivir group versus 92% for placebo group [P=0.004]) and viral titers but did not decrease the frequency of colds. Ruprintrivir treatment reduced the mean total daily symptom score (2.2 for ruprintrivir treatment group and 3.3 for the placebo treatment group [P=0.014]) by 33%. Secondary endpoints, including viral titers, individual symptom scores, and nasal discharge weights, were also reduced by ruprintrivir treatment. Overall, ruprintrivir was well tolerated; blood-tinged mucus and nasal passage irritation were the most common adverse effects reported. Pharmacokinetic analysis of plasma and nasal ruprintrivir concentrations revealed intranasal drug residence with minimal systemic absorption. Results from these studies in experimental rhinoviral infection support continued investigation of intranasal ruprintrivir in the setting of natural HRV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
167 |
17
|
Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, Brown SD, Rubinsztein DC. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 2010; 19:2144-53. [PMID: 20190273 PMCID: PMC2865373 DOI: 10.1093/hmg/ddq093] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/03/2010] [Accepted: 02/25/2010] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a polyglutamine expansion in huntingtin. There are no treatments that are known to slow the neurodegeneration caused by this mutation. Mutant huntingtin causes disease via a toxic gain-of-function mechanism and has the propensity to aggregate and form intraneuronal inclusions. One therapeutic approach for HD is to enhance the degradation of the mutant protein. We have shown that this can be achieved by upregulating autophagy, using the drug rapamycin. In order to find safer ways of inducing autophagy for clinical purposes, we previously screened United States Food and Drug Administration-approved drugs for their autophagy-stimulating potential. This screen suggested that rilmenidine, a well tolerated, safe, centrally acting anti-hypertensive drug, could induce autophagy in cell culture via a pathway that was independent of the mammalian target of rapamycin. Here we have shown that rilmenidine induces autophagy in mice and in primary neuronal culture. Rilmenidine administration attenuated the signs of disease in a HD mouse model and reduced levels of the mutant huntingtin fragment. As rilmenidine has a long safety record and is designed for chronic use, our data suggests that it should be considered for the treatment of HD and related conditions.
Collapse
|
research-article |
15 |
159 |
18
|
Henry RR, Lincoff AM, Mudaliar S, Rabbia M, Chognot C, Herz M. Effect of the dual peroxisome proliferator-activated receptor-alpha/gamma agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet 2009; 374:126-35. [PMID: 19515415 DOI: 10.1016/s0140-6736(09)60870-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite previous reports of potential adverse cardiovascular effects of peroxisome proliferator-activated receptor (PPAR) agonists, the promise for PPAR agonists to positively affect risk of cardiovascular disease in patients with type 2 diabetes is of continued interest. The SYNCHRONY study aimed to establish the glucose-lowering and lipid-modifying effects, and safety profile, of the dual PPAR-alpha and PPAR-gamma agonist aleglitazar. METHODS In this double-blind study, patients with type 2 diabetes (either drug-naive or pre-treated with </=two oral agents) were enrolled from 47 sites in seven countries. After a single-blind, 4-5-week placebo run-in period, 332 patients were randomised double-blind (via an interactive voice-response system) to 16 weeks' treatment with aleglitazar at once-daily doses of 50 mug, 150 mug, 300 mug, or 600 mug, or matching placebo (n=55 in each group), or to open-label pioglitazone 45 mg once daily (n=57) as a reference. The primary efficacy endpoint was the change in glycosylated haemoglobin (HbA(1c)) concentration from baseline to the end of treatment. Patients who received at least one dose of study drug and had at least one evaluable post-baseline HbA(1c) measurement were included in the efficacy analysis. This study is registered with ClinicalTrials.gov, number NCT00388518. FINDINGS The efficacy analysis excluded six patients (n=0 in pioglitazone group; n=1 in each of placebo, 50 mug, 150 mug, and 600 mug aleglitazar groups; and n=2 in 300 mug aleglitazar group). Aleglitazar significantly reduced baseline HbA(1c) versus placebo in a dose-dependent manner, from -0.36% (95% CI 0.00 to -0.70, p=0.048) with 50 mug to -1.35% (-0.99 to -1.70, p<0.0001) with 600 mug. The trend of changes over time suggests that the maximum effect of aleglitazar on HbA(1c) concentration was not yet reached after 16 weeks of treatment. Oedema, haemodilution, and weight gain occurred in a dose-dependent manner. However, at aleglitazar doses less than 300 mug, no patients had congestive heart failure, frequency of oedema was similar to placebo (one case at 50 mug, two at 150 mug, and three with placebo) and less than with pioglitazone (four cases), and bodyweight gain was less than with pioglitazone (0.52 kg at 150 mug vs 1.06 kg). INTERPRETATION The favourable balance in the safety and efficacy profile of aleglitazar represents encouraging short-term clinical data for this agent and provides good evidence to enter phase III investigation. FUNDING F Hoffmann-La Roche AG (Switzerland).
