1
|
Winkler C, Kirik D, Björklund A, Cenci MA. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 2002; 10:165-86. [PMID: 12127155 DOI: 10.1006/nbdi.2002.0499] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In order to assess the role of striatal dopamine (DA) afferents in L-DOPA-induced dyskinesia, we have studied a large series of rats sustaining 2, 3, or 4 unilateral injections of 6-hydroxydopamine (6-OHDA) in the lateral striatum. This type of lesion produced a dose-dependent depletion of DA fibers in the caudate-putamen, which was most pronounced in the lateral aspects of this structure. An additional group of rats was injected with 6-OHDA in the medial forebrain bundle to obtain complete DA denervation on one side of the brain. During a course of chronic L-DOPA treatment, rats with intrastriatal 6-OHDA lesions developed abnormal involuntary movements (AIMs), which mapped onto striatal domains exhibiting at least approximately 90% denervation, as judged by DA transporter autoradiography. The denervated areas showed local upregulation of preproenkephalin and prodynorphin mRNA, and FosB-like immunoreactivity, which were highly correlated with the rats' AIM scores. When compared to completely DA-denervated animals, the rats with intrastriatal 6-OHDA lesions showed an overall lower incidence, lower severity and different topographic distribution of AIMs. The involvement of proximal limb and axial muscles in the abnormal movements was proportional to the spreading of the lesion from lateral towards medial aspects of the caudate-putamen. Locomotive AIMs were only seen in rats with complete lesions, but not in any of the animals with intrastriatal 6-OHDA (which showed > 5% DA fiber sparing in the medial striatum). Intrastriatally 6-OHDA-lesioned rats had a larger therapeutic window for L-DOPA than did rats with complete bundle lesions, since they exhibited an overall lower predisposition to dyskinesia but a similar degree of drug-induced motor improvement in a test of forelimb stepping. Our results are the first to demonstrate that selective and partial DA denervation in the sensorimotor part of the striatum can confer cellular and behavioral supersensitivity to L-DOPA, and that the phenomenology of L-DOPA-induced rat AIMs can be accounted for by the topography of DA denervation within the caudate-putamen.
Collapse
MESH Headings
- Afferent Pathways/physiopathology
- Animals
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Behavior, Animal/drug effects
- Biomarkers
- Brain Mapping
- Caudate Nucleus/pathology
- Corpus Striatum/physiopathology
- Disease Models, Animal
- Dopamine/physiology
- Dose-Response Relationship, Drug
- Dyskinesia, Drug-Induced/etiology
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Enkephalins/biosynthesis
- Enkephalins/genetics
- Female
- Image Processing, Computer-Assisted
- Levodopa/toxicity
- Motor Activity/drug effects
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/genetics
- Oxidopamine/administration & dosage
- Oxidopamine/toxicity
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/metabolism
- Parkinsonian Disorders/physiopathology
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Proto-Oncogene Proteins c-fos
- Putamen/pathology
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Severity of Illness Index
- Substantia Nigra/physiopathology
- Sympathectomy, Chemical
- Transcription Factors
Collapse
|
Comparative Study |
23 |
339 |
2
|
Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S, Loughlin S. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A 2000; 97:14686-91. [PMID: 11121069 PMCID: PMC18979 DOI: 10.1073/pnas.97.26.14686] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of an in vivo procedure for the induction of massive proliferation, directed migration, and neurodifferentiation (PMD) in the damaged adult central nervous system would hold promise for the treatment of human neurodegenerative disorders such as Parkinson's disease. We investigated the in vivo induction of PMD in the forebrain of the adult rat by using a combination of 6-hydroxydopamine lesion of the substantia nigra dopaminergic neurons and infusions of transforming growth factor alpha (TGFalpha) into forebrain structures. Only in animals with both lesion and infusion of TGFalpha was there a rapid proliferation of forebrain stem cells followed by a timed migration of a ridge of neuronal and glial progenitors directed toward the region of the TGFalpha infusion site. Subsequently, increasing numbers of differentiated neurons were observed in the striatum. In behavioral experiments, there was a significant reduction of apomorphine-induced rotations in animals receiving the TGFalpha infusions. These results show that the brain contains stem cells capable of PMD in response to an exogenously administered growth factor. This finding has significant implications with respect to the development of treatments for both acute neural trauma and neurodegenerative diseases.
Collapse
|
research-article |
25 |
287 |
3
|
Hassani OK, Mouroux M, Féger J. Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 1996; 72:105-15. [PMID: 8730710 DOI: 10.1016/0306-4522(95)00535-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Electrophysiological records of unit activity were used to compare the effects of excitotoxic pallidal lesions and 6-hydroxydopamine-induced damage to the midbrain dopaminergic neurons on the discharge rates and patterns of the subthalamic neurons. Removal of the pallidal input induced a slight, but statistically significant, increase (19.5%) in the discharge rate and no change in the firing pattern when compared to control animals. The rats with a dopaminergic lesion showed greater increase (105.7%) while the firing pattern activity of the subthalamic neurons became more irregular, with burst. These results indicate that the increased activity of the subthalamic neurons following a midbrain dopaminergic lesion cannot be due solely to inhibition-disinhibition involving the striato-pallido-subthalamic pathway and induced by the striatal dopaminergic depletion.
