1
|
Chen LL, Carmichael GG. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 2009; 35:467-78. [PMID: 19716791 PMCID: PMC2749223 DOI: 10.1016/j.molcel.2009.06.027] [Citation(s) in RCA: 540] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/12/2009] [Accepted: 06/08/2009] [Indexed: 01/12/2023]
Abstract
In many cells, mRNAs containing inverted repeats (Alu repeats in humans) in their 3' untranslated regions (3'UTRs) are inefficiently exported to the cytoplasm. Nuclear retention correlates with adenosine-to-inosine editing and is in paraspeckle-associated complexes containing the proteins p54(nrb), PSF, and PSP1 alpha. We report that robust editing activity in human embryonic stem cells (hESCs) does not lead to nuclear retention. p54(nrb), PSF, and PSP1 alpha are all expressed in hESCs, but paraspeckles are absent and only appear upon differentiation. Paraspeckle assembly and function depend on expression of a long nuclear-retained noncoding RNA, NEAT1. This RNA is not detectable in hESCs but is induced upon differentiation. Knockdown of NEAT1 in HeLa cells results both in loss of paraspeckles and in enhanced nucleocytoplasmic export of mRNAs containing inverted Alu repeats. Taken together, these results assign a biological function to a large noncoding nuclear RNA in the regulation of mRNA export.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
540 |
2
|
Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 2005; 16:2395-413. [PMID: 15758027 PMCID: PMC1087244 DOI: 10.1091/mbc.e04-11-0992] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nucleolar segregation is observed under some physiological conditions of transcriptional arrest. This process can be mimicked by transcriptional arrest after actinomycin D treatment leading to the segregation of nucleolar components and the formation of unique structures termed nucleolar caps surrounding a central body. These nucleolar caps have been proposed to arise from the segregation of nucleolar components. We show that contrary to prevailing notion, a group of nucleoplasmic proteins, mostly RNA binding proteins, relocalized from the nucleoplasm to a specific nucleolar cap during transcriptional inhibition. For instance, an exclusively nucleoplasmic protein, the splicing factor PSF, localized to nucleolar caps under these conditions. This structure also contained pre-rRNA transcripts, but other caps contained either nucleolar proteins, PML, or Cajal body proteins and in addition nucleolar or Cajal body RNAs. In contrast to the capping of the nucleoplasmic components, nucleolar granular component proteins dispersed into the nucleoplasm, although at least two (p14/ARF and MRP RNA) were retained in the central body. The nucleolar caps are dynamic structures as determined using photobleaching and require energy for their formation. These findings demonstrate that the process of nucleolar segregation and capping involves energy-dependent repositioning of nuclear proteins and RNAs and emphasize the dynamic characteristics of nuclear domain formation in response to cellular stress.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
295 |
3
|
Abstract
Proteins are often referred to in accordance with the activity with which they were first associated or the organelle in which they were initially identified. However, a variety of nuclear factors act in multiple molecular reactions occurring simultaneously within the nucleus. This review describes the functions of the nuclear factors PSF (polypyrimidine tract-binding protein-associated splicing factor) and p54(nrb)/NonO. PSF was initially termed a splicing factor due to its association with the second step of pre-mRNA splicing while p54(nrb)/NonO was thought to participate in transcriptional regulation. Recent evidence shows that the simplistic categorization of PSF and its homolog p54(nrb)/NonO to any single nuclear activity is not possible and in fact these proteins exhibit multi-functional characteristics in a variety of nuclear processes.
Collapse
|
Review |
23 |
285 |
4
|
Patton JG, Porro EB, Galceran J, Tempst P, Nadal-Ginard B. Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev 1993; 7:393-406. [PMID: 8449401 DOI: 10.1101/gad.7.3.393] [Citation(s) in RCA: 279] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previously, we characterized cDNAs encoding polypyrimidine tract-binding protein (PTB) and showed that a complex between PTB and a 100-kD protein was necessary for pre-mRNA splicing. In this paper we have used two different in vitro-binding assays to confirm and extend the interaction between these two proteins. Peptide sequence information was used to clone and sequence cDNAs encoding alternatively spliced forms of the 100-kD protein. It contains two consensus RNA-binding domains and an unusual amino terminus rich in proline and glutamine residues. The protein is highly basic and migrates anomalously on SDS gels. Owing to its interaction with PTB and its role in pre-mRNA splicing, we have termed the 100-kD protein PTB-associated splicing factor (PSF). The RNA-binding properties of PSF are apparently identical to those of PTB. Both proteins, together and independently, bind the polypyrimidine tract of mammalian introns. Biochemical complementation, antibody inhibition, and immunodepletion experiments demonstrate that PSF is an essential pre-mRNA splicing factor required early in spliceosome formation. Bacterially synthesized PSF is able to complement immunodepleted extracts and restore splicing activity. Despite association with PSF, complementary experiments with antibodies against PTB do not suggest an essential role for PTB in pre-mRNA splicing.