Collapse
|
Clinical Trial, Phase II |
16 |
153 |
19
|
Abstract
The oxazolidinones represent a novel chemical class of synthetic antimicrobial agents. They exhibit an unique mechanism of protein synthesis inhibition and generally display bacteriostatic activity against many important human pathogens, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin- and cephalosporin-resistant Streptococcus pneumoniae. Linezolid, the oxazolidinone which has been selected for clinical development, has near complete oral bioavailability plus favourable pharmacokinetic and toxicity profiles. Results from experimental models of infection and phase II trials reveal linezolid to be highly active in vivo against infections due to many common gram-positive pathogens. The role of linezolid remains to be determined in phase III clinical trials, but it shows great promise as an alternative to glycopeptides and streptogramins to treat serious infections due to resistant gram-positive organisms. Further modification of the oxazolidinone nucleus may yield agents with even greater potency and with novel spectra of activity.
Collapse
|
Review |
25 |
149 |
20
|
Fiévet C, Fruchart JC, Staels B. PPARα and PPARγ dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol 2006; 6:606-14. [PMID: 16973418 DOI: 10.1016/j.coph.2006.06.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 06/20/2006] [Indexed: 11/18/2022]
Abstract
The discovery of the crucial role of peroxisome proliferator-activated receptors (PPARs) as regulators of lipid and glucose metabolism has raised interest in the development of synthetic ligands as potential tools for therapeutic intervention in type 2 diabetes and the metabolic syndrome. PPARalpha activators primarily improve dyslipidemia, whereas thiazolidinediones are potent PPARgamma activators that improve insulin resistance. Important research programs to develop agonists that combine the therapeutic effects of both PPARalpha- and PPARgamma-selective agonists, creating the expectation of greater efficacy and other advantages in the treatment of type 2 diabetes and the metabolic syndrome, have therefore been undertaken. Among these dual PPARalpha/gamma agonists, compounds that belong to the glitazar class are in the most advanced stage of development. However, although they demonstrated beneficial impact over selective PPAR agonists by improving both lipid and glucose homeostasis, safety has been a critical issue and has led to the discontinuation of their development because of adverse toxicity profiles. However, the target-related mechanism responsible for the identified safety issues and the relevance of rodent toxicities to the human situation are unclear. Therefore, future development of dual PPARalpha/gamma agonists with selective PPAR modulator activity appears appropriate and should be feasible.
Collapse
|
|
19 |
145 |
21
|
Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 2016; 90:1585-604. [PMID: 27161440 DOI: 10.1007/s00204-016-1727-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Treatment of tuberculosis (TB) has been a therapeutic challenge because of not only the naturally high resistance level of Mycobacterium tuberculosis to antibiotics but also the newly acquired mutations that confer further resistance. Currently standardized regimens require patients to daily ingest up to four drugs under direct observation of a healthcare worker for a period of 6-9 months. Although they are quite effective in treating drug susceptible TB, these lengthy treatments often lead to patient non-adherence, which catalyzes for the emergence of M. tuberculosis strains that are increasingly resistant to the few available anti-TB drugs. The rapid evolution of M. tuberculosis, from mono-drug-resistant to multiple drug-resistant, extensively drug-resistant and most recently totally drug-resistant strains, is threatening to make TB once again an untreatable disease if new therapeutic options do not soon become available. Here, I discuss the molecular mechanisms by which M. tuberculosis confers its profound resistance to antibiotics. This knowledge may help in developing novel strategies for weakening drug resistance, thus enhancing the potency of available antibiotics against both drug susceptible and resistant M. tuberculosis strains.