Collapse
|
|
29 |
266 |
4
|
Meshul CK, Emre N, Nakamura CM, Allen C, Donohue MK, Buckman JF. Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 1999; 88:1-16. [PMID: 10051185 DOI: 10.1016/s0306-4522(98)00189-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The goal of this study was to investigate changes in glutamatergic synapses in the striatum of rats at two different time-points following a unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. One month following this lesion of the nigrostriatal pathway, there was an increase (70%) in the mean percentage of asymmetrical synapses within the dorsolateral striatum containing a discontinuous, or perforated, postsynaptic density, possibly suggesting an increase in glutamatergic activity. This was correlated, in the same brain region, with a decrease (44%) in the density of glutamate immunoreactivity within nerve terminals associated with all asymmetrical synapses and also with those terminals associated with a perforated postsynaptic density. These morphological changes were consistent with an increase (>two-fold) in the basal extracellular level of striatal glutamate, as measured by in vivo microdialysis. The density of GABA immunolabeling within symmetrical nerve terminals was increased (25%) at this one month time-period. Dopamine levels within the lesioned striatum were >99% depleted. However, at three months, while an increase in the mean percentage of striatal perforated synapses was maintained, a significant increase (50%) in the density of striatal nerve terminal glutamate immunolabeling within all asymmetrical synapses and those associated with a perforated postsynaptic density was observed. This was correlated with a small, but significant, decrease (32%) in the basal extracellular level of striatal glutamate. The density of GABA immunolabeling within nerve terminals associated with a symmetrical contact remained elevated at this three month time-period, while striatal dopamine levels remained depleted. While the density of nerve terminal GABA immunolabeling remained elevated at both the one and three month time-periods, there appeared to be a differential effect on glutamatergic synapses. The in vivo microdialysis data suggest that glutamate synapses were more active at a basal level at one month and become less active compared to the control group at the three month time-period. These data suggest that there are compensatory changes in glutamatergic synapses within the striatum following a 6-hydroxydopamine lesion that appear to be independent of the level of striatal dopamine or GABA. We propose that changes in the activity of the thalamo-cortico-striatal pathway may help to explain the differential time-course change in striatal glutamatergic synaptic activity.
Collapse
|
|
26 |
175 |
5
|
Cohen AD, Tillerson JL, Smith AD, Schallert T, Zigmond MJ. Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. J Neurochem 2003; 85:299-305. [PMID: 12675906 DOI: 10.1046/j.1471-4159.2003.01657.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) causes a loss of dopamine (DA) in the ipsilateral striatum and contralateral motor deficits. However, if a cast is placed on the ipsilateral limb during the first 7 days following 6-OHDA infusion, forcing the animal to use its contralateral limb, both the behavioral and neurochemical deficits are reduced. Here, we examine the effect of forced reliance on a forelimb during the 7 days prior to ipsilateral infusion of 6-OHDA on the deficits characteristic of this lesion model. Casted animals displayed no behavioral asymmetries as measured 14-28 days postlesion and a marked attenuation in the loss of striatal DA and its metabolites at 30 days. In addition, animals receiving a unilateral cast alone had an increase in glial cell-line derived neurotrophic factor (GDNF) protein in the striatum corresponding to the overused limb. GDNF increased within 1 day after the onset of casting, peaked at 3 days, and returned to baseline within 7 days. These results suggest that preinjury forced limb-use can prevent the behavioral and neurochemical deficits to the subsequent administration of 6-OHDA and that this may be due in part to neuroprotective effects of GDNF.
Collapse
|
|
22 |
171 |
6
|
Dabbeni-Sala F, Franceschini D, Skaper SD, Giusti P. Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J 2001; 15:164-170. [PMID: 11149904 DOI: 10.1096/fj.00-0129com] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unilateral injection into the right substantia nigra of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) produces extensive loss of dopaminergic cells ('hemi-parkinsonian rat'). The pineal hormone melatonin, which is a potent antioxidant against different reactive oxygen species and has been reported to be neuroprotective in vivo and in vitro, was evaluated for potential anti-Parkinson effects in this model. Imbalance in dopaminergic innervation between the striata produced by intranigral administration of 6-OHDA results in a postural asymmetry causing rotation away from the nonlesioned side. Melatonin given systemically prevented apomorphine-induced circling behavior in 6-OHDA-lesioned rats. Reduced activity of mitochondrial oxidative phosphorylation enzymes has been suggested in some neurodegenerative diseases; in particular, selective decrease in complex I activity is observed in the substantia nigra of Parkinson's disease patients. Analysis of mitochondrial oxidative phosphorylation enzyme activities in nigral tissue from 6-OHDA-lesioned rats by a novel BN-PAGE histochemical procedure revealed a clear loss of complex I activity, which was protected against in melatonin-treated animals. A good correlation between behavioral parameters and enzymatic (complex I) analysis was observed independent of melatonin administration. A deficit in mitochondrial complex I could conceivably contribute to cell death in parkinsonism via free radical mechanisms, both directly via reactive oxygen species production and by decreased ATP synthesis and energy failure. Melatonin may have potential utility in the treatment of neurodegenerative disorders where oxidative stress is a participant.