Collapse
|
|
32 |
279 |
5
|
Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J, Cooper CS. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 1997; 15:2233-9. [PMID: 9393982 DOI: 10.1038/sj.onc.1201394] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We demonstrate that the cytogenetically defined translocation t(X;1)(p11.2;p34) observed in papillary renal cell carcinomas results in the fusion of the splicing factor gene PSF located at 1p34 to the TFE3 helix-loop-helix transcription factor gene at Xp11.2. In addition we define an X chromosome inversion inv(X)(p11.2;q12) that results in the fusion of the NonO (p54nrb) gene to TFE3. NonO (p54nrb), the human homologue of the Drosophila gene NonAdiss which controls the male courtship song, is closely related to PSF and also believed to be involved in RNA splicing. In each case the rearrangement results in the fusion of almost the entire splicing factor protein to the TFE3 DNA-binding domain. These observations suggest the possibility of intriguing links between the processes of RNA splicing, DNA transcription and oncogenesis.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Sequence
- Artificial Gene Fusion
- Base Sequence
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Blotting, Southern
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Chromosome Inversion
- Chromosomes, Human, Pair 1
- DNA-Binding Proteins/genetics
- Female
- Helix-Loop-Helix Motifs/genetics
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Male
- Middle Aged
- Molecular Sequence Data
- Nuclear Matrix-Associated Proteins
- Nuclear Proteins/genetics
- Octamer Transcription Factors
- PTB-Associated Splicing Factor
- Polymerase Chain Reaction
- RNA Splicing
- RNA-Binding Proteins/genetics
- Transcription Factors/genetics
- Transcription, Genetic
- Translocation, Genetic
- Tumor Cells, Cultured
- X Chromosome
Collapse
|
|
28 |
251 |
6
|
Abstract
Circadian rhythms in mammals are generated by a feedback loop in which the three PERIOD (PER) proteins, acting in a large complex, inhibit the transcriptional activity of the CLOCK-BMAL1 dimer, which represses their own expression. Although fundamental, the mechanism of negative feedback in the mammalian clock, or any eukaryotic clock, is unknown. We analyzed protein constituents of PER complexes purified from mouse tissues and identified PSF (polypyrimidine tract-binding protein-associated splicing factor). Our analysis indicates that PSF within the PER complex recruits SIN3A, a scaffold for assembly of transcriptional inhibitory complexes and that the PER complex thereby rhythmically delivers histone deacetylases to the Per1 promoter, which repress Per1 transcription. These findings provide a function for the PER complex and a molecular mechanism for circadian clock negative feedback.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
239 |
7
|
Xu J, Zhong N, Wang H, Elias JE, Kim CY, Woldman I, Pifl C, Gygi SP, Geula C, Yankner BA. The Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum Mol Genet 2005; 14:1231-41. [PMID: 15790595 DOI: 10.1093/hmg/ddi134] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations in the DJ-1 gene cause early-onset autosomal recessive Parkinson's disease (PD), although the role of DJ-1 in the degeneration of dopaminergic neurons is unresolved. Here we show that the major interacting-proteins with DJ-1 in dopaminergic neuronal cells are the nuclear proteins p54nrb and pyrimidine tract-binding protein-associated splicing factor (PSF), two multifunctional regulators of transcription and RNA metabolism. PD-associated DJ-1 mutants exhibit decreased nuclear distribution and increased mitochondrial localization, resulting in diminished co-localization with co-activator p54nrb and repressor PSF. Unlike pathogenic DJ-1 mutants, wild-type DJ-1 acts to inhibit the transcriptional silencing activity of the PSF. In addition, the transcriptional silencer PSF induces neuronal apoptosis, which can be reversed by wild-type DJ-1 but to a lesser extent by PD-associated DJ-1 mutants. DJ-1-specific small interfering RNA sensitizes cells to PSF-induced apoptosis. Both DJ-1 and p54nrb block oxidative stress and mutant alpha-synuclein-induced cell death. Thus, DJ-1 is a neuroprotective transcriptional co-activator that may act in concert with p54nrb and PSF to regulate the expression of a neuroprotective genetic program. Mutations that impair the transcriptional co-activator function of DJ-1 render dopaminergic neurons vulnerable to apoptosis and may contribute to the pathogenesis of PD.
Collapse
|
|
20 |
207 |
8
|
Emili A, Shales M, McCracken S, Xie W, Tucker PW, Kobayashi R, Blencowe BJ, Ingles CJ. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD. RNA (NEW YORK, N.Y.) 2002; 8:1102-11. [PMID: 12358429 PMCID: PMC1370324 DOI: 10.1017/s1355838202025037] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II (pol II) plays an important role in promoting steps of pre-mRNA processing. To identify proteins in human cells that bind to the CTD and that could mediate its functions in pre-mRNA processing, we used the mouse CTD expressed in bacterial cells in affinity chromatography experiments. Two proteins present in HeLa cell extract, the splicing and transcription-associated factors, PSF and p54nrb/NonO, bound specifically and could be purified to virtual homogeneity by chromatography on immobilized CTD matrices. Both hypo- and hyperphosphorylated CTD matrices bound these proteins with similar selectivity. PSF and p54nrb/NonO also copurified with a holoenzyme form of pol II containing hypophosphorylated CTD and could be coimmunoprecipitated with antibodies specific for this and the hyperphosphorylated form of pol II. That PSF and p54nrb/NonO promoted the binding of RNA to immobilized CTD matrices suggested these proteins can interact with the CTD and RNA simultaneously. PSF and p54nrb/NonO may therefore provide a direct physical link between the pol II CTD and pre-mRNA processing components, at both the initiation and elongation phases of transcription.