Collapse
|
Review |
9 |
139 |
22
|
Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin Infect Dis 2000; 30:146-51. [PMID: 10619743 DOI: 10.1086/313597] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We report our experience with linezolid in an investigation of its use against resistant gram-positive bacterial infections. Fifteen patients who had renal failure (n=6), recent liver transplantation (n=5) or surgery (n=6), cancer (n=3), endocarditis (n=2), or human immunodeficiency virus infection (n=1), along with infections due to vancomycin-resistant enterococcus (VRE), and 2 patients with infections due to methicillin-resistant Staphylococcus species who had adverse reactions to vancomycin were treated with linezolid (600 mg every 12 h for 5-42 days (mean+/-SD, 20.5+/-3.5 days). Abscess drainage or prosthetic device removal was undertaken. Microbiological cure occurred in all 10 patients who completed therapy, and all 7 patients alive at follow-up were free of infection. No deaths were attributable to the index infection. Adverse events associated with linezolid use were mild leukopenia in 1 patient and nausea in another. It appears that administration of linezolid, in conjunction with surgical intervention or device removal, is an effective treatment option for serious resistant gram-positive bacterial infections.
Collapse
|
Clinical Trial |
25 |
128 |
23
|
Zhanel GG, Love R, Adam H, Golden A, Zelenitsky S, Schweizer F, Gorityala B, Lagacé-Wiens PRS, Rubinstein E, Walkty A, Gin AS, Gilmour M, Hoban DJ, Lynch JP, Karlowsky JA. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015; 75:253-70. [PMID: 25673021 DOI: 10.1007/s40265-015-0352-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tedizolid phosphate is a novel oxazolidinone prodrug (converted to the active form tedizolid by phosphatases in vivo) that has been developed and recently approved (June 2014) by the United States FDA for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) caused by susceptible Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Tedizolid is an oxazolidinone, but differs from other oxazolidinones by possessing a modified side chain at the C-5 position of the oxazolidinone nucleus which confers activity against certain linezolid-resistant pathogens and has an optimized C- and D-ring system that improves potency through additional binding site interactions. The mechanism of action of tedizolid is similar to other oxazolidinones and occurs through inhibition of bacterial protein synthesis by binding to 23S ribosomal RNA (rRNA) of the 50S subunit of the ribosome. As with other oxazolidinones, the spontaneous frequency of resistance development to tedizolid is low. Tedizolid is four- to eightfold more potent in vivo than linezolid against all species of staphylococci, enterococci, and streptococci, including drug-resistant phenotypes such as MRSA and vancomycin-resistant enterococci (VRE) and linezolid-resistant phenotypes. Importantly, tedizolid demonstrates activity against linezolid-resistant bacterial strains harboring the horizontally transmissible cfr gene, in the absence of certain ribosomal mutations conferring reduced oxazolidinone susceptibility. With its half-life of approximately 12 h, tedizolid is dosed once daily. It demonstrates linear pharmacokinetics, has a high oral bioavailability of approximately 90 %, and is primarily excreted by the liver as an inactive, non-circulating sulphate conjugate. Tedizolid does not require dosage adjustment in patients with any degree of renal dysfunction or hepatic dysfunction. Studies in animals have demonstrated that the pharmacodynamic parameter most closely associated with the efficacy of tedizolid is fAUC(0-24h)/MIC. In non-neutropenic animals, a dose-response enhancement was observed with tedizolid and lower exposures were required compared to neutropenic cohorts. Two Phase III clinical trials have demonstrated non-inferiority of a once-daily tedizolid 200 mg dose for 6-10 days versus twice-daily 600 mg linezolid for the treatment of ABSSSIs. Both trials used the primary endpoint of early clinical response at 48-72 h; however, one trial compared oral formulations while the other initiated therapy with the parenteral formulation and allowed oral sequential therapy following initial clinical response. Throughout its development, tedizolid has demonstrated that it is well tolerated and animal studies have shown a lower propensity for neuropathies with long-term use than its predecessor linezolid. Data from the two completed Phase III clinical trials demonstrated that the studied tedizolid regimen (200 mg once daily for 6 days) had significantly less impact on hematologic parameters as well as significantly less gastrointestinal treatment-emergent adverse effects (TEAEs) than its comparator linezolid. As with linezolid, tedizolid is a weak, reversible MAO inhibitor; however, a murine head twitch model validated to assess serotonergic activity reported no increase in the number of head twitches with tedizolid even at doses that exceeded the C max in humans by up to 25-fold. Tyramine and pseudoephedrine challenge studies in humans have also reported no meaningful MAO-related interactions with tedizolid. With its enhanced in vitro activity against a broad-spectrum of Gram-positive aerobic bacteria, convenient once-daily dosing, a short 6-day course of therapy, availability of both oral and intravenous routes of administration, and an adverse effect profile that appears to be more favorable than linezolid, tedizolid is an attractive agent for use in both the hospital and community settings. Tedizolid is currently undergoing additional Phase III clinical trials for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilated nosocomial pneumonia (VNP).