Collapse
|
|
24 |
150 |
7
|
Charpantier E, Barnéoud P, Moser P, Besnard F, Sgard F. Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport 1998; 9:3097-101. [PMID: 9804323 DOI: 10.1097/00001756-199809140-00033] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The molecular composition of the nicotinic acetylcholine receptors (nAChRs) located on dopaminergic neurons and modulating their activity is unclear. Using the reverse transcriptase-polymerase chain reaction we have analyzed the mRNA for nAChR subunits expressed in the substantia nigra (SN) and ventral tegmental area (VTA) following unilateral 6-hydroxydopamine lesion of the dopaminergic system. In contrast to the unlesioned hemisphere, no signal was found in the lesioned hemisphere for alpha3, alpha5, alpha6 and beta4 subunits in the SN nor for alpha2, alpha3, alpha5, alpha6, alpha7 and beta4 subunits in the VTA, indicating the expression of these subunits in dopaminergic neurons. mRNA for alpha4, beta2 and beta3 subunits (and alpha7 in the SN) were still detected after lesion, suggesting that they are expressed in GABAergic neurons and interneurons of these brain areas. These results demonstrate the selective localisation of a number of nAChR subunit mRNA within dopaminergic neurons, strongly suggesting that a heterogenous population of nAChRs play a role in modulating dopaminergic neuronal activity.
Collapse
|
|
27 |
131 |
8
|
Cousins MS, Salamone JD. Nucleus accumbens dopamine depletions in rats affect relative response allocation in a novel cost/benefit procedure. Pharmacol Biochem Behav 1994; 49:85-91. [PMID: 7816895 DOI: 10.1016/0091-3057(94)90460-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rats were tested on days 1, 3, and 5 of a 5-day test week in an operant chamber in which they could either lever press on a fixed-ratio 5 (FR5) schedule to obtain food pellets (Bioserve) or approach and consume lab chow that was also available in the chamber (Teklad Premier). Rats typically pressed at high rates to obtain the food pellets and ate little of the lab chow. On days 2 and 4 of each week lab chow was not concurrently available, and rats could only lever press on the FR5 schedule for pellets to obtain food. Dopamine depletions produced by intraaccumbens injections of the neurotoxic agent 6-hydroxydopamine produced a dramatic decrease in lever pressing and increase in chow consumption on days when lab chow was available. Lever pressing was not significantly reduced in dopamine-depleted rats on days when chow was not available, although there was a significant correlation between lever pressing and accumbens dopamine levels. These results suggest that nucleus accumbens dopamine depletions do not produce a general deficit in food motivation. Moreover, accumbens dopamine depletions do not appear to produce severe deficits in fine motor control that impair the execution of individual motor acts involved in lever pressing. Rather, the present results are consistent with the notion that accumbens dopamine sets constraints upon which food-related response is selected in a particular situation, and that these depletions alter the relative allocation of food-related responses.
Collapse
|
|
31 |
130 |
9
|
Sokolowski JD, Salamone JD. The role of accumbens dopamine in lever pressing and response allocation: effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol Biochem Behav 1998; 59:557-66. [PMID: 9512057 DOI: 10.1016/s0091-3057(97)00544-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three experiments investigated the behavioral effects of injections of the neurotoxic agent 6-hydroxydopamine (6-OHDA) into the core or shell of the nucleus accumbens. In the first experiment, it was observed that injections of 6-OHDA into either core or shell had no significant effect on variable interval 30-s responding. In Experiment 2, responding on a fixed ratio 5 (FR5) schedule was impaired by 6-OHDA injections in the core, but not the shell. Rats with core injections of 6-OHDA showed significant alterations in the relative distribution of interresponse times, which were indicative of reductions in the maximal rate of responding and increases in the number of pauses. In the third experiment, rats were tested using a lever-pressing/chow-feeding procedure, in which a preferred food (Bioserve pellets) was available by pressing a lever on a FR5 schedule, but a less preferred food (lab chow) was also available concurrently in the test chamber. Untreated rats usually pressed the lever at high rates to obtain the food pellets and ate little of the lab chow. After training, dopamine depletions were produced by injections of 6-OHDA directly into the core or dorsomedial shell subregions. Injections of 6-OHDA into the core significantly decreased lever pressing for food pellets, increased lab chow consumption, and decreased the relative amount of food obtained by lever pressing. Dorsomedial shell injections of 6-OHDA had no significant effects on either lever pressing or lab chow consumption. Neurochemical results indicate that injections of 6-OHDA in the shell produced substantial depletions in the shell that were somewhat selective; however, injections of 6-OHDA into the core tended to deplete both core and shell. Correlational analyses revealed that decreases in FR5 lever pressing were associated with dopamine levels in the core, but not the shell. The present results indicate that substantial depletions of dopamine in the dorsomedial shell are not sufficient for suppressing reinforced lever pressing, and indicate that dopamine depletions must include the core area to impair performance on these tasks. The lack of effect of accumbens dopamine depletions on VI30 responding are consistent with the notion that accumbens dopamine depletions affect responding on schedules that generate a high rate of responding (FR5), but not those that generate a moderate rate of responding (e.g., VI30 s). The results of the concurrent FR5/chow-feeding experiment indicate that rats with accumbens dopamine depletions remain directed towards the acquisition and consumption of food. These results suggest that dopamine in the core region of accumbens sets constraints upon the selection of food-related behaviors, and that core dopamine depletions alter the relative allocation of food-related responses.