Collapse
|
research-article |
23 |
150 |
9
|
Gozani O, Patton JG, Reed R. A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step II of the splicing reaction. EMBO J 1994; 13:3356-67. [PMID: 8045264 PMCID: PMC395233 DOI: 10.1002/j.1460-2075.1994.tb06638.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have isolated and determined the protein composition of the spliceosomal complex C. The pre-mRNA in this complex has undergone catalytic step I, but not step II, of the splicing reaction. We show that a novel set of 14 spliceosome-associated proteins (SAPs) and the essential splicing factor PSF are specifically associated with the C complex, implicating these proteins in catalytic step II. Significantly, immunodepletion and biochemical complementation studies demonstrate directly that PSF is essential for catalytic step II. Purified PSF is known to UV crosslink to pyrimidine tracts, and our data show that PSF UV crosslinks to pre-mRNA in purified C complex. Thus, PSF may replace the 3' splice site binding factor U2AF65 which is destabilized during spliceosome assembly. Finally, we show that SAPs 60 and 90, which are present in both the B and C complexes, are specifically associated with U4 and U6 snRNPs, and thus may have important roles in the functioning of these snRNPs during the splicing reaction.
Collapse
|
|
31 |
147 |
10
|
Kaneko S, Rozenblatt-Rosen O, Meyerson M, Manley JL. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3' processing and transcription termination. Genes Dev 2007; 21:1779-89. [PMID: 17639083 PMCID: PMC1920172 DOI: 10.1101/gad.1565207] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Termination of RNA polymerase II transcription frequently requires a poly(A) signal and cleavage/polyadenylation factors. Recent work has shown that degradation of the downstream cleaved RNA by the exonuclease XRN2 promotes termination, but how XRN2 functions with 3'-processing factors to elicit termination remains unclear. Here we show that XRN2 physically associates with 3'-processing factors and accumulates at the 3' end of a transcribed gene. In vitro 3'-processing assays show that XRN2 is necessary to degrade the downstream RNA, but is not required for 3' cleavage. Significantly, degradation of the 3'-cleaved RNA was stimulated when coupled to cleavage. Unexpectedly, while investigating how XRN2 is recruited to the 3'-processing machinery, we found that XRN2 associates with p54nrb/NonO(p54)-protein-associated splicing factor (PSF), multifunctional proteins involved in several nuclear processes. Strikingly, p54 is also required for degradation of the 3'-cleaved RNA in vitro. p54 is present along the length of genes, and small interfering RNA (siRNA)-mediated knockdown leads to defects in XRN2 recruitment and termination. Together, our data indicate that p54nrb/PSF functions in recruitment of XRN2 to facilitate pre-mRNA 3' processing and transcription termination.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
146 |
11
|
Zhong N, Kim CY, Rizzu P, Geula C, Porter DR, Pothos EN, Squitieri F, Heutink P, Xu J. DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J Biol Chem 2006; 281:20940-20948. [PMID: 16731528 DOI: 10.1074/jbc.m601935200] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Loss-of-function mutations in DJ-1 cause a subset of familial Parkinson disease (PD). However, the mechanism underlying the selective vulnerability in dopaminergic pathway due to the inactivation of DJ-1 is unclear. Previously, we have reported that DJ-1 is a neuroprotective transcriptional co-activator interacting with the transcriptional co-repressor pyrimidine tract-binding protein-associated splicing factor (PSF). Here we show that DJ-1 and PSF bind and regulate the human tyrosine hydroxylase (TH) promoter. Inactivation of DJ-1 by small interference RNA (siRNA) results in decreased TH expression and l-DOPA production in human dopaminergic cell lines. Consistent with its role as a transcriptional regulator, DJ-1 specifically suppresses the global SUMO-1 modification. High molecular weight sumoylated protein species, including PSF, accumulate in the lymphoblast cells from the patients carrying pathogenic DJ-1 mutations. DJ-1 elevates the TH expression by inhibiting the sumoylation of PSF and preventing its sumoylation-dependent recruitment of histone deacetylase 1. Furthermore, siRNA silencing of DJ-1 decreases the acetylation of TH promoter-bound histones, and histone deacetylase inhibitors restore the DJ-1 siRNA-induced repression of TH. Therefore, our results suggest DJ-1 as a regulator of protein sumoylation and directly link the loss of DJ-1 expression and transcriptional dysfunction to impaired dopamine synthesis.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
145 |
12
|
Mathur M, Tucker PW, Samuels HH. PSF is a novel corepressor that mediates its effect through Sin3A and the DNA binding domain of nuclear hormone receptors. Mol Cell Biol 2001; 21:2298-311. [PMID: 11259580 PMCID: PMC86864 DOI: 10.1128/mcb.21.7.2298-2311.2001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2000] [Accepted: 01/08/2001] [Indexed: 11/20/2022] Open
Abstract