Collapse
|
Review |
10 |
127 |
24
|
Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, Edwards RL, Boshoff HI. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc 2011; 133:2076-9. [PMID: 21275374 PMCID: PMC3045749 DOI: 10.1021/ja109665t] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the antimalarial agent artemisinin itself is not active against tuberculosis, conjugation to a mycobacterial-specific siderophore (microbial iron chelator) analogue induces significant and selective antituberculosis activity, including activity against multi- and extensively drug-resistant strains of Mycobacterium tuberculosis. The conjugate also retains potent antimalarial activity. Physicochemical and whole-cell studies indicated that ferric-to-ferrous reduction of the iron complex of the conjugate initiates the expected bactericidal Fenton-type radical chemistry on the artemisinin component. Thus, this "Trojan horse" approach demonstrates that new pathogen-selective therapeutic agents in which the iron component of the delivery vehicle also participates in triggering the antibiotic activity can be generated. The result is that one appropriate conjugate has potent and selective activity against two of the most deadly diseases in the world.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
120 |
25
|
Andes D, Craig WA. Pharmacodynamics of a new cephalosporin, PPI-0903 (TAK-599), active against methicillin-resistant Staphylococcus aureus in murine thigh and lung infection models: identification of an in vivo pharmacokinetic-pharmacodynamic target. Antimicrob Agents Chemother 2006; 50:1376-83. [PMID: 16569855 PMCID: PMC1426945 DOI: 10.1128/aac.50.4.1376-1383.2006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PPI-0903 is a new cephalosporin with broad-spectrum activity, including beta-lactam-resistant Streptococcus pneumoniae and Staphylococcus aureus. We used the neutropenic murine thigh and lung infection models to examine the pharmacodynamic characteristics of PPI-0903. Serum drug levels following four fourfold-escalating single doses of PPI-0903 were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were determined after doses of 1.56, 6.25, 25, and 100 mg/kg of body weight in mice infected with S. pneumoniae ATCC 10813, S. aureus ATCC 29213, or Escherichia coli ATCC 25922. Dose fractionation studies over a 24-h dose range of 0.39 to 1,600 mg/kg were administered every 3, 6, 12, or 24 hours. Nonlinear regression analysis was used to determine which pharmacokinetic-pharmacodynamic (PK-PD) index (total and free 65% drug) best correlated with CFU/thigh at 24 h. Similar to other beta-lactam antibiotics, PPI-0903 produced short to modest in vivo PAEs with either S. pneumoniae or E. coli. The percent time that serum concentrations were above the MIC (%T>MIC) was the PK-PD index that best correlated with efficacy (R2=84 to 88% for the three organisms, compared with 9 to 41% for peak/MIC and 30 to 82% for the area under the concentration-time curve/MIC). In subsequent studies we used the neutropenic murine thigh infection model to determine if the magnitude of the free-drug % T>MIC needed for efficacy of PPI-0903 varied among pathogens (including resistant strains). Mice infected with one of five isolates of S. pneumoniae, four isolates of S. aureus, or four gram-negative bacilli were treated for 24 h with 0.10 to 400 mg/kg of PPI-0903 every 6 h. A sigmoid dose-response model was used to estimate the doses (mg/kg/24 h) required to achieve a net bacteriostatic affect over 24 h and to produce a reduction in the burden of organisms from the start of therapy by 1 and 2 log10 CFU/thigh. MICs ranged from 0.008 to 1 microg/ml.Mean free-drug %T >MICs the standard deviation associated with the static effect endpoint for S. pneumoniae, S. aureus, and gram-negative isolates were 39±9, 26±8, and 47±8, respectively [corrected]. Methicillin and penicillin resistance did not alter the magnitude of free-drug %T>MIC required for efficacy. The free-drug %T>MIC necessary for efficacy was slightly reduced in animals with normal neutrophil counts. Treatment effect was similar in both the thigh and lung infection models. The pharmacodynamic characteristics of PPI-0903 are similar to those of other compounds within the cephalosporin class.
Collapse
|
Journal Article |
19 |
118 |