Collapse
|
|
27 |
124 |
10
|
Abstract
Caffeine is the most widely consumed psychostimulant substance, being self-administered throughout a wide range of conditions and present in numerous dietary products. Due to its widespread use and low abuse potential, caffeine is considered an atypical drug of abuse. The main mechanism of action of caffeine occurs via the blockade of adenosine A1 and A2A receptors. Adenosine is a modulator of CNS neurotransmission and its modulation of dopamine transmission through A2A receptors has been implicated in the effects of caffeine. This review provides an updated summary of the results reported in the literature concerning the behavioural pharmacology of caffeine and the neurochemical mechanisms underlying the psychostimulant effects elicited by caffeine. The review focuses on the effects of caffeine mediated by adenosine A2A receptors and on the influence that pre-exposure to caffeine may exert on the effects of classical drugs of abuse.
Collapse
|
Review |
20 |
121 |
11
|
Brzozowski T, Konturek PC, Konturek SJ, Kwiecień S, Drozdowicz D, Bielanski W, Pajdo R, Ptak A, Nikiforuk A, Pawlik WW, Hahn EG. Exogenous and endogenous ghrelin in gastroprotection against stress-induced gastric damage. ACTA ACUST UNITED AC 2005; 120:39-51. [PMID: 15177919 DOI: 10.1016/j.regpep.2004.02.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 02/09/2004] [Accepted: 02/10/2004] [Indexed: 12/17/2022]
Abstract
Ghrelin, identified in the gastric mucosa has been involved in control of food intake and growth hormone (GH) release but little is known about its influence on gastric secretion and mucosal integrity. The effects of ghrelin on gastric secretion, plasma gastrin and gastric lesions induced in rats by 75% ethanol or 3.5 h of water immersion and restraint stress (WRS) were determined. Exogenous ghrelin (5, 10, 20, 40 and 80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by ethanol and WRS and this was accompanied by the significant rise in plasma ghrelin level, gastric mucosal blood flow (GBF) and luminal NO concentrations. Ghrelin-induced protection was abolished by vagotomy and attenuated by suppression of COX, deactivation of afferent nerves with neurotoxic dose of capsaicin or CGRP(8-37) and by inhibition of NOS with L-NNA but not influenced by medullectomy and administration of 6-hydroxydopamine. We conclude that ghrelin exerts a potent protective action on the stomach of rats exposed to ethanol and WRS, and these effects depend upon vagal activity, sensory nerves and hyperemia mediated by NOS-NO and COX-PG systems.
Collapse
|
Journal Article |
20 |
113 |
12
|
Takaki A, Huang QH, Somogyvári-Vigh A, Arimura A. Immobilization stress may increase plasma interleukin-6 via central and peripheral catecholamines. Neuroimmunomodulation 1994; 1:335-42. [PMID: 7671121 DOI: 10.1159/000097185] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has recently been reported that both physical and psychological stress elevate plasma interleukin (IL)-6 levels independently of endotoxemia, tissue damage, or inflammation. However, the mechanism of plasma IL-6 elevation in these models is poorly understood. In the present study, plasma IL-6 levels were measured using the IL-6-dependent murine hybridoma subclone B9 cell line, which is commonly used by other investigators. We first demonstrated that an immobilization (IM) stress, a typical physicopsychological stress, increased plasma IL-6 levels. Then the contribution of the hypothalamic-pituitary-adrenal (HPA) axis and the central and peripheral catecholaminergic systems in IM-induced plasma IL-6 elevation were examined because these mechanisms play important roles in host defense against stress. Blood samples were collected through an indwelling jugular venous catheter before, during, and after IM; the number of samples taken serially from each animal was 12-13. Blood cells were resuspended in a saline solution and injected into the animals through the same catheter after each blood collection in order to prevent loss of blood volume. After initiation of restraint, plasma IL-6 levels significantly increased at 60 min and peaked at 90 min in the animals immobilized for either 30 or 120 min. The peak levels of IM-induced plasma IL-6 in the animals immobilized for 120 min (1,905 +/- 414 U/ml) were significantly higher than those in the animals subjected to 30 min IM (837 +/- 95 U/ml; p < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
31 |
110 |
13
|
Ingham CA, Hood SH, van Maldegem B, Weenink A, Arbuthnott GW. Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp Brain Res 1993; 93:17-27. [PMID: 7682182 DOI: 10.1007/bf00227776] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Destruction of the dopamine-containing neurons in the rat substantia nigra results in morphological changes in the striatum which have been characterized at both the light and electron microscopic levels. After a unilateral 6-hydroxydopamine injection into the medial forebrain bundle, Golgi-impregnated medium-sized spiny neurons in the neostriatum ipsilateral to the injection had a lower density of spines on their dendrites than those on the contralateral side. A similar decrease in spine density was apparent from 12 days until at least 13.5 months after the lesion. A bilateral loss of spines occurred with increasing age regardless of the presence or absence of the nigrostriatal dopaminergic pathway. At the ultrastructural level, the general pattern of synaptic input to the Golgi-impregnated medium-sized spiny neurons was similar on both sides of the brain. The most obvious class of afferent boutons contacting these spiny neurons formed prominent asymmetrical synaptic specializations with the heads of the spines. The numbers of asymmetric synaptic profiles counted in random electron micrographs from the striata ipsilateral and contralateral to the lesion were not significantly different from each other. A small but significant increase in the length of asymmetric synaptic specialization profiles was, however, detected in the striata lacking a dopamine input.