Members of the type II nuclear hormone receptor subfamily (e.g., thyroid hormone receptors [TRs], retinoic acid receptors, retinoid X receptors [RXRs], vitamin D receptor, and the peroxisome proliferator-activated receptors) bind to their response sequences with or without ligand. In the absence of ligand, these DNA-bound receptors mediate different degrees of repression or silencing of gene expression which is thought to result from the association of their ligand binding domains (LBDs) with corepressors. Two related corepressors, N-CoR and SMRT, interact to various degrees with the LBDs of these type II receptors in the absence of their cognate ligands. N-CoR and SMRT have been proposed to act by recruiting class I histone deacetylases (HDAC I) through an association with Sin3, although they have also been shown to recruit class II HDACs through a Sin3-independent mechanism. In this study, we used a biochemical approach to identify novel nuclear factors that interact with unliganded full-length TR and RXR. We found that the DNA binding domains (DBDs) of TR and RXR associate with two proteins which we identified as PSF (polypyrimidine tract-binding protein-associated splicing factor) and NonO/p54(nrb). Our studies indicate that PSF is a novel repressor which interacts with Sin3A and mediates silencing through the recruitment of HDACs to the receptor DBD. In vivo studies with TR showed that although N-CoR fully dissociates in the presence of ligand, the levels of TR-bound PSF and Sin3A appear to remain unchanged, indicating that Sin3A can be recruited to the receptor independent of N-CoR or SMRT. RXR was not detected to bind N-CoR although it bound PSF and Sin3A as effectively as TR, and this association with RXR did not change with ligand. Our studies point to a novel PSF/Sin3-mediated pathway for nuclear hormone receptors, and possibly other transcription factors, which may fine-tune the transcriptional response as well as play an important role in mediating the repressive effects of those type II receptors which only weakly interact with N-CoR and SMRT.
Collapse
|
research-article |
24 |
145 |
13
|
Wu X, Yoo Y, Okuhama NN, Tucker PW, Liu G, Guan JL. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat Cell Biol 2006; 8:756-63. [PMID: 16767080 DOI: 10.1038/ncb1433] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 04/24/2006] [Indexed: 12/16/2022]
Abstract
The presence of actin in the nucleus has been well established, and several studies have implicated nuclear actin in transcriptional regulation. Neuronal Wiskott-Aldrich syndrome protein (N-WASP) is a member of the WASP family of proteins; these proteins function in the cytoplasm as key regulators of cortical actin filament. Interestingly, N-WASP has also been observed in the nucleus. However, a potential nuclear function for N-WASP has not been established. Here, we report the identification of nuclear N-WASP within a large nuclear-protein complex containing PSF-NonO (polypyrimidine-tract-binding-protein-associated splicing factor-non-Pou-domain octamer-binding protein/p54(nrb)), nuclear actin and RNA polymerase II. The PSF-NonO complex is involved in the regulation of many cellular processes, such as transcription, RNA processing, DNA unwinding and repair. We demonstrate that the interaction of N-WASP with the PSF-NonO complex can couple N-WASP with RNA polymerase II to regulate transcription. We also provide evidence that the potential function of N-WASP in promoting polymerization of nuclear actins has an important role in this process. Based on these results, we propose a nuclear function for N-WASP in transcriptional regulation.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
137 |
14
|
Dong B, Horowitz DS, Kobayashi R, Krainer AR. Purification and cDNA cloning of HeLa cell p54nrb, a nuclear protein with two RNA recognition motifs and extensive homology to human splicing factor PSF and Drosophila NONA/BJ6. Nucleic Acids Res 1993; 21:4085-92. [PMID: 8371983 PMCID: PMC310009 DOI: 10.1093/nar/21.17.4085] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
While searching for a human homolog of the S.cerevisiae splicing factor PRP18, we found a polypeptide that reacted strongly with antibodies against PRP18. We purified this polypeptide from HeLa cells using a Western blot assay, and named it p54nrb (for nuclear RNA-binding protein, 54 kDa). cDNAs encoding p54nrb were cloned with probes derived from partial sequence of the purified protein. These cDNAs have identical coding sequences but differ as a result of alternative splicing in the 5' untranslated region. The cDNAs encode a 471 aa polypeptide that contains two RNA recognition motifs (RRMs). Human p54nrb has no homology to yeast PRP18, except for a common epitope, but is instead 71% identical to human splicing factor PSF within a 320 aa region that includes both RRMs. In addition, both p54nrb and PSF are rich in Pro and Gln residues outside the main homology region. The Drosophila puff-specific protein BJ6, one of three products encoded by the alternatively spliced no-on-transient A gene (nonA), which is required for normal vision and courtship song, is 42% identical to p54nrb in the same 320 aa region. The striking homology between p54nrb, PSF, and NONA/BJ6 defines a novel phylogenetically conserved protein segment, termed DBHS domain (for Drosophila behavior, human splicing), which may be involved in regulating diverse pathways at the level of pre-mRNA splicing.
Collapse
|
research-article |
32 |
131 |
15
|
Zolotukhin AS, Michalowski D, Bear J, Smulevitch SV, Traish AM, Peng R, Patton J, Shatsky IN, Felber BK. PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol 2003; 23:6618-30. [PMID: 12944487 PMCID: PMC193712 DOI: 10.1128/mcb.23.18.6618-6630.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV) gag/pol and env mRNAs contain cis-acting regulatory elements (INS) that impair stability, nucleocytoplasmic transport, and translation by unknown mechanisms. This downregulation can be counteracted by the viral Rev protein, resulting in efficient export and expression of these mRNAs. Here, we show that the INS region in HIV-1 gag mRNA is a high-affinity ligand of p54nrb/PSF, a heterodimeric transcription/splicing factor. Both subunits bound INS RNA in vitro with similar affinity and specificity. Using an INS-containing subgenomic gag mRNA, we show that it specifically associated with p54nrb in vivo and that PSF inhibited its expression, acting via INS. Studying the authentic HIV-1 mRNAs produced from an infectious molecular clone, we found that PSF affected specifically the INS-containing, Rev-dependent transcripts encoding Gag-Pol and Env. Both subunits contained nuclear export and nuclear retention signals, whereas p54nrb was continuously exported from the nucleus and associated with INS-containing mRNA in the cytoplasm, suggesting its additional role at late steps of mRNA metabolism. Thus, p54nrb and PSF have properties of key factors mediating INS function and likely define a novel mRNA regulatory pathway that is hijacked by HIV-1.
Collapse
MESH Headings
- Cells, Cultured/virology
- DNA-Binding Proteins
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/metabolism
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- HIV-1/drug effects
- HIV-1/genetics
- Humans
- Nuclear Matrix-Associated Proteins/genetics
- Nuclear Matrix-Associated Proteins/metabolism
- Octamer Transcription Factors
- PTB-Associated Splicing Factor
- Proviruses/genetics
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/pharmacology
- Regulatory Sequences, Ribonucleic Acid
- rev Gene Products, Human Immunodeficiency Virus
Collapse
|
research-article |
22 |
117 |
16
|
Peng R, Dye BT, Pérez I, Barnard DC, Thompson AB, Patton JG. PSF and p54nrb bind a conserved stem in U5 snRNA. RNA (NEW YORK, N.Y.) 2002; 8:1334-47. [PMID: 12403470 PMCID: PMC1370341 DOI: 10.1017/s1355838202022070] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PTB-associated splicing factor (PSF) has been implicated in both early and late steps of pre-mRNA splicing, but its exact role in this process remains unclear. Here we show that PSF interacts with p54nrb, a highly related protein first identified based on cross-reactivity to antibodies against the yeast second-step splicing factor Prpl8. We performed RNA-binding experiments to determine the preferred RNA-binding sequences for PSF and p54nrb, both individually and in combination. In all cases, iterative selection assays identified a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. Filter-binding assays and RNA affinity selection experiments demonstrated that PSF and p54nrb bind U5 snRNA with both the sequence and structure of stem 1b contributing to binding specificity. Sedimentation analyses show that both proteins associate with spliceosomes and with U4/U6.U5 tri-snPNP.
Collapse
|
research-article |
23 |
101 |
17
|
Rosonina E, Ip JYY, Calarco JA, Bakowski MA, Emili A, McCracken S, Tucker P, Ingles CJ, Blencowe BJ. Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo. Mol Cell Biol 2005; 25:6734-46. [PMID: 16024807 PMCID: PMC1190332 DOI: 10.1128/mcb.25.15.6734-6746.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/23/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022] Open
Abstract
In a recent study, we provided evidence that strong promoter-bound transcriptional activators result in higher levels of splicing and 3'-end cleavage of nascent pre-mRNA than do weak promoter-bound activators and that this effect of strong activators requires the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II). In the present study, we have investigated the mechanism of activator- and CTD-mediated stimulation of pre-mRNA processing. Affinity chromatography experiments reveal that two factors previously implicated in the coupling of transcription and pre-mRNA processing, PSF and p54(nrb)/NonO, preferentially bind a strong rather than a weak activation domain. Elevated expression in human 293 cells of PSF bypasses the requirement for a strong activator to promote efficient splicing and 3'-end cleavage. Truncation of the pol II CTD, which consists of 52 repeats of the consensus heptapeptide sequence YSPTSPS, to 15 heptapeptide repeats prevents PSF-dependent stimulation of splicing and 3'-end cleavage. Moreover, PSF and p54(nrb)/NonO bind in vitro to the wild-type CTD but not to the truncated 15-repeat CTD, and domains in PSF that are required for binding to activators and to the CTD are also important for the stimulation of pre-mRNA processing. Interestingly, activator- and CTD-dependent stimulation of splicing mediated by PSF appears to primarily affect the removal of first introns. Collectively, these results suggest that the recruitment of PSF to activated promoters and the pol II CTD provides a mechanism by which transcription and pre-mRNA processing are coordinated within the cell.