Collapse
|
|
32 |
110 |
14
|
Maesawa S, Kaneoke Y, Kajita Y, Usui N, Misawa N, Nakayama A, Yoshida J. Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J Neurosurg 2004; 100:679-87. [PMID: 15070123 DOI: 10.3171/jns.2004.100.4.0679] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECT The goal of this study was to evaluate the neuroprotective effects conferred by long-term electrical stimulation of the subthalamic nucleus (STN) against degeneration of dopaminergic neurons by assessing motor functional and immunohistological findings in hemiparkinsonian rats. METHODS In 13 of 25 rats, a concentric microelectrode was stereotactically implanted into the right STN under the guidance of extracellular microelectrode recording. After this had been done the animals were given an injection of 6-hydroxydopamine (6-OHDA) into the right striatum. Seven of the rats received continuous stimulation (frequency 130 Hz, intensity 80-100 microA) for 2 weeks (Group A); the other six did not receive any stimulation during this period (Group B). Twelve rats did not receive electrode implantation and underwent 6-OHDA injection only; these animals served as a control group (Group C). After 2 weeks, motor function in the rats was evaluated by conducting an amphetamine-induced rotation test. Finally, tyrosine hydroxylase-immunoreactive neurons in the pars compacta of the substantia nigra (SNc) were counted to evaluate the extent of degeneration of dopaminergic neurons. Ipsilateral rotation was significantly decreased in Group A, regardless of the effects of stimulation delivered during the test (p < 0.05). Rats in Group B demonstrated typical circling as did those in Group C, except that on stimulation Group B rats immediately stopped circling or changed direction. Tyrosine hydroxylase-immunoreactive neurons in the SNc were significantly preserved in the animals in Group A, whereas neurons in animals in Groups B and C were moderately depleted (p < 0.01). CONCLUSIONS Acutely, STN stimulation improved rotation symmetry in rats with moderate SNc degeneration. When STN stimulation had been applied for the preceding 2 weeks, motor function was better and SNc neural degeneration was significantly milder. Subthalamic nucleus stimulation thus appears to protect dopaminergic neurons in this hemiparkinsonian model, in addition to improving motor function in these animals.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
108 |
15
|
Truong L, Allbutt H, Kassiou M, Henderson JM. Developing a preclinical model of Parkinson's disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 2006; 169:1-9. [PMID: 16413939 DOI: 10.1016/j.bbr.2005.11.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/23/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
Injection of increasing concentrations of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) can be used to establish a graded model of different clinical stages of Parkinson's disease (PD). We investigated the relationship between behavioural alterations and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Forty female Sprague-Dawley rats were injected with either (i) 4 microg (ii) 8 microg or (iii) 16 microg 6-hydroxydopamine (6-OHDA) to mimic the preclinical, mild and advanced clinical stages of PD, respectively. Vehicle was injected in a separate control group. Behaviours analysed included postural asymmetry, balance, locomotion, sensorimotor deficits and apomorphine rotation. At post-mortem the degree of tyrosine immunoreactive dopaminergic cell (TH-ir) loss was then estimated. There was a graded and consistent trend in each of the behaviours studied with respect to cell loss between the different sized lesion groups when examined using correlation analysis (all comparisons, r > 0.8, p < 0.001). Rats with large lesions demonstrated more significant behavioural changes over 8 weeks of testing than those with intermediate and smaller lesions (group comparisons p < 0.001). PD symptomatology became overt when cell loss reached 70%, however some significant changes can be observed with as little as 40% dopaminergic cell loss. Thus, injection with increasing concentrations 6-OHDA into the MFB can produce increasing extents of cell loss and behavioural changes, which were well correlated. This graded model can be useful for testing potential neuroprotective compounds for PD.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
98 |
16
|
Smith MP, Fletcher-Turner A, Yurek DM, Cass WA. Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochem Res 2007; 31:533-9. [PMID: 16758362 DOI: 10.1007/s11064-006-9048-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Calcitriol has been implicated as an agent that has neuroprotective effects in various animal models of diseases, possibly by upregulating glial cell line-derived neurotrophic factor (GDNF). The present study examined the neuroprotective effects of calcitriol in a model of early Parkinson's disease. Rats were treated daily with calcitriol or saline for 7 days before an intraventricular injection of 6-hydroxydopamine (6-OHDA), and then for 1 day or daily for 3(1/2) to 4 weeks after lesioning. Evoked overflow and tissue content of dopamine (DA) were determined 3(1/2) to 4 weeks post lesion. The 8-day calcitriol treatment did not attenuate 6-OHDA-induced decreases in evoked overflow of DA, nor did it protect against 6-OHDA-induced reductions in tissue levels of DA in the striatum or substantia nigra. However, the long-term calcitriol treatment did significantly increase evoked overflow of DA, as well as the amount of DA in the striatum, compared to saline treated animals. GDNF was significantly increased in the substantia nigra, but not in the striatum, of non-lesioned, calcitriol treated rats. These results suggest that long-term treatment with calcitriol can provide partial protection for dopaminergic neurons against the effects of intraventricularly administered 6-OHDA.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
95 |
17
|
Rodríguez M, Barroso-Chinea P, Abdala P, Obeso J, González-Hernández T. Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in parkinson's disease. Exp Neurol 2001; 169:163-81. [PMID: 11312569 DOI: 10.1006/exnr.2000.7624] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In an attempt to find a convenient rat model to study cell vulnerability in Parkinson's disease, we have investigated the cell-loss profile in different midbrain dopaminergic nuclei and subnuclei of rats injected with 6-hydroxydopamine (6-OHDA) in the third ventricle. Following administration of different doses (5-1000 microgram) of 6-OHDA, motor behavior was evaluated and tyrosine hydroxylase-immunostained neurons were counted in the A8 group and different subdivisions of A9 and A10 groups. Animals developed hypokinesia, repetitive chewing movements, and catalepsia. Signs of cell degeneration were evident from the first day after injection, reaching the definitive pattern at the end of the first week. There was a similar degeneration in both brain sides, the A9 group showing the highest degree of cell-loss, followed by A8 and A10 groups. In the A9 group, the degeneration mostly affected those subgroups located in its ventral, lateral, and posterior regions. In the A10 group the degeneration mainly affected the parabrachial pigmented nucleus, the paranigral nucleus and the ventral tegmental area. This topographic pattern of degeneration is very similar to that previously described in Parkinson's disease, suggesting that this model may be a useful tool in the study of the cell vulnerability mechanisms in this neurodegenerative disorder. In addition, our results also showed that small dopaminergic neurons are more resistant to degeneration than the large ones. In some DA subgroups, the cells that contained calbindin but not calretinin were less vulnerable to the neurotoxic effect of 6-OHDA.