Collapse
|
research-article |
20 |
100 |
18
|
Bladen CL, Udayakumar D, Takeda Y, Dynan WS. Identification of the polypyrimidine tract binding protein-associated splicing factor.p54(nrb) complex as a candidate DNA double-strand break rejoining factor. J Biol Chem 2004; 280:5205-10. [PMID: 15590677 DOI: 10.1074/jbc.m412758200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biological effects of ionizing radiation are attributable, in large part, to induction of DNA double-strand breaks. We report here the identification of a new protein factor that reconstitutes efficient double-strand break rejoining when it is added to a reaction containing the five other polypeptides known to participate in the human nonhomologous end-joining pathway. The factor is a stable heteromeric complex of polypyrimidine tract-binding protein-associated splicing factor (PSF) and a 54-kDa nuclear RNA-binding protein (p54(nrb)). These polypeptides, to which a variety of functions have previously been attributed, share extensive homology, including tandem RNA recognition motif domains. The PSF.p54(nrb) complex cooperates with Ku protein to form a functional preligation complex with substrate DNA. Based on structural comparison with related proteins, we propose a model where the four RNA recognition motif domains in the heteromeric PSF.p54(nrb) complex cooperate to align separate DNA molecules.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
95 |
19
|
Dye BT, Patton JG. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Exp Cell Res 2001; 263:131-44. [PMID: 11161712 DOI: 10.1006/excr.2000.5097] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using fusions with green fluorescent protein (GFP), we have identified sequences in the polypyrimidine tract binding protein-associated splicing factor (PSF) that are involved in nuclear and subnuclear localization. Like other splicing factors, PSF localizes to the nucleus, is absent from nucleoli, and accumulates in punctate structures within the nucleus referred to as speckles. However, PSF lacks the known speckle localization domains that have been identified in other proteins. Instead, the localization of PSF to speckles is dependent on an RNA recognition motif (RRM). PSF comprises an N-terminal proline- and glutamine-rich domain, two RRMs (RRM1 and RRM2), and a C-terminal region that contains two nuclear localization signals, both of which are required for complete nuclear localization. Deletion of RRM2 led to a complete loss of speckle localization and resulted in diffuse accumulation of PSF in the nucleus, indicating that RRM2 is required for subnuclear localization. Thus, PSF appears to localize to speckles through a novel pathway that is dependent on its second RRM. Consistent with the use of a novel subnuclear targeting pathway, PSF redistributes to perinucleolar clusters upon the addition of a transcription inhibitor whereas other splicing factors display increased localization to speckles in the absence of transcription. A yeast two-hybrid screen identified four-and-a-half LIM-only protein 2 (FHL2) as a potential RRM2 interaction partner, indicating a possible role for zinc-finger or LIM domains in the localization of splicing factors to subnuclear speckles.
Collapse
|
|
24 |
87 |
20
|
Elsaeidi F, Bemben MA, Zhao XF, Goldman D. Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J Neurosci 2014; 34:2632-44. [PMID: 24523552 PMCID: PMC3921430 DOI: 10.1523/jneurosci.3898-13.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 01/25/2023] Open
Abstract
The regenerative failure of mammalian optic axons is partly mediated by Socs3-dependent inhibition of Jak/Stat signaling (Smith et al., 2009, 2011). Whether Jak/Stat signaling is part of the normal regenerative response observed in animals that exhibit an intrinsic capacity for optic nerve regeneration, such as zebrafish, remains unknown. Nor is it known whether the repression of regenerative inhibitors, such as Socs3, contributes to the robust regenerative response of zebrafish to optic nerve damage. Here we report that Jak/Stat signaling stimulates optic nerve regeneration in zebrafish. We found that IL-6 family cytokines, acting via Gp130-coupled receptors, stimulate Jak/Stat3 signaling in retinal ganglion cells after optic nerve injury. Among these cytokines, we found that CNTF, IL-11, and Clcf1/Crlf1a can stimulate optic axon regrowth. Surprisingly, optic nerve injury stimulated the expression of Socs3 and Sfpq (splicing factor, proline/glutamine rich) that attenuate optic nerve regeneration. These proteins were induced in a Jak/Stat-dependent manner, stimulated each other's expression and suppressed the expression of regeneration-associated genes. In vivo, the injury-dependent induction of Socs3 and Sfpq inhibits optic nerve regeneration but does not block it. We identified a robust induction of multiple cytokine genes in zebrafish retinal ganglion cells that may contribute to their ability to overcome these inhibitory factors. These studies not only identified mechanisms underlying optic nerve regeneration in fish but also suggest new molecular targets for enhancing optic nerve regeneration in mammals.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
83 |
21
|
Song X, Sun Y, Garen A. Roles of PSF protein and VL30 RNA in reversible gene regulation. Proc Natl Acad Sci U S A 2005; 102:12189-93. [PMID: 16079199 PMCID: PMC1189330 DOI: 10.1073/pnas.0505179102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The mammalian protein PSF contains a DNA-binding domain (DBD) that coordinately represses multiple oncogenic genes in human cell lines, indicating a role for PSF as a human tumor-suppressor protein. PSF also contains two RNA-binding domains (RBD) that form a complex with a noncoding VL30 retroelement RNA, releasing PSF from a gene and reversing repression. Thus, the DBD and RBD in PSF are linked by a mechanism of reversible gene regulation involving a noncoding RNA. This mechanism also could apply to other regulatory proteins that contain both DBD and RBD. The mouse genome has multiple copies of VL30 retroelements that are developmentally regulated, and mouse cells contain VL30 RNAs that have normal and pathological roles in gene regulation. Human chromosome 11 has a VL30 retroelement, and a VL30 EST was identified in human blastocyst cells, indicating that the PSF-VL30 RNA regulatory mechanism also could function in human cells.