Collapse
|
|
24 |
91 |
18
|
Shi LH, Luo F, Woodward DJ, Chang JY. Basal ganglia neural responses during behaviorally effective deep brain stimulation of the subthalamic nucleus in rats performing a treadmill locomotion test. Synapse 2006; 59:445-57. [PMID: 16521122 DOI: 10.1002/syn.20261] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease (PD). In spite of proven therapeutic success, the mechanism underlying the benefits of DBS has not been resolved. A multiple-channel single-unit recording technique was used in the present study to investigate basal ganglia (BG) neural responses during behaviorally effective DBS of the STN in a rat model of PD. Rats underwent unilateral dopamine (DA) depletion by injection of 6-hydroxyDA (6-OHDA) into one side of the medial forebrain bundle and subsequently developed a partial akinesia, which was assessed during the treadmill locomotion task. High frequency stimulation (HFS) of the STN restored normal treadmill locomotion behavior. Simultaneous recording of single unit activity in the striatum (STR), globus pallidus (GP), substantia nigra pars reticulata (SNr), and STN revealed a variety of neural responses during behaviorally effective HFS of the STN. Predominant inhibitory responses appeared in the STN stimulation site. Nearly equal numbers of excitatory and inhibitory responses were found in the GP and SNr, whereas more rebound excitatory responses were found in the STR. Mean firing rate did not change significantly in the STR, GP, and SNr, but significantly decreased in both sides of STN during DBS. A decrease in firing rate in the contralateral side of STN provides neural substrate for the clinical observation that unilateral DBS produces bilateral benefits in patients with PD. In addition to the firing rate changes, a decrease in burst firing was observed in the GP and STN. The present study indicates that DBS induces complex modulations of the BG circuit and further suggests that BG network reorganization, rather than a simple excitation or inhibition, may underlie the therapeutic effects of DBS in patients with PD.
Collapse
|
|
19 |
84 |
19
|
Lapchak PA, Miller PJ, Collins F, Jiao S. Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: comparison of intraventricular and intranigral delivery. Neuroscience 1997; 78:61-72. [PMID: 9135089 DOI: 10.1016/s0306-4522(97)83045-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor were tested on low dose (0.05 mg/kg) apomorphine-induced rotations and tyrosine hydroxylase activity in the substantia nigra and striatum of stable 6-hydroxydopamine-lesioned rats. In addition, we determined if 6-hydroxydopamine lesions in the absence or presence of treatment affected neuropeptide (substance P, met-enkephalin, dynorphin) content in the striatum. Glial cell line-derived neurotrophic factor, when administered intranigrally, prevented apomorphine-induced rotational behaviour for 11 weeks following a single injection. In comparison, intraventricularly-administered glial cell line-derived neurotrophic factor produced a transient reduction in rotational behaviour that lasted for two to three weeks following a single injection. We also show that rotational behaviour is reduced following each subsequent intraventricular injection of glial cell line-derived neurotrophic factor given every six weeks, a time-point when baseline rotation deficits were re-established. Intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor significantly reduced weight gain in all 6-hydroxydopamine-lesioned rats in this study. Following behavioural analysis where a confirmed improvement of behaviour was established, tissues were dissected for neurochemical analysis. In lesioned rats with intranigral injections of administered glial cell line-derived neurotrophic factor, significant increases of nigral, but not striatal tyrosine hydroxylase activity were measured. Additionally, 6-hydroxydopamine lesions significantly increased striatal dynorphin (61-139%) and met-enkephalin (81-139%), but not substance P levels. In these rats, intranigrally-administered glial cell line-derived neurotrophic factor injections reversed lesion-induced increases in nigral dynorphin A levels and increased nigral dopamine levels, but did not alter nigral met-enkephalin or substance P levels nor striatal dopamine levels. In lesioned rats with intraventricular injections of glial cell line-derived neurotrophic factor, tyrosine hydroxylase ispilateral to the lesion was increased in the substantia nigra, but not in the striatum. Intraventricularly-administered glial cell line-derived neurotrophic factor did not reverse lesion-induced increases in nigral dynorphin A or met-enkephalin levels nor did glial cell line-derived neurotrophic factor affect substance P levels in the striatum. These results suggest that in an animal model of Parkinson's disease, the neurotrophic factor glial cell line-derived neurotrophic factor reverses behavioural consequences of 6-hydroxydopamine administration, an effect that may involve both dopaminergic and peptidergic neurotransmission.
Collapse
|
Comparative Study |
28 |
79 |
20
|
Oben JA, Roskams T, Yang S, Lin H, Sinelli N, Li Z, Torbenson M, Huang J, Guarino P, Kafrouni M, Diehl AM. Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology 2003; 38:664-73. [PMID: 12939593 DOI: 10.1053/jhep.2003.50371] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recovery from liver damage might be enhanced by encouraging repopulation of the liver by endogenous hepatic progenitor cells. Oval cells are resident hepatic stem cells that promote liver regeneration and repair. Little is known about the mediators that regulate the accumulation of these cells in the liver. Parasympathetic nervous system inhibition reduces the number of oval cells in injured livers. The effect of sympathetic nervous system (SNS) inhibition on oval cell number is not known. Adrenergic inhibition mobilizes hematopoietic precursors into the circulation and has also been shown to promote liver regeneration. Thus, we hypothesized that SNS inhibition would promote hepatic accumulation of oval cells and reduce liver damage in mice fed antioxidant-depleted diets to induce liver injury. Our results confirm this hypothesis. Compared with control mice that were fed only the antioxidant-depleted diets, mice fed the same diets with prazosin (PRZ, an alpha-1 adrenoceptor antagonist) or 6-hydroxydopamine (6-OHDA, an agent that induces chemical sympathectomy) had significantly increased numbers of oval cells. Increased oval cell accumulation was accompanied by less hepatic necrosis and steatosis, lower serum aminotransferases, and greater liver and whole body weights. Neither PRZ nor 6-OHDA affected the expression of cytokines, growth factors, or growth factor receptors that are known to regulate progenitor cells. In conclusion, stress-related sympathetic activity modulates progenitor cell accumulation in damaged livers and SNS blockade with alpha-adrenoceptor antagonists enhances hepatic progenitor cell accumulation.
Collapse
|
|
22 |
76 |
21
|
Roedter A, Winkler C, Samii M, Walter GF, Brandis A, Nikkhah G. Comparison of unilateral and bilateral intrastriatal 6-hydroxydopamine-induced axon terminal lesions: evidence for interhemispheric functional coupling of the two nigrostriatal pathways. J Comp Neurol 2001; 432:217-29. [PMID: 11241387 DOI: 10.1002/cne.1098] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Partial lesions of the nigrostriatal dopamine system can be induced reliably by the intrastriatal injection of 6-hydroxydopamine (6-OHDA) and are considered to be analogous to the early stages of human Parkinson's disease. Previous studies have established a clear correlation between different doses and placements of the 6-OHDA toxin and the degree of neurodegenerative changes and behavioral impairments. In the present study, the influence of the interdependence between the two nigrostriatal systems in both hemispheres on the effects on sensorimotor behavioral performances after terminal 6-OHDA lesions was investigated. The behavioral effects were correlated to the extent of nigral dopamine neuron cell and striatal tyrosine-hydroxylase (TH)-positive fiber loss. Sprague-Dawley rats receiving unilateral intrastriatal 6-OHDA injections (4 x 5 microg) exhibited a 30-70% reduction in striatal TH-positive fiber density along an anterior-posterior gradient, an 80% loss of nigral dopamine neurons and a mild degree of behavioral impairments as revealed by amphetamine-induced rotational asymmetry, and a reduced performance in the stepping and postural balance tests. When the same amount of toxin was injected twice into both hemispheres (2 x 4 x 5 microg), additional behavioral deficits were observed, consisting of a significant, but temporary, weight loss, a stable reduction in general locomotor activity and explorational behavior, and a long-term deficit in skilled forelimb use. This is interesting in light of the morphological findings, in which uni- and bilaterally lesioned animals did not differ significantly in the extent of TH-immunoreactive fiber and dopamine neuron loss within the nigrostriatal system in each lesioned hemisphere. These results indicate that the interdependent regulation of the two nigrostriatal systems may provide some compensatory support for the function and behavioral performance of the lesioned side via the normal unlesioned side, which is lost in animals with bilateral lesions of the nigrostriatal system. Therefore, this model of uni- and bilateral partial lesions of the nigrostriatal system, as characterized in the present study, may foster further exploration of compensatory functional mechanisms active in the early stages of Parkinson's disease and promote development of novel neuroprotective and restorative strategies.
Collapse
|
|
24 |
72 |
22
|
Bensadoun JC, Mirochnitchenko O, Inouye M, Aebischer P, Zurn AD. Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice. Eur J Neurosci 1998; 10:3231-6. [PMID: 9786216 DOI: 10.1046/j.1460-9568.1998.00345.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Normal cellular metabolism produces oxidants which are neutralized within cells by antioxidant enzymes and other antioxidants. An imbalance between oxidants and antioxidants has been postulated to lead to the degeneration of specific populations of neurons in neurodegenerative diseases, e.g. Parkinson's disease. The present study investigates whether overexpression of glutathione peroxidase, the enzyme which metabolizes hydrogen peroxide to water, can prevent or slow down neuronal injury in an animal model of Parkinson's disease. Transgenic mice overexpressing the human glutathione peroxidase gene under the control of the mouse hydroxymethylglutaryl-coenzyme A promoter and genetically matched control mice were injected intracerebroventricularly with the dopaminergic neurotoxin 6-hydroxydopamine. Seven days after injection, the number of tyrosine hydroxylase-positive nigral dopaminergic neurons was decreased by 52.4% and 20.5% in 6-hydroxydopamine-injected control and glutathione peroxidase transgenic mice, respectively. Similarly, 3 days after injection of the neurotoxin, striatal dopamine was decreased by 71.2% and 56.5%, respectively. Overexpression of glutathione peroxidase therefore partially protects dopaminergic neurons against 6-hydroxydopamine-induced toxicity.