Collapse
|
Journal Article |
20 |
72 |
22
|
Ke Y, Dramiga J, Schütz U, Kril JJ, Ittner LM, Schröder H, Götz J. Tau-mediated nuclear depletion and cytoplasmic accumulation of SFPQ in Alzheimer's and Pick's disease. PLoS One 2012; 7:e35678. [PMID: 22558197 PMCID: PMC3338448 DOI: 10.1371/journal.pone.0035678] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/20/2012] [Indexed: 11/19/2022] Open
Abstract
Tau dysfunction characterizes neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Here, we performed an unbiased SAGE (serial analysis of gene expression) of differentially expressed mRNAs in the amygdala of transgenic pR5 mice that express human tau carrying the P301L mutation previously identified in familial cases of FTLD. SAGE identified 29 deregulated transcripts including Sfpq that encodes a nuclear factor implicated in the splicing and regulation of gene expression. To assess the relevance for human disease we analyzed brains from AD, Pick's disease (PiD, a form of FTLD), and control cases. Strikingly, in AD and PiD, both dementias with a tau pathology, affected brain areas showed a virtually complete nuclear depletion of SFPQ in both neurons and astrocytes, along with cytoplasmic accumulation. Accordingly, neurons harboring either AD tangles or Pick bodies were also depleted of SFPQ. Immunoblot analysis of human entorhinal cortex samples revealed reduced SFPQ levels with advanced Braak stages suggesting that the SFPQ pathology may progress together with the tau pathology in AD. To determine a causal role for tau, we stably expressed both wild-type and P301L human tau in human SH-SY5Y neuroblastoma cells, an established cell culture model of tau pathology. The cells were differentiated by two independent methods, mitomycin C-mediated cell cycle arrest or neuronal differentiation with retinoic acid. Confocal microscopy revealed that SFPQ was confined to nuclei in non-transfected wild-type cells, whereas in wild-type and P301L tau over-expressing cells, irrespective of the differentiation method, it formed aggregates in the cytoplasm, suggesting that pathogenic tau drives SFPQ pathology in post-mitotic cells. Our findings add SFPQ to a growing list of transcription factors with an altered nucleo-cytoplasmic distribution under neurodegenerative conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
71 |
23
|
Hall-Pogar T, Liang S, Hague LK, Lutz CS. Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3'-UTR. RNA (NEW YORK, N.Y.) 2007; 13:1103-15. [PMID: 17507659 PMCID: PMC1894925 DOI: 10.1261/rna.577707] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two cyclooxygenase (COX) enzymes, COX-1 and COX-2, are present in human cells. While COX-1 is constitutively expressed, COX-2 is inducible and up-regulated in response to many signals. Since increased transcriptional activity accounts for only part of COX-2 up-regulation, we chose to explore other RNA processing mechanisms in the regulation of this gene. Previously, we showed that COX-2 is regulated by alternative polyadenylation, and that the COX-2 proximal polyadenylation signal contains auxiliary upstream sequence elements (USEs) that are very important in efficient polyadenylation. To explore trans-acting protein factors interacting with these cis-acting RNA elements, we performed pull-down assays with HeLa nuclear extract and biotinylated RNA oligonucleotides representing COX-2 USEs. We identified PSF, p54(nrb), PTB, and U1A as proteins specifically bound to the COX-2 USEs. We further explored their participation in polyadenylation using MS2 phage coat protein-MS2 RNA binding site tethering assays, and found that tethering any of these four proteins to the COX-2 USE mutant RNA can compensate for these cis-acting elements. Finally, we suggest that these proteins (p54(nrb), PTB, PSF, and U1A) may interact as a complex since immunoprecipitations of the transfected MS2 fusion proteins coprecipitate the other proteins.