Collapse
|
|
27 |
71 |
23
|
De Leonibus E, Pascucci T, Lopez S, Oliverio A, Amalric M, Mele A. Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology (Berl) 2007; 194:517-25. [PMID: 17619858 DOI: 10.1007/s00213-007-0862-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 06/16/2007] [Indexed: 11/26/2022]
Abstract
RATIONALE Accumulating evidence in humans demonstrated that visuo-spatial deficits are the most consistently reported cognitive abnormalities in Parkinson disease (PD). These deficits have been generally attributed to cortical dopamine degeneration. However, more recent evidence suggests that dopamine loss in the striatum is responsible for the visuo-spatial abnormalities in PD. Studies based on animal models of PD did not specifically address this question. OBJECTIVES Thus, the first goal of this study was to analyze the role of dopamine within the dorsal striatum in spatial memory. We tested bilateral 6-OHDA striatal lesioned CD1 mice in an object-place association spatial task. Furthermore, to see whether the effects were selective for spatial information, we measured how the 6-OHDA-lesioned animals responded to a non-spatial change and learned in the one-trial inhibitory avoidance task. RESULTS The results demonstrated that bilateral (approximately 75%) dopamine depletion of the striatum impaired spatial change discrimination. On the contrary, no effect of the lesion was observed on non-spatial novelty detection or on passive avoidance learning. CONCLUSIONS These results confirm that dopamine depletion is accompanied by cognitive deficits and demonstrate that striatal dopamine dysfunction is sufficient to induce spatial information processing deficits.
Collapse
|
|
18 |
68 |
24
|
Dluzen DE, Muraoka S, Landgraf R. Olfactory bulb norepinephrine depletion abolishes vasopressin and oxytocin preservation of social recognition responses in rats. Neurosci Lett 1998; 254:161-4. [PMID: 10214982 DOI: 10.1016/s0304-3940(98)00691-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Male rats were implanted bilaterally with cannulae directed at the olfactory bulbs and infused with either vehicle or 6-OHDA to selectively deplete norepinephrine concentrations at this site. At 5-7 days following this treatment, these animals received a bilateral infusion of either arginine vasopressin (AVP) or oxytocin (OXT) through these same guide cannulae and were then tested for their capacity to maintain social recognition responses. Neither infusion of AVP nor OXT were able to preserve recognition responses in the animals treated with 6-OHDA. In contrast, comparably tested animals who received a vehicle infusion showed clear recognition responses following either the AVP or OXT infusion. These results suggest that this capacity for these neuropeptides to preserve social recognition responses is mediated through the norepinephrine system of the olfactory bulb.
Collapse
|
|
27 |
67 |
25
|
Schwarting RK, Bonatz AE, Carey RJ, Huston JP. Relationships between indices of behavioral asymmetries and neurochemical changes following mesencephalic 6-hydroxydopamine injections. Brain Res 1991; 554:46-55. [PMID: 1933318 DOI: 10.1016/0006-8993(91)90170-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Behavioral and neurochemical changes were investigated in rats that had received one of 3 doses of 6-hydroxydopamine (6-OHDA), injected unilaterally into the ventral mesencephalon. The behavioral analysis comprised that of tight turns (diameter less than 30 cm), wide turns (diameter greater than 55 cm), and locomotor activity. 6-OHDA-injected animals were assigned to 3 different groups according to their degree of asymmetry in tight turns, both in spontaneous behavior and after the dopamine receptor agonist apomorphine (0.05 mg/kg). Thus, 6-OHDA-injected animals showed either (i) no spontaneous ipsiversive asymmetry (group 1), or (ii) an ipsiversive asymmetry, from which they did not recover during the three postoperative weeks of testing and which could not be reversed by apomorphine (group 2), or (iii) an even stronger ipsiversive asymmetry from which they did not recover but which could be reversed by apomorphine (group 3). The analysis of wide turns, which might reflect exploratory behavior of the environment, namely thigmotactic scanning, provided further information, as it indicated an asymmetry even in group 1; however, in contrast to the other groups a contraversive asymmetry was observed. Neurochemically, the three experimental groups were clearly different from each other with respect to the degree of neostriatal dopamine depletion, and the increase in dopamine metabolism in the damaged hemisphere as indicated by increased metabolite/transmitter ratios. The ipsiversive asymmetry in tight turns was negatively correlated with dopamine levels in the damaged neostriatum and positively correlated with the increase in metabolism. Furthermore, indications of changes in neostriatal serotonin activity were found. These results are discussed with respect to the necessity of differential measures of behavioral asymmetry, the role of dopaminergic mechanisms of 6-OHDA-induced deficits and mechanisms of recovery. The asymmetries in tight versus wide turns are suggested to reflect the preponderance of a motor deficit in the former case versus that of sensory neglect in the latter. Thus, the analysis of tight versus wide turns may provide distinctive and sensitive indices related to different functional deficits in animal models of hemiparkinsonism.
Collapse
|
|
34 |
66 |