Collapse
|
research-article |
18 |
71 |
24
|
Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, Ortín J. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLoS Pathog 2011; 7:e1002397. [PMID: 22114566 PMCID: PMC3219729 DOI: 10.1371/journal.ppat.1002397] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 10/10/2011] [Indexed: 01/15/2023] Open
Abstract
The influenza A virus RNA polymerase is a heterotrimeric complex responsible for viral genome transcription and replication in the nucleus of infected cells. We recently carried out a proteomic analysis of purified polymerase expressed in human cells and identified a number of polymerase-associated cellular proteins. Here we characterise the role of one such host factors, SFPQ/PSF, during virus infection. Down-regulation of SFPQ/PSF by silencing with two independent siRNAs reduced the virus yield by 2–5 log in low-multiplicity infections, while the replication of unrelated viruses as VSV or Adenovirus was almost unaffected. As the SFPQ/PSF protein is frequently associated to NonO/p54, we tested the potential implication of the latter in influenza virus replication. However, down-regulation of NonO/p54 by silencing with two independent siRNAs did not affect virus yields. Down-regulation of SFPQ/PSF by siRNA silencing led to a reduction and delay of influenza virus gene expression. Immunofluorescence analyses showed a good correlation between SFPQ/PSF and NP levels in infected cells. Analysis of virus RNA accumulation in silenced cells showed that production of mRNA, cRNA and vRNA is reduced by more than 5-fold but splicing is not affected. Likewise, the accumulation of viral mRNA in cicloheximide-treated cells was reduced by 3-fold. In contrast, down-regulation of SFPQ/PSF in a recombinant virus replicon system indicated that, while the accumulation of viral mRNA is reduced by 5-fold, vRNA levels are slightly increased. In vitro transcription of recombinant RNPs generated in SFPQ/PSF-silenced cells indicated a 4–5-fold reduction in polyadenylation but no alteration in cap snatching. These results indicate that SFPQ/PSF is a host factor essential for influenza virus transcription that increases the efficiency of viral mRNA polyadenylation and open the possibility to develop new antivirals targeting the accumulation of primary transcripts, a very early step during infection. The influenza A viruses cause annual epidemics and occasional pandemics of respiratory infections that may be life threatening. The viral genome contains 8 RNA molecules forming ribonucleoproteins that replicate and transcribe in the nucleus of infected cells. Influenza viruses are intracellular parasites that need the host cell machinery to replicate. To better understand this virus-cell interplay we purified the viral RNA polymerase expressed in human cells and identified several specifically associated cellular proteins. Here we characterise the role of one of them, the proline-glutamine rich splicing factor (SFPQ/PSF). Down-regulation of SFPQ/PSF indicated that it is essential for virus multiplication. Specifically, the accumulation of messenger and genomic virus-specific RNAs was reduced by SFPQ/PSF silencing in infected cells. Furthermore, transcription of parental ribonucleoproteins was affected by SFPQ/PSF down-regulation. The consequences of silencing SFPQ/PSF on the transcription and replication of a viral recombinant replicon indicated that it is required for virus transcription but not for virus RNA replication. In vitro transcription experiments indicated that SFPQ/PSF increases the efficiency of virus mRNA polyadenylation. This is the first description of a cellular factor essential for influenza virus transcription and opens the possibility to identify inhibitors that target this host-virus interaction and block virus gene expression.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
70 |
25
|
Song X, Sui A, Garen A. Binding of mouse VL30 retrotransposon RNA to PSF protein induces genes repressed by PSF: effects on steroidogenesis and oncogenesis. Proc Natl Acad Sci U S A 2004; 101:621-6. [PMID: 14704271 PMCID: PMC327197 DOI: 10.1073/pnas.0307794100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We describe a mechanism of gene regulation involving formation of a complex between PSF protein and mouse VL30 (mVL30) retrotransposon RNA. PSF represses transcription of the insulin-like growth factor 1 (IGF1)-inducible gene P450scc by binding to an insulin-like growth factor response element (IGFRE) motif in the gene. The complex with mVL30 RNA releases PSF, allowing transcription to proceed. Retrovirally mediated transmission of mVL30 RNA to human tumor cells induced several genes, including oncogenes, which also are induced by IGF1, and promoted metastasis. In mice, steroid synthesis is activated in steroidogenic cells by pituitary hormones, which concomitantly induce transcription of mVL30 RNA in the cells. We showed that steroid synthesis could also be activated in mouse steroidogenic adrenal cells by transfection with cDNA encoding either mVL30 RNA tracts that form a complex with PSF or a small interfering RNA (siRNA) that degrades PSF transcripts. These results suggest that mVL30 RNA regulates steroidogenesis, and possibly other physiological processes of mice, by complex formation with PSF. Retrotransposons such as mVL30 apparently evolved not only as "junk" DNA but also as transcriptionally active noncoding DNA that acquired physiological and pathological functions.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
65 |